Current Pharmaceutical Design - Volume 23, Issue 33, 2017
Volume 23, Issue 33, 2017
-
-
Therapeutic Strategy of Targeting Astrocytes for Neuroprotection in Parkinson's Disease
Authors: Ikuko Miyazaki and Masato AsanumaParkinson's disease (PD) is one of common neurodegenerative diseases, which shows motor symptoms including tremor, bradykinesia, rigidity and postural instability. It also involves non-motor symptoms such as cognitive impairment, mental manifestation, autonomic disorder and sensory disturbance. Although treatments to improve the motor disability in PD are being assessed at present, the main challenge remains that is the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find approaches that can inhibit the progression of dopaminergic neurodegeneration. Astrocytes are known to play an important role in the maintenance of the neuronal environment and exert neuroprotective effects. Additionally, astrocyte dysfunction increases the susceptibility of neurons to cytotoxicity. We have demonstrated neuroprotective approaches in parkinsonian models in various studies targeting astrocytes. In this article, we summarize the neuroprotective function of astrocytes in the brain, involvement of astrocyte dysfunction in neurodegeneration, and experimental approaches to dopaminergic neuroprotection. We review findings reported in several papers including our own studies. We also address target molecules and pivotal pathways in astrocytes for dopaminergic neuroprotection. The review discusses new promising therapeutic strategies to prevent dopaminergic neurodegeneration in PD.
-
-
-
Aquaporin 4 in Astrocytes is a Target for Therapy in Alzheimer's Disease
Authors: Yu-Long Lan, Jian-Jiao Chen, Gang Hu, Jun Xu, Ming Xiao and Shao LiCurrent experimental evidence points to the conclusion that aquaporin 4 (AQP4), which is an important water-channel membrane protein found in the brain, could play major roles in various brain conditions pathologically including pathogenesis of Alzheimer's disease (AD). In this paper, we review how AQP4 and altered astrocyte functions interact in AD, and provide experimental evidence highlighting the importance of this topic for the future investigations. The interactions of AQP4 are as follows: (i) AQP4 could influence astrocytic calcium signaling and potassium homeostasis. (ii) AQP4 is linked with the removal of interstitial β-amyloid and glutamate transmission. (iii) Furthermore, AQP4 modulates the reactive astrogliosis and neuroinflammation mechanisms. (iv) To add to this, AQP4 could participate in the AD pathogenesis through affecting neurotrophic factor production. It is therefore possible to identify certain functional molecules that regulate astrocyte make-up and functions. However, making crucial efforts to develop specific agents or drugs that target AQP4 function and test their therapeutic efficiency will be a breakthrough for addressing AD in that AQP4 controls the various physiological as well as pathophysiological features of astrocytes.
-
-
-
Astroglial Connexins as a Therapeutic Target for Alzheimer's Disease
Authors: Chenju Yi, Annette Koulakoff and Christian GiaumeBackground: In Alzheimer's disease (AD), modification of astrocytic properties is a well-known and documented fact, but their involvement in pathophysiology has only been examined in recent years. One distinct hallmark of AD is reactive gliosis which are represented in microglial and astrocytic phenotype changes. This reactive gliosis has been associated with changes in the expression and function of connexins. Connexins are proteins that can form gap junction channels and hemichannels, and in a disease context, have shown increased expression in astrocytes that contact amyloid plaques in vivo. Amyloid plaques are aggregates of the amyloid-beta protein, which present in the AD brain in patients and in animal models. Methods: Murine AD models demonstrate changes in connexin channel activity which mirror in cell culture systems treated with amyloid-beta peptide. This has been closely studied in the familial AD mouse model APPSwe/ PS1dE9 where the implications of connexin channel functions have been examined. Results: These studies demonstrate that while gap junctional communication was unaffected, hemichannel activation could be detected in the astrocytes of hippocampal slices containing amyloid-beta plaques. Most critically, the activation of hemichannels is associated with the release of gliotransmitters (such as ATP and glutamate) which results in the maintenance of a high intracellular free Ca2+ concentration within astrocytes, which initiates the start of a vicious cycle. Strategies that target astroglial connexin hemichannels include the knocking out of the connexin 43 gene in astrocytes of the APPSwe/PS1dE9 mice, as well as using various pharmacological tools. This results in the decrease of gliotransmitter release and the alleviation of neuronal damage. This includes the reduction of oxidative stress and neuritic dystrophies in neurons that are typically associated with plaque formation in the hippocampus. Concusion: In this review, we summarize recent findings on astroglial connexin channels in the neurodegenerative process of Alzheimer's disease, and discuss how this can be a strategy in AD treatment to block the activity of hemichannels in astrocytes.
-
-
-
Targeting Astrocytes for Treating Neurological Disorders: Carbon Monoxide and Noradrenaline-Induced Increase in Lactate
Authors: Anemari Horvat, Nina Vardjan and Robert ZorecThere are at least three reasons why brain astrocytes represent a new target for treating neurological disorders. First, although the human neocortex represents over 80% of brain mass, neurons are outnumbered by non-neuronal cells, including astrocytes, a neuroglial cell type. Second, as in neurons, vesicle-based release of transmitters is present in astrocytes, however with much slower kinetics than in neurons. Third, astrocytes contain glycogen, which can be transformed to L-lactate in glycolysis. L-lactate is considered to be a fuel and a signalling molecule involved in cognition and neuroprotection. The mechanisms of neuroprotection are unclear but may be linked to carbon monoxide, a product of the heme oxygenase, an evolutionarily conserved cellular cytoprotectant. Increased levels of local carbon monoxide arising from heme oxygenase activity may increase L-lactate, but direct measurements of cytosolic L-lactate are lacking. A fluorescence resonance energy transfer-based nanosensor selective for L-lactate was used to monitor cytosolic levels of L-lactate while cultured astrocytes were exposed to carbon monoxide. The results revealed that in astrocytes exposed to carbon monoxide there is no significant increase in L-lactate, however, when noradrenaline, a potent glycogenolytic agent, is applied, cytosolic levels of Llactate are increased, but strongly attenuated in astrocytes pretreated with carbon monoxide. These first measurements of carbon monoxide-modulated L-lactate levels in astrocytes provide evidence that the L-lactate and heme oxygenase neuroprotective systems may interact. In conclusion, not only the abundance of astrocytes but their signalling capacity using vesicles and metabolites, such as L-lactate, are valid targets for neurological disorders.
-
-
-
Astrocyte: An Innovative Approach for Alzheimer's Disease Therapy
Authors: Maria R. Bronzuoli, Roberta Facchinetti, Luca Steardo and Caterina ScuderiAlzheimer's disease (AD) is a devastating neurological illness with a heavy economic impact. Further comorbidities in combination with the social impact of this disorder increase the urgency of a clearer comprehension of its etiopathogenesis, allowing the execution of novel therapeutic strategies. Despite astrocytes have been widely described as active participant in the regulation of cerebral circuits, available data are still poor. Even less information is available about their precise role in the pathogenesis of illness. Moreover, the scant knowledge about the astrocyte-neuron interplay in health and disease still impedes pioneering discoveries. The focus of this review is to look for new and innovative pharmacological approaches against AD. In order to perform this, we used the following keywords in PubMed search engine: astrocytes, therapy, Alzheimer's disease, and glia in different combinations. With this review, we collected data available in literature describing how also astrocytes besides neurons might be new potential targets for drug discovery. Different approaches currently being studied include modulation of glutamate transporters expression, astroglial genetic manipulation, free radicals inhibition, up-regulation of neurotrophins, and regulation of astrogliosis and neuroinflammation. Since several studies already demonstrated that astrocytes are definitely involved in AD pathogenesis, these cells can represent a promising new therapeutic target.
-
-
-
Targeting Human Astrocytes' Calcium-sensing Receptors for Treatment of Alzheimer's Disease
Authors: Anna Chiarini, Ubaldo Armato, James F. Whitfield and Ilaria D. PraUnderstanding the pathophysiology of Alzheimer's disease (AD) in the principal human neural cells is necessary for finding therapeutics for this illness. To help do this, we have been using freshly cultured functionally normal cerebral cortical adult human astrocytes (NAHAs) and postnatal neurons. The findings show that amyloid-β oligomers (Aβ-os) binding to calcium-sensing receptors (CaSRs) on NAHAs and neuron surfaces trigger signals capable of driving AD pathogenesis. This Aβ•CaSR signalling shifts the amyloid precursor protein (APP) from its α-secretase shedding producing neurotrophic/neuroprotective soluble (s)APPα to its β-secretase cleaving engendering AD-driving Aβ42/Aβ42-os peptides. Aβ•CaSR signalling in NAHAs also drives the release of toxic hyper-phosphorylated Tau proteins in exosomes, and of nitric oxide, and VEGF-A. These several harmful agents comprise the neuron-killing machinery, driving the very slowly spreading AD neurocontagion. VEGF-A over-secretion from Aβ-exposed blood vessel-attached astrocytes induces a functional magnetic resonance imaging- detectable hippocampal neoangiogenesis which indicates approaching AD in amnestic minor cognitive impairment (aMCI) patients. Most important in AD's regard, selective allosteric CaSR antagonists (calcylitics) added to Aβ42/Aβ42-os-exposed NAHAs (or to human neuron cultures) rescue the extracellular shedding of neurotrophic/ neuroprotective sAPPα and suppress all the neurotoxic effects of Aβ•CaSR signalling even when multiple microglial cytokines are also present. Therefore, since the multipotent calcilytics would be reasonably safe and inexpensive drugs for humans, it is worthwhile testing them as AD therapeutics in clinical trials especially in persons in the earliest detectable stages of AD neuropathology progression such as aMCI.
-
-
-
Metallothionein is a Potential Therapeutic Strategy for Amyotrophic Lateral Sclerosis
More LessLou Gehrig's disease, a synonym of amyotrophic lateral sclerosis, is an adult-onset lethal neurodegenerative disorder. Irrespective of extensive efforts to elucidate the pathogenesis of the disease and searches for therapies, no favorable pharmacotherapeutic strategies have yet to be proposed. In a popular rodent model of ALS, G93A SOD1 strain of mouse, intracellular copper conditions were geared toward copper accumulation inside cells, resulting in an acceleration of oxidative stress and apoptotic process. Disruption of intracellular copper homeostasis was common to transgenic mice expressing human mutant SOD1s. In this review, the novel hypothesis that disruption of intracellular copper homeostasis could be involved in the development of the disease was introduced. Based upon the hypothesis, therapeutic outcomes of agents that are capable of correcting and/or modifying intracellular copper homeostasis are described. Administration of ammonium tetrathiomolybdate, a selective intracellular copper chelator, delayed onset, slowed progression, and prolonged survival of a rodent model of the disease (G93A SOD1 mice). Metallothionein is a low molecular weight, cysteine-rich, metal-binding cytoplasmic protein that has beneficial properties in detoxification of toxic heavy metals, homeostatic regulation of intracellular essential trace elements, including copper, antioxidant, and antiapoptotic roles. In animal experiments of the G93A SOD1 mice, an increase of metallothionein proteins by means of induction by exercise or dexamethasone, genetic overexpression, or intraperitoneal administration, all resulted in a preferable outcome. The therapeutic effects were not inferior to those of approved drugs for ALS in humans. These observations suggest that metallothionein could be worth investigating the therapeutic potential in clinical use.
-
-
-
Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis
Authors: Mariana Pehar, Benjamin A. Harlan, Kelby M. Killoy and Marcelo R. VargasAmyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis. Astrogliosis is a complex remodeling of astrocyte biology and most likely represents a continuum of potential phenotypes that affect neuronal function and survival in an injury-specific manner. In ALS patients, reactive astrocytes surround both upper and lower degenerating motor neurons and play a key role in the pathology. It has become clear that astrocytes play a major role in ALS pathology. Through loss of normal function or acquired new characteristics, astrocytes are able to influence motor neuron fate and the progression of the disease. The use of different cell culture models indicates that ALS-astrocytes are able to induce motor neuron death by secreting a soluble factor(s). Here, we discuss several pathogenic mechanisms that have been proposed to explain astrocyte-mediated motor neuron death in ALS. In addition, examples of strategies that revert astrocyte-mediated motor neuron toxicity are reviewed to illustrate the therapeutic potential of astrocytes in ALS. Due to the central role played by astrocytes in ALS pathology, therapies aimed at modulating astrocyte biology may contribute to the development of integral therapeutic approaches to halt ALS progression.
-
-
-
Astrocytes Pathology in ALS: A Potential Therapeutic Target?
By Sonja JohannThe mechanisms underlying neurodegeneration in amyotrophic lateral sclerosis (ALS) are multifactorial and include genetic and environmental factors. Nowadays, it is well accepted that neuronal loss is driven by non-cell autonomous toxicity. Non-neuronal cells, such as astrocytes, have been described to significantly contribute to motoneuron cell death and disease progression in cell culture experiments and animal models of ALS. Astrocytes are essential for neuronal survival and function by regulating neurotransmitter and ion homeostasis, immune response, blood flow and glucose uptake, antioxidant defence and growth factor release. Based on their significant functions in “housekeeping” the central nervous system (CNS), they are no longer thought to be passive bystanders but rather contributors to ALS pathogenesis. Findings from animal models have broadened our knowledge about different pathomechanisms in ALS, but therapeutic approaches to impede disease progression failed. So far, there is no cure for ALS and effective medication to slow down disease progression is limited. Targeting only a single aspect of this multifactorial disease may exhibit therapeutic limitations. Hence, novel cellular targets must be defined and new pharmaceutical strategies, such as combinatorial drug therapies are urgently needed. The present review discusses the physiological role of astrocytes and current hypotheses of astrocyte pathology in ALS. Furthermore, recent investigation of potential drug candidates in astrocyte cell culture systems and animal models, as well as data obtained from clinical trials, will be addressed. The central role of astrocytes in ALS pathogenesis makes them a promising target for pharmaceutical interventions.
-
-
-
Targeting Astrocytes for Treatment in Amyotrophic Lateral Sclerosis
Authors: Mina Peric, Dinko Mitrecic and Pavle R. AndjusAmyotrophic lateral sclerosis (ALS) is a fatal neurological disorder affecting upper and lower motoneurons. The two types, sporadic and familial differ in the aetiopathogenesis but have a similar neuropathology characterized by oxidative stress, excitotoxicity and inflammation. The disease is also characterized by a non-cell autonomous mechanism with astrocytes playing a central role by affecting synaptic glutamate, the blood-brain barrier, and metabolic and trophic support. Two types of therapeutic approaches focusing on astrocytes are presented: a) emerging molecular targets (potassium inward rectifier channels and aquaporins at the astrocyte endfeet, and IP3 receptor signaling pathway), and b) cell therapy with stem cell - generated and transplanted astrocytes.
-
-
-
GLT-1 Upregulation as a Potential Therapeutic Target for Ischemic Brain Injury
Authors: Yu-Yan Hu, Li Li, Xiao-Hui Xian, Min Zhang, Xiao-Cai Sun, Shu-Qin Li, Xin Cui, Jie Qi and Wen-Bin LiGlutamate is the primary excitatory neurotransmitter in the mammalian central nervous system, which plays an important role in many aspects of normal brain function such as neural development, motor functions, learning and memory etc. However, excessive accumulation of glutamate in the extracellular fluid will induce excitotoxicity which is considered to be a major mechanism of cell death in brain ischemia. There is no enzyme to decompose the glutamate in extracellular fluid, so extracellular glutamate homeostasis within the central nervous system is mainly regulated by the uptake activity of excitatory amino acid transporters. Among the five excitatory amino acid transporters, glial glutamate transporter-1 (GLT-1) is responsible for 90% of total glutamate uptake. Thus, GLT-1 is essential for maintaining the appropriate level of extracellular glutamate, and then limiting excitotoxicity of glutamate in central nervous system. Therefore, the regulation of GLT-1 might be a potential therapeutic target for ischemic brain injury. This review summarizes recent advances including our findings in the methods or medicine that could protect neurons against brain ischemic injury via upregulation of GLT-1 and discuss the possible application of these strategies.
-
-
-
Altered Homeostatic Functions in Reactive Astrocytes and Their Potential as a Therapeutic Target After Brain Ischemic Injury
Authors: Helena Pivonkova and Miroslava AnderovaBrain ischemic injury represents one of the greatest medical challenges for the aging population in developed countries, yet despite strong efforts, possibilities to treat ischemic injury still remain poor. Stroke, the most common type of brain ischemic injury in humans, is caused by brain artery occlusion, and represents a focal form of ischemia, which leads to neuronal loss in the ischemic core, and glial scar formation in the penumbral region around the core. Such glial scar mainly comprises reactive astrocytes, reactive NG2 glia and activated microglia. Reactive astrocytes display distinct features when compared to healthy astroglia, including changes in their morphology, metabolism, gene expression profiles, production of extracellular matrix proteins or proliferation rate. Similarly to astrocytes in the healthy nervous tissue, reactive astrocytes surrounding the glial scar strongly influence the activity of surviving neurons around the ischemic lesion. Bringing insight into pathophysiological functions of reactive astrocytes within the glial scar might thus open new possibilities for stroke treatment. Here, we summarize the properties of reactive astrocytes, with emphasis on the expression and function of ion channels, transporters and neurotransmitter receptors; all of which possess the ability to change the functional state of astrocytes, such as the membrane equilibrium potentials for different ions. This may have major effects on the functioning of surviving neurons, consequently leading to changes in neuronal excitability and progression of secondary pathologies, such as epilepsy. Moreover, we provide possible clues for therapy, based on functional modulation of astrocytic ion transporting mechanisms.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
