Current Pharmaceutical Design - Volume 22, Issue 9, 2016
Volume 22, Issue 9, 2016
-
-
Transdermal Drug Delivery Mediated by Microneedle Arrays: Innovations and Barriers to Success
Authors: Ester Caffarel-Salvador and Ryan F. DonnellyMicroneedles (MN) offer a simple, minimally invasive and reduced pain alternative to hypodermic needles for drug delivery, including vaccines. Previous studies investigating the use of MN have highlighted the benefit of this technology to facilitate dermal and transdermal drug delivery. Going forward towards commercialization, it is important to consider the perceptions and acceptability that MN technology will have once available in the market. This review collects the opinions and expectations of different population groups such as children, parents, paediatricians and the general public on various MN systems. In addition, the low pain perception scores, based on a visual analog scale for MN application, should also lead to a greater acceptability of this technology as a means of transdermal drug delivery. This review also highlights the potential challenges associated with the different types of MN together with issues of sterility and biocompatibility which will be important future factors to consider.
-
-
-
Carrier Deformability in Drug Delivery
Authors: Maria Jose Morilla and Eder Lilia RomeroDeformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications.
-
-
-
Ocular Drug Delivery - New Strategies for Targeting Anterior and Posterior Segments of the Eye
Authors: Joana F. Fangueiro, Francisco Veiga, Amelia M. Silva and Eliana B. SoutoThe ocular delivery of drugs encounters several limitations because of the dynamic and static barriers of the human’s eye anatomy and physiology. The poor bioavailability of drugs are mainly related to the topical administration, i.e. eye drops which is the most common drug dosage form for the treatment of eye pathologies. Precorneal factors and drug limitations related to its solubility and susceptibility for physicochemical degradation could be the main reasons for the poor permeation and uptake in the ocular mucosa. Pathologies affecting the anterior and posterior segment of the eye are thereafter difficult to be treated and, given the chronic and degenerative nature of some of these injuries, it is crucial to improve drugs therapeutic effect. Nanotechnology-based delivery systems could be a suitable approach to overcome these limitations. Some of the most important colloidal systems are highlighted in this review, such as the use of mucoadhesive polymers, prodrugs, nanogels, liposomes, microemulsions, lipid and polymeric nanoparticles, cyclodextrins, dendrimers and nanocrystals, along with their clinical and therapeutic relevance for the administration of drugs for ocular delivery.
-
-
-
Innovative formulations for controlled drug delivery to the lungs and the technical and toxicological challenges to overcome#
Inhalation of therapeutic aerosols has a long tradition and is, moreover, regarded as a safe and efficient route of drug administration to the respiratory tract. Especially, the targeting opportunities of this approach are beneficial for the treatment of numerous airway diseases. However, the rapid decay of local drug concentration and the resulting short-term duration of action of conventional medications necessitates several daily inhalations, which is clearly in conflict with a patients’ convenience and compliance. Recent progress in pharmaceutical engineering has provided promising drug delivery vehicles (e.g., liposomes, nanoparticles and thermo-responsive preparations) allowing for a sustained release of the encapsulated medication at the target site. Nevertheless, aspects such as generating tailored aerosols from these formulations (including stability during aerosolization) and the choice of biocompatible excipients remain considerable challenges, which need to be addressed in order to optimize inhalation therapy. Therefore, toxicology issues raised by these novel drug delivery vehicles with respect to physicochemical and material properties and biocompatibility are described in this review. This brief overview is intended to serve as a foundation to prompt future advancement in the field of controlled drug delivery to the lungs.
-
-
-
Delivery of Peptides Via the Oral Route: Diabetes Treatment by Peptide-Loaded Nanoparticles
Authors: Oriane Bouttefeux, Ana Beloqui and Veronique PreatOver the last years, the interest of the pharmaceutical industry in the use of therapeutic peptides in diabetes treatment has been increased. However, these are restricted to parenteral administration. In order to mimic the natural physiological response, many efforts have been made towards oral peptide delivery in diabetes treatment. This review article aims to give an overview on the progress in the nanomedicine field towards the design and optimization of nanoparticle-based drug delivery systems capable of overcoming the harsh gastrointestinal environment and achieving an adequate bioavailability following oral administration. The reported data clearly illustrate the promise of nanomedicine for antidiabetic oral peptide delivery.
-
-
-
Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
-
-
-
Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy
Authors: Raquel Abellan-Pose, Noemi Csaba and Maria Jose AlonsoThe lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far.
-
-
-
Intracellular Drug Delivery: Mechanisms for Cell Entry
More LessOver the last half century, the delivery of pharmacologically active substances, such as synthetic drugs, natural compounds, gene material and many other pharmaceutical products, has been widely studied. Understanding the interactions of drug carriers with cells and how these interactions influence the cellular uptake is of paramount importance, since targets for many therapeutic agents against several disorders are localized in the subcellular compartments. Besides, the route of drug carrier entry (direct or via endocytosis) often defines the efficiency, kinetics and final destination of the drug itself. Although classical endocytic pathways such as phagocytosis, macropinocytosis, clathrin-mediated and caveola-dependent pathways are well characterized, their control for pharmaceutical drug delivery applications is still a challenging issue. Also, better knowledge of non-classical endocytic pathways may help optimize targeted drug delivery systems for intracellular delivery. Therefore, this review focuses on mechanisms of intracellular delivery, including direct internalization and endocytosis, as well as factors such as targeting moiety, target receptor, and size, shape, and surface properties of the drug carrier that can influence uptake process.
-
-
-
Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus
Authors: Erik V. Munsell, Nikki L. Ross and Millicent O. SullivanNew biopharmaceutical molecules, potentially able to provide more personalized and effective treatments, are being identified through the advent of advanced synthetic biology strategies, sophisticated chemical synthesis approaches, and new analytical methods to assess biological potency. However, translation of many of these structures has been significantly limited due to the need for more efficient strategies to deliver macromolecular therapeutics to desirable intracellular sites of action. Engineered nanocarriers that encapsulate peptides, proteins, or nucleic acids are generally internalized into target cells via one of several endocytic pathways. These nanostructures, entrapped within endosomes, must navigate the intracellular milieu to orchestrate delivery to the intended destination, typically the cytoplasm or nucleus. For therapeutics active in the cytoplasm, endosomal escape continues to represent a limiting step to effective treatment, since a majority of nanocarriers trapped within endosomes are ultimately marked for enzymatic degradation in lysosomes. Therapeutics active in the nucleus have the added challenges of reaching and penetrating the nuclear envelope, and nuclear delivery remains a preeminent challenge preventing clinical translation of gene therapy applications. Herein, we review cutting-edge peptide- and polymer-based design strategies with the potential to enable significant improvements in biopharmaceutical efficacy through improved intracellular targeting. These strategies often mimic the activities of pathogens, which have developed innate and highly effective mechanisms to penetrate plasma membranes and enter the nucleus of host cells. Understanding these mechanisms has enabled advances in synthetic peptide and polymer design that may ultimately improve intracellular trafficking and bioavailability, leading to increased access to new classes of biotherapeutics.
-
-
-
DNA-Based Drug Carriers: The Paradox of a Classical “Cargo” Material Becoming a Versatile “Carrier” to Overcome Barriers in Drug Delivery
Authors: Robert Getts and Silvia MuroDrug delivery strategies help cope with drawbacks of classical pharmaceuticals, including increasing their solubility, diminishing side effects and improving biodistribution. A multitude of vehicles have been envisioned to this end, encompassing a variety of materials, architectures, and functionalities. DNA-built carriers are relatively new, yet promising devices to help overcome some of the current barriers in drug delivery. Its easy fabrication, reproducibility and tunability make DNA a unique material for building devices ranging from macro-scale depot systems to nano-scale vehicles tailored as nanoparticles, containers, dendrimers, tubes, etc. Although this DNA application is relatively novel and knowledge is building up, current advances suggest great potential. Intracellular delivery is a promising option, whereby access of cargoes (from small molecules to large biotherapeutics) to the cytosol has been demonstrated in many cell types, without apparent side effects or need for additional actuators. This is paradoxical since “natural” DNA cannot access cells and nucleic acids are among the most difficult cargoes to be delivered within cells; yet this property arises from engineering DNA into particular configurations. Their biocompatibility and safety also holds potential, since this natural material is biodegradable and nucleotides are biological metabolites. Using modified nucleotides and properly designing their sequence, along with classical chemical means, make it feasible to tune the stability and degradation rates of DNA devices. Taken together, although much research is still necessary to understand the in vivo behaviour of DNA-based vehicles, the design parameters ruling their optimization, and the biological pathways regulating their function, DNA represents a unique material to help in future drug delivery applications.
-
-
-
The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery
For a variety of diseases, effective therapy is severely limited or rendered impossible due to an inability to deliver medications to the intended sites of action. Multiple barriers exist through the body, which have evolved over time to limit the migration of foreign compounds from entering the tissues. Turning toward biology as inspiration, it has been the general goal of drug delivery to create carrier strategies that mimic, in part, features of bacteria/ viruses that allow them overcome these barriers. By packaging drugs into nano and micron scale vehicles, it should be possible to completely change the biodistribution and residence times of pharmaceutically active compounds. Recently, due to advances in formulation technologies, it has become possible to control not just the material selection, surface chemistry, and/or size, but also the overall geometry and plasticity of the drug carriers. These approaches aid in the formulation of nonspherical particles such as, discs, rods, and even unique structures such as cubes and nanodiamonds. The adjustment of size and shape can be used for the aid or prevention in cellular uptake and also to overcome the vascular and mucosal barrier. In this review, we present a summary of some approaches used to control carrier shape and the impact these geometries have upon drug transport across biological barriers.
-
-
-
Relevant Physicochemical Descriptors of “Soft Nanomedicines” to Bypass Biological Barriers
Authors: Amaya Nino-Pariente, Vicent J. Nebot and Maria J. VicentHerein, we present an overview on the current status of the characterization techniques and methodologies used to study the physicochemical descriptors that influence the final clinical performance of a given nanomedicine. The described techniques were selected based on their suitability to operate under relevant “native” conditions that mimic the physiological environment. Special emphasis is placed on those techniques that hold a greater potential to unravel dynamic, structural, and compositional features of soft organic nanomedicines relevant to the ability to bypass biological barriers, and hence allow for the rational design of drug delivery platforms with improved biological output.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
