Current Pharmaceutical Design - Volume 22, Issue 26, 2016
Volume 22, Issue 26, 2016
-
-
Protein Amyloidogenesis Investigated by Small Angle Scattering
Authors: Caterina Ricci, Francesco Spinozzi, Paolo Mariani and Maria Grazia OrtoreIn the last decades, the study of the mechanisms inducing amyloid fibril formation has involved several experimental and theoretical biophysical approaches. Many efforts have been made by scientist at the borderline between biology, chemistry, biochemistry and physics in order to understand why and in which way a protein starts its amyloidogenic pattern. This fundamental research issue is evolving in parallel to the development of drugs and inhibitors able to modify protein self assembly towards amyloid fibrils. Small angle xray and neutron scattering experiments represent suitable methods to investigate protein amyloidogenesis and the possible effects of inhibitors: they are in-solution techniques, require low amount of sample and their time-resolution makes it possible to follow aggregation pattern. In this paper we review small angle x-ray and neutron scattering studies dedicated to investigate amyloid β peptide and α-synuclein, related to Alzheimer's and Parkinson's diseases, respectively, together with some other studies that introduced innovative models to describe with small angle scattering techniques amyloid fibrillation processes.
-
-
-
AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species
Authors: Francesco Simone Ruggeri, Johnny Habchi, Andrea Cerreta and Giovanni DietlerBackground: A wide class of human diseases and neurodegenerative disorders, such as Alzheimer’s disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-β sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases.
-
-
-
Heterocyclic Scaffolds for the Treatment of Alzheimer’s Disease
Background: The treatment and diagnosis of Alzheimer’s Disease (AD) are two of the most urgent goals for research around the world. The cognitive decline is generally associated with the elevated levels of extracellular senile plaques, intracellular neurofibrillary tangles (NFTs), and with a progressive shutdown of the cholinergic basal forebrain neurons transmission. Even if several key targets are under fervent investigation in the cure of AD, till now, the only approved therapeutic strategy is the treatment of symptoms by using cholinesterases inhibitors. It has been demonstrated that both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes are not only responsible of acetylcholine levels, but also play an pivotal role in Aβ-aggregation during the early stages of senile plaque formation. On the other hand the difficult management of AD is also related to effective diagnostic methods and efficient assays for the study of pathological features. In such complex a wide framework, heterocyclic molecules are essential backbone to build new and selective drugs as well as diagnostic probes. Methods: The goal of this review is to examine a selected sample of relevant applications of five- and six-membered heterocycles in AD's therapeutic approaches. Results: Concerning the research on AD, the contribution of heterocyclic compounds is huge and here we report some representative examples. The review is organized in two main sections focused on five and six-membered heterocycles. The analyzed cases have been classified on the base of the structural features of molecules, taking into account the progressive increase in heteroatoms number. Conclusion: The discovery of an effective therapy or a diagnostic protocol for AD is still far, but consistent improvements are underway and contribution of heterocyclic compounds will be consistent and hopefully determinant.
-
-
-
Metal Ions and Metal Complexes in Alzheimer’s Disease
Background: Alzheimer’s disease (AD) is the most common form of dementia that seriously affects daily life. Even if AD pathogenesis is still subject of debate, it is generally accepted that cerebral cortex plaques formed by aggregated amyloid-β (Aβ) peptides can be considered a characteristic pathological hallmark. It is well known that metal ions play an important role in the aggregation process of Aβ. Methods: This review focuses on the anti-Aβ aggregation activity of chelating ligands as well as on the use of metal complexes as diagnostic probes and as potential drugs. Conclusion: While chelating agents, such as curcumin or flavonoid derivatives, are currently used to capture metal ions responsible for Aβ aggregation, the potential application of platinum, ruthenium and cobalt complexes, among others, of several heterocyclic ligands, represents a promising new strategy to fight AD.
-
-
-
Essential Oils and Pure Volatile Compounds as Potential Drugs in Alzheimer’s Disease Therapy: An Updated Review of the Literature
Authors: Antonella Maggio, Sergio Rosselli and Maurizio BrunoBackground: The use of aromatic plants to relief different illness is not a new therapy. Actually aromatic plants have been used for many centuries by different cultures around the world. Pharmacological studies provide scientific support to the traditional use of aromatic medicinal plants and aromatherapy; nevertheless, more clinical trials are required regarding to their effectiveness in order to establish a guidance for their use in routine healthcare. Moreover, modern medicine in studies about olfactory function has attained great achievements and got Nobel Prize in 2004. These new searches have obviously fueled interest in the essential oils and volatile compounds of natural origin. Several reviews on the newly discovered AChEi obtained from plants, fungus and marine organisms have also been published over the last years. The majority of these AChEi belong to the alkaloid group, including indole, isoquinoline, quinolizidine, piperidine and steroidal alkaloids. Results: Probably the interest in the essential oils and volatile compounds will be fueled from the new available scientific data about receptor on olfactory mucosa of nasal cavity. It can receive and distinguish different odor molecules, which produce nerve impulse and transmit into olfactory bulb via olfactory nerves. The nerve cells in the olfactory bulb transmit the signals into hippocampus. Because hippocampus is closely related with learning and memory functions, the volatile compounds can be potential drugs in AD therapies.
-
-
-
Therapeutic Approaches Targeting Pathological Tau Aggregates
Authors: Julia Gerson and Rakez KayedNeurodegenerative diseases characterized by the accumulation of tau aggregates are increasing in prevalence to epidemic-like levels and there is currently no effective treatment. For many years, the focus of tau-based research was on the fibrillar, neurofibrillary tangles. However, the compilation of evidence obtained from numerous laboratories in the past few years suggests that soluble intermediate aggregates—tau oligomers—are actually the most toxic protein species in disease. Thus, therapeutic agents that target oligomeric tau specifically may be the most effective routes for treatment. A great deal of progress has been made in the pre-clinical evaluation of a number of different anti-tau therapeutics. Upstream modulators of tau modifications have been evaluated and may provide some benefits, but likely will not be capable of eliminating toxic tau entirely. Protein chaperones capable of modulating the structure of tau and targeting it for degradation are another field of study, however, the broad effects of chaperones make side effects a concern. Thus, more specific agents capable of eliminating the most toxic species in disease are promising. Small molecules designed to inhibit aggregation, as well as immunotherapy with antibodies specific for toxic tau aggregates present the most advancement as potential treatments. The concerted effort across a number of groups to investigate potential mechanisms to inhibit tau toxicity represents great progress in the field and provides hope that effective treatments will be discovered.
-
-
-
Alzheimer’s Disease and Molecular Chaperones: Current Knowledge and the Future of Chaperonotherapy
Background: Alzheimer’s disease (AD) is a dementia, a neurodegenerative condition, and a protein-misfolding disease or proteinopathy, characterized by protein deposits, extracellular plaques and intracellular neurofibrillary tangles, which contain the AD’s typical pathological proteins, abnormal β-amyloid and hyperphosphorylated tau, respectively, and are located predominantly in the cortex of the frontal, parietal, and temporal brain lobes. What is the role of molecular chaperones in AD? Data indicate that molecular chaperones, also known as Hsp, are involved in AD, probably displaying protective roles and/or acting as pathogenic factors as it occurs in chaperonopathies in which case AD would be suitable to chaperonotherapy. Hsp60, Hsp70, and Hsp90 can be augmented and overexpressed or diminished and downregulated in various situations in AD affected tissues and cells, indicating they are active during disease development and progression. Question: What is the role of molecular chaperones in AD? Data indicate that molecular chaperones, also known as Hsp, are involved in AD, probably displaying protective roles and/or acting as pathogenic factors as it occurs in chaperonopathies in which case AD would be suitable to chaperonotherapy. Objective: Investigate the role of Hsp in AD, focusing on Hsp60, Hsp70, and Hsp90. Method: Critical examination of published data. Results: Hsp60, Hsp70, and Hsp90 can be augmented and overexpressed or diminished and downregulated in various situations in AD affected tissues and cells, indicating they are active during disease development and progression. Conclusion and Perspectives: Notwithstanding that the roles and mechanisms of action of chaperones in AD are still incompletely understood, there is already enough evidence to encourage the development of therapeutic strategies targeting them, either to block their activity in case they promote disease progression or to boost their performance when they are protective. The latter is an example of positive chaperonotherapy, which also includes chaperone replacement via gene or protein administration. On the contrary, if a chaperone is found to help the disease, it has to be blocked or eliminated, which constitute modalities of negative chaperonotherapy.
-
-
-
The Impact of Small Heat Shock Proteins (HspBs) in Alzheimer’s and Other Neurological Diseases
Authors: Nikola Golenhofen and Britta Bartelt-KirbachBackground: Heat shock proteins are powerful endogenous cytoprotective proteins which help cells to survive recurrent cellular stress events. Identifying the underlying molecular mechanisms and molecular targets is especially interesting since it may help to develop new therapeutic strategies for the treatment of diseases. Objective: This review will focus on the group of small heat shock proteins, also named HspBs. HspBs play an important role in various neurological diseases. Most neurodegenerative diseases are characterized by a distinct pathology with accumulation and aggregation of misfolded proteins, such as deposits of amyloid plaques or neurofibrillary tangles in Alzheimer`s disease. Such pathological protein aggregates are thought to lead to cellular dysfunction and finally to cell death. HspBs display chaperone-like functions and are able to prevent protein aggregation by which they may slow down progression of these diseases. However, HspBs have multiple additional functions which also may contribute to neuroprotection. Results/Conclusions: In this review we will first give an overview of the HspB protein family, their structure, functions and expression pattern. Then we will highlight their impact in the brain, in neurodegenerative diseases and especially in Alzheimer`s disease and try to unravel their multifactorial effects in several aspects of the disease pathologies.
-
-
-
Non-Demented Individuals with Alzheimer’s Disease Neuropathology: Resistance to Cognitive Decline May Reveal New Treatment Strategies
Authors: Olga Zolochevska and Giulio TaglialatelaAlzheimer’s disease (AD) is a terminal neurodegenerative disorder that is characterized by accumulation of amyloid plaques and neurofibrillary tangles in the central nervous system. However, certain individuals remain cognitively intact despite manifestation of substantial plaques and tangles consistent with what would be normally associated with fully symptomatic AD. Mechanisms that allow these subjects to escape dementia remain unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. In this review article we discuss potential compensatory mechanisms that allow these individuals to remain cognitively intact despite the typical AD neuropathology.
-
-
-
The Potential Use of Piglets as Human Pediatric Surrogate for Preclinical Pharmacokinetic and Pharmacodynamic Drug Testing
Pediatric drug research is still substandard, not reaching the same quality level as adult drug research. Despite the efforts made by the Food and Drug Administration and European Medicines Agency to reduce off-label use in children, the lack of clinical studies involving the pediatric population still stands. Pharmacokinetic and pharmacodynamics studies (PK/PD) taking growth and maturation into account are necessary to rationalize dosing strategies in children. Currently, traditional animal models such as rats, mice, dogs and primates are used to conduct pharmacokinetic and pharmacodynamic studies, however age-related trials are rather uncommon. Moreover, these species have several shortcomings as animal models, such as a different physiology and anatomy of the gastrointestinal tract in dogs or the ethical aspects for the use of primates. In contrast, piglets might be potential biomedical pediatric animal models because of the good resemblance with humans, anatomically, physiologically and biochemically. This review summarizes the comparative anatomy and physiology and postnatal development of piglets and infants, focusing on six major topics, namely growth, cardiovascular system, gastrointestinal tract, liver, kidney and integument. Furthermore, the application of piglets as animal model in pediatric PK/PD research is discussed.
-
-
-
Macrocyclic Compounds: Emerging Opportunities for Current Drug Discovery
Authors: Lisha You, Rui An, Kun Liang, Bo Cui and Xinhong WangThe macrocycles representing a unique chemical structure bridging conventional small molecules and large biomolecules, have attracted more and more attention in drug discovery over the past decade, and tremendous progress has been made toward the macrocyclization synthesis and structure diversification recently. Because of their favored size, flexibility and complexity, macrocycles can engage previously undruggable targets through numerous and spatially distributed binding interactions, and offer many privileged features including high potency, prominent selectivity, as well as favorable pharmacokinetics properties, and unique intellectual property(IP) space, and even safety profiles, etc. Currently around 70 macrocyclic molecules have been approved for clinical therapy, over 76 macrocycles are being evaluated in clinical trials from phase I to phase III. It is believed that the macrocycles will play more and more important role in the future, and provide very distinctive and promising opportunities for drug discovery along with the development of synthetic methodology, phenotypical screening, and computational studies.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
