Current Pharmaceutical Design - Volume 22, Issue 20, 2016
Volume 22, Issue 20, 2016
-
-
Natural Products Towards the Discovery of Potential Future Antithrombotic Drugs
Authors: Md. Asiful Islam, Fahmida Alam, Md. Ibrahim Khalil, Teguh Haryo Sasongko and Siew Hua GanGlobally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy.
-
-
-
Current Understanding of HSP90 as a Novel Therapeutic Target: An Emerging Approach for the Treatment of Cancer
Heat Shock Protein 90 (HSP90) is a ubiquitous molecular chaperone that is considered to be the most abundantly expressed protein in various human cancers such as breast, lung, colon, prostate, leukemia and skin. The master regulator, HSP90 plays a pivotal role in the conformational stabilization, maturation and activity of its various labile oncogenic client proteins such as p53, ErbB2, Bcr-Abl, Akt, Her-2, Cdk4, Cdk6, Raf-1 and v-Src in altered cells. Hence, making a guaranteed attempt to inhibit such a master regulator for cancer therapy appears to be a potential approach for combinatorial inhibition of numerous oncogenic signaling pathways simultaneously. Considerable efforts are being under way to develop novel molecular targets and its inhibitors that may block key signaling pathways involved in the process of tumorigenesis and metastasis. In this regards, HSP90 has acquired immense interest as a potent anticancer drug-target due to its key functional link with multiple signaling pathways involved in the process of cell proliferation and cell survival. Notably, geldanamycin and its derivatives (17-AAG, 17-DMAG) have shown quite encouraging results in inhibiting HSP90 function in several cancers and currently almost 17 drug candidates known to be target HSP90 are being under clinical trials either as single agents or combinatorial therapy. Hence, this review is an attempt to get new insight into novel drug target therapy by focusing on recent advances made in understanding HSP90 chaperone structure-function relationships, identification of new HSP90 client proteins and, more importantly, on the advancements of HSP90 targeted therapy based on various existing and emerging classical inhibitors.
-
-
-
Association of Oxidative Stress with Psychiatric Disorders
Background: When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. Methods: The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: “oxidative stress and affective disorders,” “free radicals and neurodegenerative disorders,” “oxidative stress and psychological disorders,” “oxidative stress, free radicals, and psychiatric disorders,” and “association of oxidative stress.” These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders and World Health Organization’s International Statistical Classification of Diseases and Related Health Problems. Results: Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. Conclusion: The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.
-
-
-
Immunology of Chronic Obstructive Pulmonary Disease and Sulfur Mustard Induced Airway Injuries: Implications for Immunotherapeutic Interventions
Background: Sulfur mustard (SM)-induced airway injuries and chronic obstructive pulmonary disease (COPD) are characterized by chronic inflammation of the respiratory tract and share some similarities regarding the cellular and molecular mechanisms orchestrating airway destruction. Since available data regarding the immunobiology of COPD is much more known compared with SM-mediated injuries, and considering the similarities in the immunopathogenesis of these diseases, comparison of the immunopathogenesis of COPD and SM-induced respiratory complications can help designing new therapeutic approaches for treatment of SM-induced injuries. Methods: A multi-database search was performed to identify articles dealing with the role of immune system function in the pathogenesis of COPD and mustard mustard-induced respiratory complications. Results: This review outlines the role of different components of the immune system in the pathogenesis of COPD and mustard-induced respiratory complications, and suggests therapeutic implication for improving the management of the latter condition as the most common chronic complication of sulfur mustard exposure. Conclusion: Although COPD and mustard lung are overlapping phenotypes and have shared pathophysiologic features, there are certain differences between these two diseases that necessitate further scrutiny. Combination therapies to counterbalance inflammation, oxidative stress and immune imbalance hold promise for the management of SM-induced respiratory complications but the success of such combined treatments need to be confirmed in proof-ofconcept trials.
-
-
-
Nano-Precipitation: Preparation and Application in the Field of Pharmacy
Authors: Thao Truong-Dinh Tran, Phuong Ha-Lien Tran, Khanh Tu Nguyen and Van-Thanh TranOver the last 30 years, nanoparticle-based medicine has received tremendous attention due to its advances with smart therapeutics and less toxicity. Few nanomedicine products have been approved for commercial use in the clinic (such as Doxil®, Ambraxane®...). Nanomedicine research is still at its early stage and the preparation of nanoparticles must be carefully considered. Systems involving further increased supersaturation, either via solvent evaporation, temperature reduction or anti-solvent mixture, were suggested to be capable of inducing nanoprecipitation (NPT). Since this technique is straight-forward, fast and easy to duplicate in practice, it is highly preferred and recommended. In this review, the process of NTP was described and discussed in detail. Factors that affect the encapsulation efficiency, the nanoparticle size, the morphology and the stability of nanoparticles prepared by NTP were described. This process is one of the most preferable processes for preparing solid nano-protein due to their elegant techniques that preserve the bioactivity of proteins. Although the production of nanoparticles by this process has not been applied in the pharmaceutical industry due to the organic solvent issue, the production equipment for large-scale has been marketed.
-
-
-
Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review
Authors: Elham N. Bifari, Sher Bahadar Khan, Khalid A. Alamry, Abdullah M. Asiri and Kalsoom AkhtarThe development of polymer nanocomposites by incorporating variable nanofillers has attracted attention of scientists, researchers and industrial sectors due to their dramatic improvement in various properties. Cellulose acetate (CA) based nanocomposites have interesting history in the field of medical applications because CA meets a wide range of biomedical implant properties. Since cellulose acetate is considered as a biodegradable, renewable, non-corrosive, non-toxic and biocompatible material, it raised up the unique advantages over many other materials. This review is designed to provide a broad overview of cellulose acetate nanocomposites in the field of medical applications and medical devices.
-
-
-
Formulation and Application of Biodegradable Nanoparticles Based Biopharmaceutical Delivery - An Efficient Delivery System
Biodegradable polymer based drug delivery has emerged as a promising and successful clinical tool for specific targeting and controlled drug release delivery system. Various other unique advantages associated with this delivery system include prolonged circulation, biocompatibility, degradation in nontoxic by-products etc. Till date, various biopharmaceutical agents have been successfully encapsulated within biodegradable polymers and used in clinics. However, before the clinical implementation of such nanocarriers different parameters have to be considered which influence the success of these nanocarriers such as drug release profile, size of nanocarrier, degradation mechanism, toxicity profile, type of polymer used, appropriate synthesis method, selection of mode of delivery etc. The following review focuses on such considerations to explore the area of designing and development of biodegradable polymeric nanosystems which when encapsulated with biopharmaceutical agents can be efficient for clinical application.
-
-
-
Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches
Authors: Fahmida Alam, Md. Asiful Islam, Md. Ibrahim Khalil and Siew Hua GanType 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.
-
-
-
Role of Osmolytes in Regulating Immune System
Authors: Tarun Kumar, Manisha Yadav and Laishram Rajendrakumar SinghBackground: The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. Scope of Review: In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Major Conclusion: Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. General Significance: This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.
-
-
-
Phytochemicals as Prototypes for Pharmaceutical Leads Towards Drug Development Against Diabetic Cardiomyopathy
Authors: Shreesh Ojha, Amani Kurdi, Bassem Sadek, M. Kaleem, Lu Cai, M. A. Kamal and Mohanraj RajeshGlobally diabetes mellitus (DM) is swiftly reaching epidemic proportions and impose major health care and socio-economic challenges that are associated with its complications. DM is considered as the major risk factor for the development of debilitating micro & macro vascular complications. Clinical studies have revealed that development of diabetic cardiomyopathy (DCM) in subjects with diabetes can occur both- dependent and independent of pre-existing increased risk factors such as poor glycemic control, hyperlipidemia, and or hypertension. Therefore, DCM represents as a major challenge for the clinical community for the prompt diagnosis and devising the treatment paradigm to combat the diabetes induced cardiac dysfunction. In Chinese traditional medical practice, heart ailments have been coped with herbal extracts. Phytochemicals bioavailability and pharmacokinetic properties are to yet be established completely in human subjects. However, tremendous progress has been made to isolate, purify the phytochemicals and characterize their effects on mitigating the development of DCM in pre-clinical models. Currently there are no approved drugs available for the treatment of DCM. In this review, we have discussed the progress made in understanding the mechanisms for the phytochemicals cardio-protective actions in the diabetic milieu and their caveats and provide future perspectives for proposing these agents to serve as prototypes in the development of drugs for the management of DCM.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
