Current Pharmaceutical Design - Volume 20, Issue 17, 2014
Volume 20, Issue 17, 2014
-
-
Clinical Aspects of Tumor Necrosis Factor-α Signaling in Hepatocellular Carcinoma
Authors: Myoung-Kuk Jang, Hyoung Su Kim and Young-Hwa ChungTumor necrosis factor alpha (TNF-α) is a multi-functional cytokine that regulates a variety of signaling pathways implicated in inflammation, immunity, cell death (apoptosis), cell survival (anti-apoptosis), and even tumorigenesis. TNF-α is predominantly produced by macrophages (or Kupffer cells within the liver), but generated by lymphoid cells, astrocytes, endothelial cells, and smooth muscle cells to some degree. In the liver, TNF-α not only serves as a key mediator of hepatocyte apoptosis resulting in the liver damage, but also plays an important role in cellular proliferation leading to liver regeneration or even hepatocarcinogenesis. TNF-α may indirectly contribute to carcinogenesis via various inflammatory conditions such as alcoholic and non-alcoholic fatty liver diseases and chronic viral hepatitis. On the one hand, in inflammation, TNF-α induces apoptosis repeatedly and subsequently enhances the chance of formation of anomalous cells during the process of regeneration and dysplasia. On the other hand, TNF-α exerts as an anti-angiogenic factor depending on its concentration. It shows an anti-tumorous effect by increasing vascular permeability in the tumors. When it is perfused in combination with chemotherapeutic drugs using isolated hepatic infusion, TNF-α may increase the responsiveness of hepatocellular carcinoma (HCC) or metastatic cancers to anti-cancer agents as isolated limb perfusion methods in an unresectable soft tissue sarcoma or melanoma. This article reviews the TNF-α signaling pathway in hepatocarcinogenesis and the new challenge of TNF-α as a new therapeutic strategy in HCC.
-
-
-
CD95 Signaling in Cancer Treatment
The CD95/CD95 ligand (CD95L) system regulates cell death, which plays a relevant role in cancer. The impairment of the CD95/CD95L system in cancer cells may lead to apoptosis resistance and contributes to tumor progression. However, a complete loss of CD95 is rarely seen in human cancers, and many cancer cells express large quantities of CD95. Furthermore, cancer patients frequently have elevated levels of the CD95L, which raise the possibility that CD95 could also participate in tumor growth through its non-apoptotic activities depending of cell lineages or tumor stage. For this reason, CD95 signaling has to be taken into account in tumor biology, and the multiple regulatory targets of CD95/CD95L suggest that they may be used as a potential therapeutic strategy to treat cancer. The present review is an update of anti-CD95-related cancer therapies such as anti-CD95 antibodies, CD95L fusion proteins, CD95 pro-drugs, as well as the new genetic CD95-based therapies.
-
-
-
The Long and Winding Road to Cancer Treatment: The Trail System
Activation of cell surface death receptors of the tumor necrosis factor (TNF) receptor superfamily by the appropriate ligands represents an attractive therapeutic strategy to induce cell death by apoptosis in cancer cells. However, the toxic effects of TNF-alpha and CD95/Fas ligand (FasL) in normal tissues have significantly hampered the clinical application of these ligands in cancer treatment. TNFrelated apoptosis-inducing ligand (TRAIL/APO-2L), another member of the TNF family, has been shown to induce apoptosis selectively in many tumor cell lines. Interestingly, TRAIL treatment also results in significant growth suppression of TRAIL-sensitive human cancer xenografts in mice and nonhuman primates. At the same time, recombinant TRAIL and agonistic TRAIL receptor antibodies show no significant cytotoxicity in these studies. Despite some adverse effects of certain TRAIL preparations, activation of proapoptotic TRAIL receptors represents a promising approach in cancer therapy. Herein we review what is known about proapoptotic TRAIL signaling, the role of intracellular survival pathways in the regulation of resistance to TRAIL and the activation of non-apoptotic signaling by TRAIL. We also discuss the role of the TRAIL system in tumorigenesis and the results of clinical trials with recombinant TRAIL and various TRAIL receptor agonistic antibodies, either as monotherapy or in combination with targeted or conventional chemotherapy.
-
-
-
VEGF Signaling in Cancer Treatment
Authors: Daniela Sia, Clara Alsinet, Pippa Newell and Augusto VillanuevaInduction of angiogenesis represents one of the major hallmarks of cancer. The growth of new vessels is crucial to provide malignant cells with an adequate supply of oxygen and nutrients. It is generally accepted that vascular endothelial growth factor (VEGF) is a major driver of the angiogenic process in physiological and pathological processes in both embryo and adult. VEGF is often found overexpressed in tumors, as well as its receptors VEGFR1 and VEGFR2. Hence, several different strategies have been designed to target VEGF signal transduction. In the last decades, multiple inhibitors have been therapeutically validated in preclinical models and several clinical trials. Neutralizing monoclonal antibodies against VEGF and small molecule tyrosine kinase inhibitors targeting VEGFRs have been shown to block its angiogenic activity, resulting in tumor vascular regression, anti-tumor effects and improvements in patient survival. However, side effects and lack of efficacy in some instances challenge the potential clinical impact of these therapies. This review examines the role of VEGF signaling in cancer and outlines the current status of anti-angiogenic therapies against VEGF pathway.
-
-
-
PDGF/PDGFR Signaling and Targeting in Cancer Growth and Progression: Focus on Tumor Microenvironment and Cancer-associated Fibroblasts
Traditionally, the studies on cancer growth and progression have been focused on the transformed, malignant cells. However, it is now well recognized that the tumour stroma represents a crucial parameter in tumour development, growth and progression. Indeed, several cancers are characterized by a prominent stromal compartment and it is the interactions between cancer cells, stromal cells and extracellular matrix (ECM) components that control the overall tumour growth. Among stromal cells, fibroblasts represent the most important type. They are responsible for deposition and remodeling of ECM components, as well as for the release of cytokines and growth factors, including platelet-derived growth factor (PDGF), acting in a paracrine manner on cancer cells. In this review we elucidate the role of tumor stroma interactions, the roles of PDGF receptor signaling in cancer-associated fibroblasts via alteration of stromal matrix composition and the mitogenic effects of cancer-derived PDGFs. Focus on the targeting of tumor microenvironment at the level of PDGF/PDGF receptor (PDGFR) is also presented as to stimulate further studies for designing and development of novel pharmaceutical agents and combined pharmaceutical interventions. Conclusively, PDGF/PDGFR axis is of paramount importance in the tumour microenvironment context and the inhibition of PDGF receptors’ activation represents a major target for future anticancer therapies.
-
-
-
C-KIT Signaling in Cancer Treatment
Authors: Karmen Stankov, Stevan Popovic and Momir MikovTumor progression is strongly associated with the activity of receptor tyrosine kinases (RTKs) and their intracellular signal transduction pathways, which regulate several cell functions including proliferation, apoptosis, motility, adhesion and angiogenesis. Detailed structural and functional studies of RTKs, including the stem cell factor receptor c-KIT, revealed the complexity of these receptor systems and contributed to development of targeted clinical approaches with relevance in both prognosis and therapy. C-KIT signaling network has been the subject of intense research and pharmaceutical strategies to identify novel target-based approaches for cancer treatment. Evidence that c-KIT signaling promotes cell proliferation and survival, along with the frequency in which this pathway is aberrantly activated in cancer, support the current efforts to identify approaches for its efficient inhibition. C-KIT mutations are associatied with several human malignancies, such as gastrointestinal stromal tumors, acute myeloid leukemia, mast cell leukemia, and melanoma. Novel therapies are developed that target some of the identified genetic defects. It is therefore anticipated that newly-identified genetic markers will acquire a predictive value, that is, the ability to predict differential efficacy of a therapy. This review describes the evolving understanding of c-KIT/SCF axis and their downstream signaling in cancer, and the strategies for c-KIT-directed targeted cancer therapy.
-
-
-
Is Fibroblast Growth Factor Receptor 4 a Suitable Target of Cancer Therapy?
Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.
-
-
-
Advances in Targeting Insulin-like Growth Factor Signaling Pathway in Cancer Treatment
Authors: Liangkun You, Changyu Liu, Hexiao Tang, Yongde Liao and Shengling FuInsulin-like growth factors (IGFs), along with their receptors and binding proteins, play key roles in human cell proliferation, differentiation and apoptosis. There is now substantial evidence suggesting that the IGF system is involved in the pathogenesis and progression of various malignancies. Recent studies have shown that targeting of the IGF-1 receptor (IGF-1R) signaling pathway might be a novel approach for the treatment of cancer. Presently numerous agents featuring different mechanisms of IGF targeting methods such as IGF-1R monoclonal antibodies, IGF-1R tyrosine kinase inhibitors and IGF ligand specific antibodies are being investigated in more than 170 clinical trials and appear to have potential therapeutic efficacy. However, advanced trials reiterate the importance of predictive biomarkers to guide the clinical efforts of these agents. As a result, current research strategies are emerging to identify the most suitable subpopulations of patients that might benefit from these treatments. Furthermore, newly presented toxicity and growth hormone response and implication of hybrid receptors in IGF signaling pathway pose unprecedented challenges in the design and application of anti-IGF agents. On the other hand, cross-talk in downstream signaling between IGF-1R and other tumor promoting pathways and the development of multi-target agents might encourage the IGF-1R-targeted therapies further into comprehensive treatments of cancer. With both challenges and prospects ahead, this paper reviewed the progress in this particular field.
-
-
-
Crosstalk between IGF-1R and other Tumor Promoting Pathways
Authors: Changyu Liu, Zheng Zhang, Hexiao Tang, Zhixiao Jiang, Liangkun You and Yongde LiaoInsulin-like growth factor 1 receptor (IGF-1R) is important in cancer pathogenesis and progression. While its signaling pathway is an interesting therapeutic target, recent clinical trials have exhibited limited effects; however, significant crosstalks between IGF- 1R and other signaling pathways have garnered increasing attention. These complex networks include interactions between IGF-1R and receptor tyrosine kinases (RTKs), including insulin receptor (IR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), mesenchymal-epithelial transition factor (MET), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR). Furthermore, IGF-1R also is related to steroid hormones, including estrogen receptors alpha and beta (ER! and ER"), androgen receptor (AR), and progesterone receptor (PR). Cumulatively, actions of crosstalk between IGF-1R, and RTKs/steroid hormones promote tumorigenesis, as demonstrated by the effectiveness of recently proposed therapeutic strategies. These therapeutic strategies, primarily pertaining to crosstalk-cotargeting, exhibited notable advantages in overcoming resistance to conventional chemotherapy and conventional endocrine therapy. Furthermore, these techniques offer benefits beyond the limited effects of single- agent targeting previously reported. Thus, the role of crosstalk between IGF-1R and RTKs/steroid hormones, including strategies to block these pathways in combination with recent development in this field, were reviewed and the potential future cancer therapeutics suggested by this rationale were considered.
-
-
-
Regulation of MET Receptor Signaling by SOCS1 and its Implications for Hepatocellular Carcinoma
The SOCS1 gene is a frequent target of epigenetic repression in hepatocellular carcinoma. Many other types of cancer also harbor methylated SOCS1 gene. Besides, recent studies implicate microRNAs targeting SOCS1 in cancer progression. These findings suggest a broad tumor suppressor role of SOCS1 and have stimulated the quest to elucidate the underlying molecular mechanisms. The essential physiological function of SOCS1 is to attenuate interferon gamma signaling in immune cells. SOCS1 binds activated JAK kinases and the receptor chains of several cytokines, some of which are implicated in cancer progression. SOCS1 also facilitates ubiquitination and proteasomal degradation of many signaling molecules downstream of cytokine and growth factor receptors. We have shown that SOCS1 inhibits signaling via the hepatocyte growth factor receptor c-MET in hepatocytes. Aberrant MET signaling, implicated in the progression of many types of cancers, also contributes to the development of chemoresistance to tyrosine kinase inhibitors and drugs targeting other oncogenic signaling pathways. Here, we discuss the SOCS1-dependent regulation of MET signaling as an important mechanism underlying the tumor suppressor role of SOCS1 that is relevant not only to hepatocellular carcinoma but also to other types of cancers.
-
-
-
TGF-beta Signaling in Cancer Treatment
Authors: Isabel Fabregat, Joan Fernando, Jessica Mainez and Patricia SanchoThe transforming growth factor-beta (TGF-! ) belongs to a superfamily of cytokines that act on protein kinase receptors at the plasma membrane to induce a plethora of biological signals that regulate cell growth and death, differentiation, immune response, angiogenesis and inflammation. Dysregulation of its pathway contributes to a broad variety of pathologies, including cancer. TGF-! is an important regulatory tumor suppressor factor in epithelial cells, where it early inhibits proliferation and induces apoptosis. However, tumor cells develop mechanisms to overcome the TGF-! -induced suppressor effects. Once this occurs, cells may respond to this cytokine inducing other effects that contribute to tumor progression. Indeed, TGF-! induces epithelial-mesenchymal transition (EMT), a process that is favored in tumor cells and facilitates migration and invasion. Furthermore, TGF-! mediates production of mitogenic growth factors, which stimulate tumor proliferation and survival. Finally, TGF-! is a well known immunosuppressor and pro-angiogenic factor. Many studies have identified the overexpression of TGF-! 1 in various types of human cancer, which correlates with tumor progression, metastasis, angiogenesis and poor prognostic outcome. For these reasons, different strategies to block TGF-! pathway in cancer have been developed and they can be classified in: (1) blocking antibodies and ligand traps; (2) antisense oligos; (3) T! RII and/or ALK5 inhibitors; (4) immune response-based strategies; (5) other inhibitors of the TGF-! pathway. In this review we will overview the two faces of TGF-! signaling in the regulation of tumorigenesis and we will dissect how targeting the TGF-! pathway may contribute to fight against cancer.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
