Skip to content
2000
image of Determination of Potential Inhibitors against Mycobacterium tuberculosis,Staphylococcus aureus, and Helicobacter pylori Shikimate Dehydrogenase by using Virtual Screening

Abstract

Drug development is expensive and time-consuming, and current efforts to lower the process's financial and temporal costs rely increasingly on computational methodologies. Specifically, during emergencies such as the coronavirus 2019 pandemic, the time needed for vaccine and medical research is increased. Computer-aided drug design (CADD) is a powerful tool for discovering potential therapeutic compounds in traditional drug discovery, having surpassed other high-throughput screening methods commonly used in drug development. The advancement of numerous clinically utilized medications has been significantly aided by CADD. CADD can be approached in two main ways: (1) ligand-based (analogue-based) and (2) structure-based (target-based). Both methods utilize molecular mechanics (MM) force fields to represent atomic-level interactions and define molecular shapes, energy, and motion. The two predominant approaches in drug design are structure-based drug design and ligand-based drug design, both of which provide insights into drug-receptor interactions. Therefore, CADD plays a crucial role in identifying suitable pharmacological properties and compatibility, providing a significant advantage in pre-clinical trials. In this review, we reported the use of the computer-aided drug discovery (CADD) technique to suggest new therapeutic targets and possible inhibitor ligands for , , and . The results of the review may be useful in managing the treatment problems brought on by the higher incidence of antibiotic resistance in the aforementioned bacteria.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128402191250917111355
2025-10-06
2025-12-18
Loading full text...

Full text loading...

References

  1. Mir R. Jallu S. Singh T.P. The shikimate pathway: Review of amino acid sequence, function and three-dimensional structures of the enzymes. Crit. Rev. Microbiol. 2015 41 2 172 189 10.3109/1040841X.2013.813901 23919299
    [Google Scholar]
  2. Parish T. Stoker N.G. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 2002 148 10 3069 3077 10.1099/00221287‑148‑10‑3069 12368440
    [Google Scholar]
  3. Duque-Villegas M.A. Abbadi B.L. Romero P.R. EPSP synthase-depleted cells are aromatic amino acid auxotrophs in Mycobacterium smegmatis. Microbiol. Spectr. 2021 9 3 e00009 e00021 10.1128/Spectrum.00009‑21 34937164
    [Google Scholar]
  4. Peek J. Lee J. Hu S. Senisterra G. Christendat D. Structural and mechanistic analysis of a novel class of shikimate dehydrogenases: Evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family. Biochemistry 2011 50 40 8616 8627 10.1021/bi200586y 21846128
    [Google Scholar]
  5. Lin Y. Shao Y. Yan J. Ye G. Antibiotic resistance in Helicobacter pylori: From potential biomolecular mechanisms to clinical practice. J. Clin. Lab. Anal. 2023 37 7 24885 10.1002/jcla.24885 37088871
    [Google Scholar]
  6. Audah K.A. Drug discovery: A biodiversity perspective. In: Nanotechnology: Applications in Energy, Drug and Food. Cham Springer 2019 249 265 10.1007/978‑3‑319‑99602‑8_12
    [Google Scholar]
  7. AlMatar M. Makky E.A. AlMandeal H. Does the development of vaccines advance solutions for tuberculosis? Curr. Mol. Pharmacol. 2019 12 2 83 104 10.2174/1874467212666181126151948 30474542
    [Google Scholar]
  8. Natarajan A. Beena P.M. Devnikar A.V. Mali S. A systemic review on tuberculosis. Indian J. Tuberc. 2020 67 3 295 311 10.1016/j.ijtb.2020.02.005 32825856
    [Google Scholar]
  9. Zwolska Z. Augustynowicz-Kopeć E. Drug resistant tuberculosis. Pol. Merkuriusz Lek. 2011 30 179 362 366 21675144
    [Google Scholar]
  10. Balgouthi K. AlMatar M. Saghrouchni H. Albarri O. Var I. Mutations in Rv0678, Rv2535c, and Rv1979c confer resistance to bedaquiline in clinical isolates of Mycobacterium tuberculosis. Curr. Mol. Pharmacol. 2024 17 1 18761429314641 10.2174/0118761429314641240815080447 39317997
    [Google Scholar]
  11. Szumowski J.D. Lynch J.B. Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des. Devel. Ther. 2015 9 677 682 10.2147/DDDT.S60923 25678771
    [Google Scholar]
  12. Ignatius E.H. Dooley K.E. New drugs for the treatment of tuberculosis. Clin. Chest Med. 2019 40 4 811 827 10.1016/j.ccm.2019.08.001 31731986
    [Google Scholar]
  13. Pereira J.H. de Oliveira J.S. Canduri F. Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr. D Biol. Crystallogr. 2004 60 12 2310 2319 10.1107/S090744490402517X 15583379
    [Google Scholar]
  14. Kawamoto S. Hori C. Taniguchi H. Okubo S. Aoki S. Identification of novel antimicrobial compounds targeting Mycobacterium tuberculosis shikimate kinase using in silico hierarchical structure-based drug screening. Tuberculosis 2023 141 102362 10.1016/j.tube.2023.102362 37311288
    [Google Scholar]
  15. Chen Y. Sun L. Ba X. Epidemiology, evolution and cryptic susceptibility of methicillin-resistant Staphylococcus aureus in China: A whole-genome-based survey. Clin. Microbiol. Infect. 2022 28 1 85 92 10.1016/j.cmi.2021.05.024 34022399
    [Google Scholar]
  16. Zhu M. Qu J. Deng Q. Identification of potential inhibitors against Staphylococcus aureus shikimate dehydrogenase through virtual screening and susceptibility test. J. Enzyme Inhib. Med. Chem. 2024 39 1 2301768 10.1080/14756366.2024.2301768 38234148
    [Google Scholar]
  17. Xu Z. Zhang Q. Shi J. Zhu W. Underestimated noncovalent interactions in protein data bank. J. Chem. Inf. Model. 2019 59 8 3389 3399 10.1021/acs.jcim.9b00258 31294978
    [Google Scholar]
  18. Ray M. Sarkar S. Rath S.N. Druggability for COVID-19: In silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2. Genomics Inform. 2020 18 4 43 10.5808/GI.2020.18.4.e43 33412759
    [Google Scholar]
  19. Henrique Santana Silveira P. Pita S.S.R. Druggable sites identification in Streptococcus mutans VicRK system evaluated by catechols. J. Biomol. Struct. Dyn. 2023 41 21 12000 12015 10.1080/07391102.2023.2166118 36703608
    [Google Scholar]
  20. Khan N. Mukhtar H. Tea polyphenols in promotion of human health. Nutrients 2018 11 1 39 10.3390/nu11010039 30585192
    [Google Scholar]
  21. Zhang X. Li J. Li Y. Liu Z. Lin Y. Huang J. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB/MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 2020 145 104634 10.1016/j.fitote.2020.104634 32454171
    [Google Scholar]
  22. Bo Z. Zhu J. Guo M. Gallocatechin gallate inhibits the replication of pseudorabies virus via suppressing the entry and release stages in its replication cycle. Vet. Sci. 2023 10 3 189 10.3390/vetsci10030189 36977228
    [Google Scholar]
  23. Xiao T. Cui M. Zheng C. Both baicalein and gallocatechin gallate effectively inhibit SARS-CoV-2 replication by targeting M pro and sepsis in mice. Inflammation 2022 45 3 1076 1088 10.1007/s10753‑021‑01602‑z 34822072
    [Google Scholar]
  24. Ko S. Jang W.S. Jeong J.H. (−)-Gallocatechin gallate from green tea rescues cognitive impairment through restoring hippocampal silent synapses in post-menopausal depression. Sci. Rep. 2021 11 1 910 10.1038/s41598‑020‑79287‑x 33441611
    [Google Scholar]
  25. Park D.H. Park J.Y. Kang K.S. Hwang G.S. Neuroprotective effect of gallocatechin gallate on glutamate-induced oxidative stress in hippocampal ht22 cells. Molecules 2021 26 5 1387 10.3390/molecules26051387 33806640
    [Google Scholar]
  26. Ikeda A. Iso H. Yamagishi K. Plasma tea catechins and risk of cardiovascular disease in middle-aged Japanese subjects: The JPHC study. Atherosclerosis 2018 277 90 97 10.1016/j.atherosclerosis.2018.08.001 30176569
    [Google Scholar]
  27. Gabr G.A. Hassan H.M.M. Seshadri V.D. Hassan N.M.M. Comparative study of phenolic profile, antioxidant and antimicrobial activities of aqueous extract of white and green tea. Z. Naturforsch. C J. Biosci. 2022 77 11-12 483 492 10.1515/znc‑2021‑0321 35599243
    [Google Scholar]
  28. Javadkhani A. Shokouhi B. Mosayebzadeh A. Nano-catechin gel as a sustained release antimicrobial agent against clinically isolated Porphyromonas gingivalis for promising treatment of periodontal diseases. Biomedicines 2023 11 7 1932 10.3390/biomedicines11071932 37509571
    [Google Scholar]
  29. Hui X. Hua S.H. Wu Q.Q. Li H. Gao W.Y. Antimicrobial mechanism of epigallocatechin gallate and gallocatechin gallate: They target 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway. Arch. Biochem. Biophys. 2017 622 1 8 10.1016/j.abb.2017.04.007 28428039
    [Google Scholar]
  30. Péter Zomborszki Z. Kúsz N. Csupor D. Peschel W. Rhodiosin and herbacetin in Rhodiola rosea preparations: Additional markers for quality control? Pharm. Biol. 2019 57 1 295 305 10.1080/13880209.2019.1577460 31356124
    [Google Scholar]
  31. Zhang X. Zhu J. Yan J. Systems pharmacology unravels the synergic target space and therapeutic potential of Rhodiola rosea L. for non-small cell lung cancer. Phytomedicine 2020 79 153326 10.1016/j.phymed.2020.153326 32992083
    [Google Scholar]
  32. Döring K. Langeder J. Duwe S. Insights into the direct anti-influenza virus mode of action of Rhodiola rosea. Phytomedicine 2022 96 153895 10.1016/j.phymed.2021.153895 35026524
    [Google Scholar]
  33. Zhou J.T. Li C.Y. Wang C.H. Phenolic compounds from the roots of Rhodiola crenulata and their antioxidant and inducing IFN-γ production activities. Molecules 2015 20 8 13725 13739 10.3390/molecules200813725 26225952
    [Google Scholar]
  34. Avitia-Domínguez C. Sierra-Campos E. Salas-Pacheco J. Inhibition and biochemical characterization of methicillin-resistant Staphylococcus aureus shikimate dehydrogenase: An in silico and kinetic study. Molecules 2014 19 4 4491 4509 10.3390/molecules19044491 24727420
    [Google Scholar]
  35. Enríquez-Mendiola D. Téllez-Valencia A. Sierra-Campos E. Kinetic and molecular dynamic studies of inhibitors of shikimate dehydrogenase from methicillin‐resistant Staphylococcus aureus. Chem. Biol. Drug Des. 2019 94 2 1504 1517 10.1111/cbdd.13532 31009175
    [Google Scholar]
  36. Elbehiry A. Marzouk E. Aldubaib M. Helicobacter pylori infection: Current status and future prospects on diagnostic, therapeutic and control challenges. Antibiotics 2023 12 2 191 10.3390/antibiotics12020191 36830102
    [Google Scholar]
  37. Cover T.L. Blaser M.J. Helicobacter pylori in health and disease. Gastroenterology 2009 136 6 1863 1873 10.1053/j.gastro.2009.01.073 19457415
    [Google Scholar]
  38. Melo M.C.R. Maasch J.R.M.A. de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 2021 4 1 1050 10.1038/s42003‑021‑02586‑0 34504303
    [Google Scholar]
  39. da Silva T.H. Hachigian T.Z. Lee J. King M.D. Using computers to ESKAPE the antibiotic resistance crisis. Drug Discov. Today 2022 27 2 456 470 10.1016/j.drudis.2021.10.005 34688913
    [Google Scholar]
  40. Jukič M. Bren U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022 13 864412 10.3389/fphar.2022.864412 35592425
    [Google Scholar]
  41. Ameji P.J. Uzairu A. Shallangwa G.A. Uba S. Computer aided design of novel antibiotic drug candidate against multidrug resistant strains of Salmonella typhi from pyridine-substituted coumarins. Beni. Suef Univ. J. Basic Appl. Sci. 2024 13 1 15 10.1186/s43088‑024‑00473‑1
    [Google Scholar]
  42. Almihyawi R.A.H. Naman Z.T. Al-Hasani H.M.H. Muhseen Z.T. Zhang S. Chen G. Integrated computer-aided drug design and biophysical simulation approaches to determine natural anti-bacterial compounds for Acinetobacter baumannii. Sci. Rep. 2022 12 1 6590 10.1038/s41598‑022‑10364‑z 35449379
    [Google Scholar]
  43. Patil S.D. Sharma R. Srivastava S. Navani N.K. Pathania R. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013 8 3 57370 10.1371/journal.pone.0057370 23469191
    [Google Scholar]
  44. Luo H. Gao F. Lin Y. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci. Rep. 2015 5 1 13210 10.1038/srep13210 26272053
    [Google Scholar]
  45. Boguszewska K. Szewczuk M. Kaźmierczak-Barańska J. Karwowski B.T. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules 2020 25 12 2857 10.3390/molecules25122857 32575813
    [Google Scholar]
  46. Noori Goodarzi N. Khazani Asforooshani M. Shahbazi B. Rezaie Rahimi N. Badmasti F. Identification of novel drug targets for Helicobacter pylori: Structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. Front Bioinform 2024 4 1482338 10.3389/fbinf.2024.1482338 39493576
    [Google Scholar]
  47. Sterritt O.W. Kessans S.A. Jameson G.B. Parker E.J. A pseudoisostructural type II DAH7PS enzyme from Pseudomonas aeruginosa: Alternative evolutionary strategies to control shikimate pathway flux. Biochemistry 2018 57 18 2667 2678 10.1021/acs.biochem.8b00082 29608284
    [Google Scholar]
  48. Frlan R. An evolutionary conservation and druggability analysis of enzymes belonging to the bacterial shikimate pathway. Antibiotics 2022 11 5 675 10.3390/antibiotics11050675 35625318
    [Google Scholar]
  49. Al Khzem A.H. Shoaib T.H. Mukhtar R.M. Repurposing FDA-approved agents to develop a prototype Helicobacter pylori Shikimate Kinase (HPSK) inhibitor: A computational approach using virtual screening, MM-GBSA calculations, MD simulations, and DFT analysis. Pharmaceuticals 2025 18 2 174 10.3390/ph18020174 40005988
    [Google Scholar]
  50. Kus M. Ibragimow I. Piotrowska-Kempisty H. Caco-2 cell line standardization with pharmaceutical requirements and in vitro model suitability for permeability assays. Pharmaceutics 2023 15 11 2523 10.3390/pharmaceutics15112523 38004503
    [Google Scholar]
  51. Kunwittaya S. Nantasenamat C. Treeratanapiboon L. Srisarin A. Isarankura-Na-Ayudhya C. Prachayasittikul V. Influence of logBB cut-off on the prediction of blood-brain barrier permeability. Biomed Appl Technol J 2013 1 16 34
    [Google Scholar]
  52. Kalhor H. Noori Goodarzi N. Rahimi H. Firoozeh F. Badmasti F. Identification of novel drug targets in Porphyromonas gingivalis and proposing inhibitors against acetate kinase using structure-based virtual screening. Process Biochem. 2023 130 310 321 10.1016/j.procbio.2023.04.016
    [Google Scholar]
  53. Lombardo F. Bentzien J. Berellini G. Muegge I. In silico models of human PK parameters. Prediction of volume of distribution using an extensive data set and a reduced number of parameters. J. Pharm. Sci. 2021 110 1 500 509 10.1016/j.xphs.2020.08.023 32891631
    [Google Scholar]
  54. Nipun T. Ema T. Mia M. Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. J. Adv. Vet. Anim. Res. 2021 8 4 1 10.5455/javar.2021.h544 35106293
    [Google Scholar]
  55. Erol M. In silico evaluation of SARS-CoV-2 papain-like protease inhibitory activity of some fda-approved drugs. J Fac Pharm Ankara Univ 2023 47 3 27 10.33483/jfpau.1311496
    [Google Scholar]
  56. Awosika A.O. Patel P. Cangrelor. StatPearls. 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK594269/
    [Google Scholar]
  57. Marquez L. Lee Y. Duncan D. Whitesell L. Cowen L.E. Quave C. Potent antifungal activity of penta-O-galloyl-β-d-Glucose against drug-resistant Candida albicans, Candida auris, and other non-albicans Candida species. ACS Infect. Dis. 2023 9 9 1685 1694 10.1021/acsinfecdis.3c00113 37607350
    [Google Scholar]
  58. Ryan P. Hynes M.J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J. Inorg. Biochem. 2007 101 4 585 593 10.1016/j.jinorgbio.2006.12.001 17257683
    [Google Scholar]
  59. Jiamboonsri P. Pithayanukul P. Bavovada R. Factors influencing oral bioavailability of Thai mango seed kernel extract and its key phenolic principles. Molecules 2015 20 12 21254 21273 10.3390/molecules201219759 26633325
    [Google Scholar]
  60. Bairwa G. Hee Jung W. Kronstad J.W. Iron acquisition in fungal pathogens of humans. Metallomics 2017 9 3 215 227 10.1039/C6MT00301J 28217776
    [Google Scholar]
  61. Gerwien F. Skrahina V. Kasper L. Hube B. Brunke S. Metals in fungal virulence. FEMS Microbiol. Rev. 2018 42 1 fux050 10.1093/femsre/fux050 29069482
    [Google Scholar]
  62. Fourie R. Kuloyo O.O. Mochochoko B.M. Albertyn J. Pohl C.H. Iron at the centre of Candida albicans interactions. Front. Cell. Infect. Microbiol. 2018 8 185 10.3389/fcimb.2018.00185 29922600
    [Google Scholar]
  63. Rybak J.M. Marx K.R. Nishimoto A.T. Rogers P.D. Isavuconazole: Pharmacology, pharmacodynamics, and current clinical experience with a new triazole antifungal agent. Pharmacotherapy 2015 35 11 1037 1051 10.1002/phar.1652 26598096
    [Google Scholar]
  64. Marty F.M. Ostrosky-Zeichner L. Cornely O.A. Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet Infect. Dis. 2016 16 7 828 837 10.1016/S1473‑3099(16)00071‑2 26969258
    [Google Scholar]
  65. Carvalhaes C.G. Rhomberg P.R. Huband M.D. Pfaller M.A. Castanheira M. Antifungal activity of isavuconazole and comparator agents against contemporaneous mucorales isolates from USA, Europe, and Asia-Pacific. J. Fungi 2023 9 2 241 10.3390/jof9020241 36836355
    [Google Scholar]
  66. Namal Senanayake S.P.J. Green tea extract: Chemistry, antioxidant properties and food applications – A review. J. Funct. Foods 2013 5 4 1529 1541 10.1016/j.jff.2013.08.011
    [Google Scholar]
  67. Bansal S. Choudhary S. Sharma M. Tea: A native source of antimicrobial agents. Food Res. Int. 2013 53 2 568 584 10.1016/j.foodres.2013.01.032
    [Google Scholar]
  68. Yoda Y. Hu Z.Q. Shimamura T. Zhao W-H. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J. Infect. Chemother. 2004 10 1 55 58 10.1007/s10156‑003‑0284‑0 14991521
    [Google Scholar]
  69. Cui Y. Oh Y.J. Lim J. AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol. 2012 29 1 80 87 10.1016/j.fm.2011.08.019 22029921
    [Google Scholar]
  70. Arakawa H. Maeda M. Okubo S. Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 2004 27 3 277 281 10.1248/bpb.27.277 14993788
    [Google Scholar]
  71. Lee P. Tan K.S. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch. Oral Biol. 2015 60 3 393 399 10.1016/j.archoralbio.2014.11.014 25526623
    [Google Scholar]
  72. Lambert J.D. Elias R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010 501 1 65 72 10.1016/j.abb.2010.06.013 20558130
    [Google Scholar]
  73. Zhang Y. Zhang Y. Ma R. Sun W. Ji Z. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int. J. Environ. Res. Public Health 2023 20 6 4676 10.3390/ijerph20064676 36981585
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128402191250917111355
Loading
/content/journals/cpd/10.2174/0113816128402191250917111355
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: virtual screening ; antibiotic ; H. pylori ; S. aureus ; Shikimate dehydrogenase ; M. tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test