Skip to content
2000
image of Syringic Acid as a Potential Anticonvulsant Agent: Mechanistic Perceptions into Nitrite and Oxidative Stress Balance in the Prefrontal Cortex

Abstract

Introduction

Nitrergic transmission and oxidative stress are complicated factors in the seizure’s pathophysiology. Syringic acid has been revealed to exert numerous pharmacological properties, including neuroprotective effects. Hence, this research was designed to explore the anticonvulsant effects of syringic acid, focusing on its possible impact on nitrergic transmission and oxidative stress in the prefrontal cortex (PFC) in mice that underwent induction of seizure using pentylenetetrazole (PTZ).

Methods

Forty male NMRI mice were randomly divided into five groups, including mice that received saline containing Tween 80 at a concentration of 1% (10 ml/kg), syringic acid at doses of 10, 20, and 30 mg/kg, and diazepam (10 mg/kg). Syringic acid was dissolved in saline containing Tween 80 at a concentration of 1%. All drugs were injected intraperitoneally one hour before seizure induction by PTZ. Seizure threshold, total antioxidant capacity (TAC), nitrite, and malondialdehyde (MDA) levels, as well as inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) gene expressions, were assessed in the PFC.

Results

Syringic acid increased the seizure threshold and TAC, whereas it decreased MDA and nitrite levels in the PFC samples. Furthermore, syringic acid diminished the expression of iNOS and nNOS genes in the PFC.

Discussion

Oxidative/nitrosative stress, which is involved in the pathophysiology of seizure, was alleviated by syringic acid.

Conclusion

It was concluded that, at least partially, the anticonvulsant property of syringic acid was mediated through the mitigation of oxidative stress and nitrergic transmission in the PFC in PTZ-induced seizures in male mice.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128400100250925012226
2025-10-21
2025-12-18
Loading full text...

Full text loading...

References

  1. Palash T.I. Ali S.R. Epileptic seizure detection from EEG signal using ANN-LSTM model. Proc Trends Electron Health Inform 2023 675 129
    [Google Scholar]
  2. Kabiri-Samani N. Amini-Khoei H. Rahimi-Madiseh M. Sureda A. Lorigooini Z. Trigonelline as an anticonvulsant agent: Mechanistic insights into NMDA receptor expression and oxidative stress balance. Sci. Rep. 2024 14 1 14239 10.1038/s41598‑024‑65301‑z 38902338
    [Google Scholar]
  3. Wang S.J. Zhao M.Y. Zhao P.C. Zhang W. Rao G.W. Research status, synthesis and clinical application of antiepileptic drugs. Curr. Med. Chem. 2024 31 4 410 452 10.2174/0929867330666230117160632 36650655
    [Google Scholar]
  4. Di Gennaro G. Lattanzi S. Mecarelli O. Saverio Mennini F. Vigevano F. Current challenges in focal epilepsy treatment: An Italian Delphi consensus. Epilepsy Behav. 2024 155 109796 10.1016/j.yebeh.2024.109796 38643659
    [Google Scholar]
  5. Boleti A.P.A. Cardoso P.H.O. Frihling B.E.F. Pathophysiology to risk factor and therapeutics to treatment strategies on epilepsy. Brain Sci. 2024 14 1 71 10.3390/brainsci14010071 38248286
    [Google Scholar]
  6. Moradipoor F. Jivad N. Asgharzadeh S. Zare E. Amini-Khoei H. Neuroimmune response and oxidative stress in the prefrontal cortex mediate seizure susceptibility in experimental colitis in male mice. J. Biochem. Mol. Toxicol. 2024 38 7 e23755 10.1002/jbt.23755 38923727
    [Google Scholar]
  7. Khan J.Z. Zainab S.R. Rehman M.U. Chronic stress intensify PTZ-induced seizures by triggering neuroinflammation and oxidative stress. Biochem. Biophys. Res. Commun. 2024 729 150333 10.1016/j.bbrc.2024.150333 38991397
    [Google Scholar]
  8. Kleen J.K. Sesqué A. Wu E.X. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011 22 2 214 219 10.1016/j.yebeh.2011.07.022 21873119
    [Google Scholar]
  9. Shad K.F. Das T.K. Introductory Chapter: Role of fenton and haber-weiss reaction in epilepsy. In: Epilepsy - Seizures without Triggers IntechOpen 2023 10.5772/intechopen.108727
    [Google Scholar]
  10. Rahimi N. Modabberi S. Faghir-Ghanesefat H. The possible role of nitric oxide signaling and NMDA receptors in allopurinol effect on maximal electroshock- and pentylenetetrazol-induced seizures in mice. Neurosci. Lett. 2022 778 136620 10.1016/j.neulet.2022.136620 35395326
    [Google Scholar]
  11. Taskiran A.S. Tastemur Y. The role of nitric oxide in anticonvulsant effects of lycopene supplementation on pentylenetetrazole-induced epileptic seizures in rats. Exp. Brain Res. 2021 239 2 591 599 10.1007/s00221‑020‑06012‑5 33385251
    [Google Scholar]
  12. Moradi Vastegani S. Hajipour S. Sarkaki A. Curcumin mitigates lipopolysaccharide-induced anxiety/depression-like behaviors, blood-brain barrier dysfunction and brain edema by decreasing cerebral oxidative stress in male rats. Neurosci. Lett. 2022 782 136697 10.1016/j.neulet.2022.136697 35642797
    [Google Scholar]
  13. Dehkordi H.T. Bijad E. Saghaei E. Korrani M.S. Amini-Khoei H. Chronic stress but not acute stress decreases the seizure threshold in PTZ-induced seizure in mice: Role of inflammatory response and oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 5 973 982 10.1007/s00210‑022‑02364‑7 36542120
    [Google Scholar]
  14. He X. Chen X. Yang Y. Xie Y. Liu Y. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited. J. Ethnopharmacol. 2024 320 117386 10.1016/j.jep.2023.117386 37956914
    [Google Scholar]
  15. Rahimi-Madiseh M Nasiri-Boroujeni S Lorigooini Z Nazari M Sadeghian R Rafieian-Kopaei M. Anchusa italica Retz. hydroalcoholic extract through attenuation of oxidative stress exerts an anticonvulsant effect on the pentylenetetrazole-induced seizure in mice Int J Epilepsy 2021 07 2 052 8
    [Google Scholar]
  16. Ogut E. Armagan K. Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab. Brain Dis. 2022 37 4 859 880 10.1007/s11011‑022‑00960‑3 35334041
    [Google Scholar]
  17. Vo Q.V. Bay M.V. Nam P.C. Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid. J. Org. Chem. 2020 85 23 15514 15520 10.1021/acs.joc.0c02258 33150788
    [Google Scholar]
  18. Ramorobi L.M. Matowane G.R. Mashele S.S. Zinc(II) – Syringic acid complexation synergistically exerts antioxidant action and modulates glucose uptake and utilization in L-6 myotubes and rat muscle tissue. Biomed. Pharmacother. 2022 154 113600 10.1016/j.biopha.2022.113600 36037784
    [Google Scholar]
  19. Zhao Y. Dang M. Zhang W. Neuroprotective effects of Syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease. J. Funct. Foods 2020 71 104009 10.1016/j.jff.2020.104009
    [Google Scholar]
  20. Ferah Okkay I. Okkay U. Gundogdu O.L. Syringic acid protects against thioacetamide-induced hepatic encephalopathy: Behavioral, biochemical, and molecular evidence. Neurosci. Lett. 2022 769 136385 10.1016/j.neulet.2021.136385 34871743
    [Google Scholar]
  21. Xiang S. Xiao J. Protective effects of syringic acid on inflammation, apoptosis and intestinal barrier function in Caco 2 cells following oxygen glucose deprivation/reoxygenation induced injury. Exp. Ther. Med. 2021 23 1 66 10.3892/etm.2021.10989 34934437
    [Google Scholar]
  22. Mallan S. Singh S. Syringic acid alleviates valproic acid induced autism via activation of p38 mitogen-activated protein kinase: Possible molecular approach. Environ. Toxicol. 2023 38 10 2400 2415 10.1002/tox.23876 37357844
    [Google Scholar]
  23. Güven M. Aras A.B. Topaloğlu N. The protective effect of syringic acid on ischemia injury in rat brain. Turk. J. Med. Sci. 2015 45 1 233 240 10.3906/sag‑1402‑71 25790559
    [Google Scholar]
  24. Masoumi M. Manavi M.A. Mohammad Jafari R. Cannabidiol anticonvulsant effects against lithium-pilocarpine-induced status epilepticus in male rats are mediated by neuroinflammation modulation and cannabinoids 1 (CB1), But Not CB2 and GABA A Receptors. Cannabis Cannabinoid Res. 2024 9 3 797 808 10.1089/can.2023.0067 37976207
    [Google Scholar]
  25. Omidi-Ardali H. Lorigooini Z. Soltani A. Balali-Dehkordi S. Amini-Khoei H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: Protective effect of the trigonelline. Inflammopharmacology 2019 27 6 1265 1273 10.1007/s10787‑019‑00581‑w 30924005
    [Google Scholar]
  26. Sonei N. Amiri S. Jafarian I. Mitochondrial dysfunction bridges negative affective disorders and cardiomyopathy in socially isolated rats: Pros and cons of fluoxetine. World J. Biol. Psychiatry 2017 18 1 39 53 10.3109/15622975.2016.1149218 27031288
    [Google Scholar]
  27. Mozafari H. Amiri S. Mehr S.E. Minocycline attenuates depressive-like behaviors in mice treated with the low dose of intracerebroventricular streptozotocin; the role of mitochondrial function and neuroinflammation. Mol. Biol. Rep. 2020 47 8 6143 6153 10.1007/s11033‑020‑05696‑w 32743777
    [Google Scholar]
  28. Eghbali F. Dehkordi H.T. Amini-Khoei H. Lorigooini Z. Rahimi-Madiseh M. The potential role of nitric oxide in the anticonvulsant effects of betulin in pentylenetetrazole (PTZ)-induced seizures in mice. IBRO Neurosci Rep 2024 16 527 534 10.1016/j.ibneur.2024.04.003 38706971
    [Google Scholar]
  29. Haj-Mirzaian A. Ramezanzadeh K. Tafazolimoghadam A. Protective effect of minocycline on LPS-induced mitochondrial dysfunction and decreased seizure threshold through nitric oxide pathway. Eur. J. Pharmacol. 2019 858 172446 10.1016/j.ejphar.2019.172446 31202800
    [Google Scholar]
  30. Rabiei S. Rezaei M. Nikoo M. Khezri M. Rafieian-Kopai M. Anjomshoaa M. Antioxidant properties of Klunzinger’s mullet (Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. Food Sci. Technol. Int. 2022 28 3 233 246 10.1177/10820132211005297 33832340
    [Google Scholar]
  31. Karimi P. Ghahfarroki M.S. Lorigooini Z. Shahrani M. Amini-Khoei H. Umbelliprenin via increase in the MECP2 and attenuation of oxidative stress mitigates the autistic-like behaviors in mouse model of maternal separation stress. Front. Pharmacol. 2024 14 1300310 10.3389/fphar.2023.1300310 38259278
    [Google Scholar]
  32. Mumtaz F. Shafaroodi H. Nezamoleslami S. Involvement of nNOS, and α1, α2, β1, and β2 subunits of soluble guanylyl cyclase genes expression in anticonvulsant effect of sumatriptan on pentylenetetrazole-induced seizure in mice. Iran. J. Pharm. Res. 2020 19 4 181 192 33841534
    [Google Scholar]
  33. Tavakoli Z. Tahmasebi Dehkordi H. Lorigooini Z. Rahimi-Madiseh M. Korani M.S. Amini-Khoei H. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int. Immunopharmacol. 2023 116 109772 10.1016/j.intimp.2023.109772 36731152
    [Google Scholar]
  34. Nonato D.T.T. Aragão G.F. Craveiro R.M.C.B. Polysaccharide-rich extract of Genipa americana leaves protects seizures and oxidative stress in the mice model of pentylenetetrazole-induced epilepsy. Biomed. Pharmacother. 2024 172 116212 10.1016/j.biopha.2024.116212 38364734
    [Google Scholar]
  35. Sudha K. Rao A.V. Rao A. Oxidative stress and antioxidants in epilepsy. Clin. Chim. Acta 2001 303 1-2 19 24 10.1016/S0009‑8981(00)00337‑5 11163018
    [Google Scholar]
  36. Singh A. Kukal S. Kanojia N. Lipid mediated brain disorders: A perspective. Prostaglandins Other Lipid Mediat. 2023 167 106737 10.1016/j.prostaglandins.2023.106737 37086954
    [Google Scholar]
  37. Seminotti B. da Silva J.C. Ribeiro R.T. Leipnitz G. Wajner M. Free radical scavengers prevent argininosuccinic acid-induced oxidative stress in the brain of developing rats: A new adjuvant therapy for argininosuccinate lyase deficiency? Mol. Neurobiol. 2020 57 2 1233 1244 10.1007/s12035‑019‑01825‑0 31707633
    [Google Scholar]
  38. Liu L. Liu M. Xiu J. Stimuli-responsive nanoparticles delivered by a nasal-brain pathway alleviate depression-like behavior through extensively scavenging ROS. Acta Biomater. 2023 171 451 465 10.1016/j.actbio.2023.09.038 37778483
    [Google Scholar]
  39. Mehra S. Ahsan A.U. Sharma M. Budhwar M. Chopra M. Neuroprotective efficacy of fisetin against VPA-induced autistic neurobehavioral alterations by targeting dysregulated redox homeostasis. J. Mol. Neurosci. 2023 73 6 403 422 10.1007/s12031‑023‑02127‑w 37261645
    [Google Scholar]
  40. Alzoubi K.H. Hasan Z.A. Khabour O.F. The effect of high-fat diet on seizure threshold in rats: Role of oxidative stress. Physiol. Behav. 2018 196 1 7 10.1016/j.physbeh.2018.08.011 30149086
    [Google Scholar]
  41. Moradi Jafari A. Hassanpourezatti M. Influence of methadone on the anticonvulsant efficacy of valproate sodium gabapentin against maximal electroshock seizure in mice by regulation of brain MDA TNF-α. Front. Neurol. 2022 13 920107 10.3389/fneur.2022.920107 36081867
    [Google Scholar]
  42. Movahed A. Ghaderi M. Daneshi A. Nabipour I. Keshavarz M. Hydroalcoholic extract of Sargassum Oligocystum attenuates pentylenetetrazole-induced seizures by potentiating antioxidant activity in mice. Int. J. Epilepsy 2017 4 2 159 166 10.1016/j.ijep.2017.05.002
    [Google Scholar]
  43. Angelis D. Savani R. Chalak L. Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr. Res. 2021 89 4 738 745 10.1038/s41390‑020‑1017‑0 32563183
    [Google Scholar]
  44. Meskinimood S Rahimi N Faghir-Ghanesefat H Gholami M Sharifzadeh M Dehpour AR Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway. Epilepsy Behav 2019 101 Pt A 106563. 10.1016/j.yebeh.2019.106563 31675604
    [Google Scholar]
  45. Garry P.S. Ezra M. Rowland M.J. Westbrook J. Pattinson K.T.S. The role of the nitric oxide pathway in brain injury and its treatment — From bench to bedside. Exp. Neurol. 2015 263 235 243 10.1016/j.expneurol.2014.10.017 25447937
    [Google Scholar]
  46. Eslami S.M. Moradi M.M. Ghasemi M. Dehpour A.R. Anticonvulsive effects of licofelone on status epilepticus induced by lithium-pilocarpine in wistar rats: A role for inducible nitric oxide synthase. J. Epilepsy Res. 2016 6 2 51 58 10.14581/jer.16011 28101475
    [Google Scholar]
  47. Johannessen Landmark C. Eyal S. Burns M.L. Franco V. Johannessen S.I. Pharmacological aspects of antiseizure medications: From basic mechanisms to clinical considerations of drug interactions and use of therapeutic drug monitoring. Epileptic Disord. 2023 25 4 454 471 10.1002/epd2.20069 37259844
    [Google Scholar]
  48. Cao Y. Zhang L. Sun S. Yi Z. Jiang X. Jia D. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int. J. Mol. Med. 2016 38 2 567 573 10.3892/ijmm.2016.2623 27278454
    [Google Scholar]
  49. Rashedinia M. Alimohammadi M. Shalfroushan N. Neuroprotective effect of syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats. BioMed Res. Int. 2020 2020 1 8297984 10.1155/2020/8297984 33457416
    [Google Scholar]
  50. Li Y. Zhang L. Wang X. wu, Qin R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev. Res. 2019 80 2 253 261 10.1002/ddr.21487 30474283
    [Google Scholar]
  51. Güzelad Ö. Özkan A. Parlak H. Protective mechanism of Syringic acid in an experimental model of Parkinson’s disease. Metab. Brain Dis. 2021 36 5 1003 1014 10.1007/s11011‑021‑00704‑9 33666819
    [Google Scholar]
  52. Zeicu C. Legouhy A. Scott C.A. Altered amygdala volumes and microstructure in focal epilepsy patients with tonic–clonic seizures, ictal, and post‐convulsive central apnea. Epilepsia 2023 64 12 3307 3318 10.1111/epi.17804 37857465
    [Google Scholar]
  53. Yu Y. Han F. Wang Q. A hippocampal-entorhinal cortex neuronal network for dynamical mechanisms of epileptic seizure. IEEE Trans. Neural Syst. Rehabil. Eng. 2023 31 1986 1996 10.1109/TNSRE.2023.3265581 37027276
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128400100250925012226
Loading
/content/journals/cpd/10.2174/0113816128400100250925012226
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: oxidative stress ; nitrite ; seizure ; lipid peroxidation ; Syringic acid ; cDNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test