Skip to content
2000
image of A Review of the Impact of Green Tea (Camellia sinensis L.) on Oral Health

Abstract

In recent years, green tea () has garnered significant attention for its potential health benefits, including its benefits for oral hygiene. Green tea contains several bioactive components, including catechins, polyphenols, and fluoride, which contribute to its antibacterial, anti-inflammatory, and antioxidant properties. This review examines the bioactive components of green tea, specifically catechins, polyphenols, and fluoride, which possess numerous biological effects, including oral health benefits. As a result of its ability to neutralize volatile sulfur compounds, green tea inhibits the growth of cariogenic bacteria, such as , reduces plaque development, and inhibits the development of halitosis. Recent evidence suggests that epigallocatechin-3-gallate (EGCG) has significant potential for oral health benefits. Furthermore, its anti-inflammatory effects help reduce gingival inflammation and oxidative stress, thereby easing the symptoms of periodontal disease. Numerous studies have shown that EGCG inhibits the growth of oral squamous cell carcinoma through mechanisms that include the induction of oxidative stress and apoptosis in cancer cells, as well as the inhibition of tumor invasion. This review discusses the potential mechanisms by which green tea promotes oral health and its therapeutic applications in dentistry. The literature review suggests that green tea may have potential as an adjunctive therapy for preventing and managing dental complications. However, more comprehensive pre-clinical and clinical studies are necessary to validate its efficacy. Furthermore, factors such as individual variability, patients' oral health conditions, long-term outcomes, and alterations in the oral microbiome require thorough investigation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128393965250927115025
2025-10-23
2025-12-20
Loading full text...

Full text loading...

References

  1. Vuong Q.V. Epidemiological evidence linking tea consumption to human health: A review. Crit. Rev. Food Sci. Nutr. 2014 54 4 523 536 10.1080/10408398.2011.594184 24237002
    [Google Scholar]
  2. Luo Q. Luo L. Zhao J. Wang Y. Luo H. Biological potential and mechanisms of Tea’s bioactive compounds: An Updated review. J. Adv. Res. 2024 65 345 363 10.1016/j.jare.2023.12.004 38056775
    [Google Scholar]
  3. Wang Y. Zhao Y. Andrae-Marobela K. Okatch H. Xiao J. Tea polysaccharides as food antioxidants: An old woman’s tale? Food Chem. 2013 138 2-3 1923 1927 10.1016/j.foodchem.2012.09.145 23411326
    [Google Scholar]
  4. Cabrera C. Artacho R. Giménez R. Beneficial effects of green tea--A review. J. Am. Coll. Nutr. 2006 25 2 79 99 10.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  5. Hu T. Shi S. Ma Q. Modulation effects of microorganisms on tea in fermentation. Front. Nutr. 2022 9 931790 10.3389/fnut.2022.931790 35983492
    [Google Scholar]
  6. Hur S.J. Lee S.Y. Kim Y.C. Choi I. Kim G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014 160 346 356 10.1016/j.foodchem.2014.03.112 24799248
    [Google Scholar]
  7. Lambert J.D. Elias R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010 501 1 65 72 10.1016/j.abb.2010.06.013 20558130
    [Google Scholar]
  8. de Amorim L.M.N. Vaz S.R. Cesário G. Coelho A.S.G. Botelho P.B. Effect of green tea extract on bone mass and body composition in individuals with diabetes. J. Funct. Foods 2018 40 589 594 10.1016/j.jff.2017.11.039
    [Google Scholar]
  9. Baláži A. Sirotkin A.V. Földešiová M. Green tea can supress rabbit ovarian functions in vitro and in vivo. Theriogenology 2019 127 72 79 10.1016/j.theriogenology.2019.01.010 30669068
    [Google Scholar]
  10. Yoneda Y. Kuramoto N. Kawada K. The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochem. Int. 2019 129 104505 10.1016/j.neuint.2019.104505 31310779
    [Google Scholar]
  11. Prasanth M.I. Sivamaruthi B.S. Chaiyasut C. Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019 11 2 474 10.3390/nu11020474 30813433
    [Google Scholar]
  12. Malar D.S. Prasanth M.I. Brimson J.M. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s disease: A review. Molecules 2020 25 17 3926 10.3390/molecules25173926 32867388
    [Google Scholar]
  13. Ferrara L. Montesano D. Senatore A. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco 2001 56 5-7 397 401 10.1016/S0014‑827X(01)01104‑1 11482766
    [Google Scholar]
  14. Lee M.J. Lambert J.D. Prabhu S. Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiol. Biomarkers Prev. 2004 13 1 132 137 10.1158/1055‑9965.EPI‑03‑0040 14744744
    [Google Scholar]
  15. Sivamaruthi B.S. Sisubalan N. Wang S. Kesika P. Chaiyasut C. Exploring the therapeutic potential of green tea (Camellia sinensis L.) in anti-aging: A comprehensive review of mechanisms and findings. Mini Rev. Med. Chem. 2024 25 5 403 424 10.2174/0113895575331878240924035332 39377377
    [Google Scholar]
  16. Jakubczyk K. Kochman J. Kwiatkowska A. Antioxidant properties and nutritional composition of Matcha green tea. Foods 2020 9 4 483 10.3390/foods9040483 32290537
    [Google Scholar]
  17. Xing L. Zhang H. Qi R. Tsao R. Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019 67 4 1029 1043 10.1021/acs.jafc.8b06146 30653316
    [Google Scholar]
  18. Sumpio B.E. Cordova A.C. Berke-Schlessel D.W. Qin F. Chen Q.H. Green tea, the “Asian paradox”, and cardiovascular disease. J. Am. Coll. Surg. 2006 202 5 813 825 10.1016/j.jamcollsurg.2006.01.018 16648021
    [Google Scholar]
  19. Mukhtar H. Ahmad N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr. 2000 71 6 1698S 1702S 10.1093/ajcn/71.6.1698S 10837321
    [Google Scholar]
  20. Samali A. Rukaiyatu A. Mustapha K. Qualitative and quantitative evaluation of some herbal teas commonly consumed in Nigeria. Afr. J. Pharm. Pharmacol. 2012 6 384 388 10.5897/AJPP11.658
    [Google Scholar]
  21. Jigisha A. Nishant R. Navin K. Pankaj G. Green tea: A magical herb with miraculous outcomes. Int Res J Pharm 2012 3 139 148
    [Google Scholar]
  22. Hirasawa M. Takada K. Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 2006 40 3 265 270 10.1159/000092236 16707877
    [Google Scholar]
  23. Matsumoto M. Minami T. Sasaki H. Sobue S. Hamada S. Ooshima T. Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res. 1999 33 6 441 445 10.1159/000016549 10529529
    [Google Scholar]
  24. Gladson C.L. Gladson C.L. Focal adhesion kinase in cancer. Front. Biosci. 2003 8 6 1115 10.2741/1115 12700131
    [Google Scholar]
  25. Murphy D.A. Harrell L. Fintzy R. A comparison of methamphetamine users to a matched NHAN-ES cohort: Propensity score analyses for oral health care and dental service need. J. Behav. Health Serv. Res. 2016 43 4 676 690 10.1007/s11414‑014‑9449‑0 25398257
    [Google Scholar]
  26. Uthurralt N. Ajwani S. Kiel R. Chandra S. Lama Rumba B. Day C.A. Providing better access to oral health care for people receiving substance use treatment: A timely discussion. Drug Alcohol Rev. 2024 43 1 257 260 10.1111/dar.13753 37718615
    [Google Scholar]
  27. Yazdanian M. Armoon B. Noroozi A. Dental caries and periodontal disease among people who use drugs: A systematic review and meta-analysis. BMC Oral Health 2020 20 1 44 10.1186/s12903‑020‑1010‑3 32041585
    [Google Scholar]
  28. Supic Z.T. Petrovic R. Milicevic M.S. Trajkovic G. Bukumiric Z. The oral health of heroin drug users: Case study in Bosnia and Herzegovina. BMC Public Health 2013 13 1 1202 10.1186/1471‑2458‑13‑1202 24355082
    [Google Scholar]
  29. Truong A. Higgs P. Cogger S. Jamieson L. Burns L. Dietze P. Oral health‐related quality of life among an A ustralian sample of people who inject drugs. J. Public Health Dent. 2015 75 3 218 224 10.1111/jphd.12092 25753928
    [Google Scholar]
  30. Marcenes W. Kassebaum N.J. Bernabé E. Global burden of oral conditions in 1990-2010: A systematic analysis. J. Dent. Res. 2013 92 7 592 597 10.1177/0022034513490168 23720570
    [Google Scholar]
  31. Marchesan J.T. Girnary M.S. Moss K. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol. 2000 2020 82 1 93 114 10.1111/prd.12269 31850638
    [Google Scholar]
  32. Trombelli L. Farina R. Silva C.O. Tatakis D.N. Plaque-induced gingivitis: Case definition and diagnostic considerations. J. Clin. Periodontol. 2018 45 S20 S44 S67 10.1111/jcpe.12939 29926492
    [Google Scholar]
  33. Lang N.P. Schätzle M.A. Löe H. Gingivitis as a risk factor in periodontal disease. J. Clin. Periodontol. 2009 36 s10 3 8 10.1111/j.1600‑051X.2009.01415.x 19432625
    [Google Scholar]
  34. Oh T.J. Eber R. Wang H.L. Periodontal diseases in the child and adolescent. J. Clin. Periodontol. 2002 29 5 400 410 10.1034/j.1600‑051X.2002.290504.x 12060422
    [Google Scholar]
  35. Hatahira H. Abe J. Hane Y. Drug-induced gingival hyperplasia: A retrospective study using spontaneous reporting system databases. J. Pharm. Health Care Sci. 2017 3 1 19 10.1186/s40780‑017‑0088‑5 28729910
    [Google Scholar]
  36. Kose K.N. Yilmaz S. Noyan U. The gingival crevicular fluid levels of growth factors in patients with amlodipine-induced gingival overgrowth: A pilot study. Niger. J. Clin. Pract. 2020 23 4 561 567 10.4103/njcp.njcp_532_19 32246666
    [Google Scholar]
  37. Gürsoy M. Gürsoy U.K. Sorsa T. Pajukanta R. Könönen E. High salivary estrogen and risk of developing pregnancy gingivitis. J. Periodontol. 2013 84 9 1281 1289 10.1902/jop.2012.120512 23237582
    [Google Scholar]
  38. Bilińska M. Sokalski J. Pregnancy gingivitis and tumor gravidarum. Ginekol. Pol. 2016 87 4 310 313 10.17772/gp/62354 27321105
    [Google Scholar]
  39. Bosma-den Boer M.M. van Wetten M.L. Pruimboom L. Chronic inflammatory diseases are stimulated by current lifestyle: How diet, stress levels and medication prevent our body from recovering. Nutr. Metab. 2012 9 1 32 10.1186/1743‑7075‑9‑32 22510431
    [Google Scholar]
  40. Adler C.J. Dobney K. Weyrich L.S. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013 45 4 450 455 10.1038/ng.2536 23416520
    [Google Scholar]
  41. Jung K.J. Lee E.K. Kim J.Y. Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm. Res. 2009 58 3 143 150 10.1007/s00011‑008‑7227‑2 19199090
    [Google Scholar]
  42. López R. Fernández O. Baelum V. Social gradients in periodontal diseases among adolescents. Community Dent. Oral Epidemiol. 2006 34 3 184 196 10.1111/j.1600‑0528.2006.00271.x 16674750
    [Google Scholar]
  43. Kazemnejad A. Zayeri F. Rokn A.R. Kharazifard M.J. Prevalence and risk indicators of periodontal disease among high-school students in Tehran. East. Mediterr. Health J. 2008 14 1 119 125 18557459
    [Google Scholar]
  44. Chapple ILC Time to take periodontitis seriously. BMJ 2014 348 apr10 1 g2645. 10.1136/bmj.g2645 24721751
    [Google Scholar]
  45. Hajishengallis G. Chavakis T. Lambris J.D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol. 2000 2020 84 1 14 34 10.1111/prd.12331 32844416
    [Google Scholar]
  46. Tonetti M.S. Jepsen S. Jin L. Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017 44 5 456 462 10.1111/jcpe.12732 28419559
    [Google Scholar]
  47. Daly B. Thompsell A. Sharpling J. Evidence summary: The relationship between oral health and dementia. Br. Dent. J. 2017 223 11 846 853 10.1038/sj.bdj.2017.992 29192686
    [Google Scholar]
  48. Van Dyke T.E. Bartold P.M. Reynolds E.C. The nexus between periodontal inflammation and dysbiosis. Front. Immunol. 2020 11 511 10.3389/fimmu.2020.00511 32296429
    [Google Scholar]
  49. Socransky S.S. Haffajee A.D. Cugini M.A. Smith C. Kent R.L. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998 25 2 134 144 10.1111/j.1600‑051X.1998.tb02419.x 9495612
    [Google Scholar]
  50. James S.L. Abate D. Abate K.H. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018 392 10159 1789 1858 10.1016/S0140‑6736(18)32279‑7 30496104
    [Google Scholar]
  51. Cheng L. Zhang L. Yue L. Expert consensus on dental caries management. Int. J. Oral Sci. 2022 14 1 17 10.1038/s41368‑022‑00167‑3 35361749
    [Google Scholar]
  52. Zhai L. Kong J. Zhao C. Global trends and challenges in childhood caries: A 20-year bibliometric review. Transl. Pediatr. 2025 14 1 139 152 10.21037/tp‑24‑415 39944872
    [Google Scholar]
  53. Policy on Early Childhood Caries (ECC) Policy on Early Childhood Caries (ECC): Classifications, consequences, and preventive strategies. Reference Manual 2018 40 6 18 19
    [Google Scholar]
  54. Valm A.M. Welch J.L.M. Rieken C.W. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. USA 2011 108 10 4152 4157 10.1073/pnas.1101134108 21325608
    [Google Scholar]
  55. Cao X. Wang D. Zhou J. Yuan H. Chen Z. Relationship between dental caries and metabolic syndrome among 13 998 middle‐aged urban Chinese. J. Diabetes 2017 9 4 378 385 10.1111/1753‑0407.12424 27147550
    [Google Scholar]
  56. Solomon S.M. Matei M.N. Badescu A.C. Evaluation of DNA extraction methods from saliva as a source of PCR - amplifiable genomic DNA. Rev Chim 2015 66 12 2101 2103
    [Google Scholar]
  57. Popa C.G. Luchian I. Ioanid N. ELISA evaluation of RANKL levels in gingival fluid in patients with periodontitis and occlusal trauma. Revista de Chimie 2018 69 6 1578 1580 10.37358/RC.18.6.6373
    [Google Scholar]
  58. Dülgergil Ç.T. Dalli M. Hamidi M.M. Çolak H. Early childhood caries update: A review of causes, diagnoses, and treatments. J. Nat. Sci. Biol. Med. 2013 4 1 29 38 10.4103/0976‑9668.107257 23633832
    [Google Scholar]
  59. Murphy D.A. Harrell L. Fintzy R. Vitero S. Gutierrez A. Shetty V. Soda consumption among methamphetamine users in the USA: Impact on oral health. Oral Health Prev. Dent. 2016 14 3 227 234 10.3290/j.ohpd.a35620 26870851
    [Google Scholar]
  60. Cretzmeyer M. Walker J. Hall J.A. Arndt S. Methamphetamine use and dental disease: Results of a pilot study. J. Dent. Child. 2007 74 2 85 92 18477425
    [Google Scholar]
  61. Sun Z. Sun X. Chen Z. Du J. Wu Y. Head and neck squamous cell carcinoma: Risk factors, molecular alterations, immunology and peptide vaccines. Int. J. Pept. Res. Ther. 2022 28 1 19 10.1007/s10989‑021‑10334‑5 34903958
    [Google Scholar]
  62. Kademani D. Bell R.B. Schmidt B.L. Oral and maxillofacial surgeons treating oral cancer: A preliminary report from the American Association of Oral and Maxillofacial Surgeons Task Force on Oral Cancer. J. Oral Maxillofac. Surg. 2008 66 10 2151 2157 10.1016/j.joms.2008.06.030 18848117
    [Google Scholar]
  63. Jané-Salas E. López-López J. Roselló-Llabrés X. Rodríguez-Argueta O.F. Chimenos-Küstner E. Relationship between oral cancer and implants: Clinical cases and systematic literature review. Med. Oral Patol. Oral Cir. Bucal 2012 17 1 e23 e28 10.4317/medoral.17223 21743414
    [Google Scholar]
  64. Ram H. Sarkar J. Kumar H. Konwar R. Bhatt M.L.B. Mohammad S. Oral cancer: Risk factors and molecular pathogenesis. J. Maxillofac. Oral Surg. 2011 10 2 132 137 10.1007/s12663‑011‑0195‑z 22654364
    [Google Scholar]
  65. Tenore G. Nuvoli A. Mohsen A. Tobacco, alcohol and family history of cancer as risk factors of oral squamous cell carcinoma: Case-control retrospective study. Appl. Sci. 2020 10 11 3896 10.3390/app10113896
    [Google Scholar]
  66. Rao S.V.K. Mejia G. Roberts-Thomson K. Logan R. Epidemiology of oral cancer in Asia in the past decade--An update (2000-2012). Asian Pac. J. Cancer Prev. 2013 14 10 5567 5577 10.7314/APJCP.2013.14.10.5567 24289546
    [Google Scholar]
  67. Chaturvedi P. Singh A. Chien C.Y. Warnakulasuriya S. Tobacco related oral cancer. BMJ 2019 365 l2142 10.1136/bmj.l2142 31167798
    [Google Scholar]
  68. Imam S.Z. Nawaz H. Sepah Y.J. Pabaney A.H. Ilyas M. Ghaffar S. Use of smokeless tobacco among groups of Pakistani medical students – A cross sectional study. BMC Public Health 2007 7 1 231 10.1186/1471‑2458‑7‑231 17767719
    [Google Scholar]
  69. Ganly I. Yang L. Giese R.A. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int. J. Cancer 2019 145 3 775 784 10.1002/ijc.32152 30671943
    [Google Scholar]
  70. O’Grady I. Anderson A. O’Sullivan J. The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol. 2020 110 105011 10.1016/j.oraloncology.2020.105011 32980528
    [Google Scholar]
  71. Zhao H. Chu M. Huang Z. Variations in oral microbiota associated with oral cancer. Sci. Rep. 2017 7 1 11773 10.1038/s41598‑017‑11779‑9 28924229
    [Google Scholar]
  72. Tanner A.C.R. Paster B.J. Lu S.C. Subgingival and tongue microbiota during early periodontitis. J. Dent. Res. 2006 85 4 318 323 10.1177/154405910608500407 16567551
    [Google Scholar]
  73. Elebyary O. Barbour A. Fine N. Tenenbaum H.C. Glogauer M. The crossroads of periodontitis and oral squamous cell carcinoma: Immune implications and tumor promoting capacities. Front Oral Health 2021 1 584705 10.3389/froh.2020.584705 35047982
    [Google Scholar]
  74. Baty J.J. Stoner S.N. Scoffield J.A. Oral commensal streptococci: Gatekeepers of the oral cavity. J. Bacteriol. 2022 204 11 e00257 e22 10.1128/jb.00257‑22 36286512
    [Google Scholar]
  75. Kleinstein S.E. Nelson K.E. Freire M. Inflammatory Networks linking oral microbiome with systemic health and disease. J. Dent. Res. 2020 99 10 1131 1139 10.1177/0022034520926126 32459164
    [Google Scholar]
  76. Di Stefano M. Polizzi A. Santonocito S. Romano A. Lombardi T. Isola G. Impact of oral microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. Int. J. Mol. Sci. 2022 23 9 5142 10.3390/ijms23095142 35563531
    [Google Scholar]
  77. Rajasekaran J.J. Krishnamurthy H.K. Bosco J. Oral microbiome: A review of its impact on oral and systemic health. Microorganisms 2024 12 9 1797 10.3390/microorganisms12091797 39338471
    [Google Scholar]
  78. Kilian M. The oral microbiome – Friend or foe? Eur. J. Oral Sci. 2018 126 S1 5 12 10.1111/eos.12527 30178561
    [Google Scholar]
  79. Segata N. Haake S.K. Mannon P. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012 13 6 R42 10.1186/gb‑2012‑13‑6‑r42 22698087
    [Google Scholar]
  80. Mark Welch J.L. Rossetti B.J. Rieken C.W. Dewhirst F.E. Borisy G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016 113 6 E791 E800 10.1073/pnas.1522149113 26811460
    [Google Scholar]
  81. Schroeder B.O. Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016 22 10 1079 1089 10.1038/nm.4185 27711063
    [Google Scholar]
  82. Baker J.L. Bor B. Agnello M. Shi W. He X. Ecology of the oral microbiome: Beyond bacteria. Trends Microbiol. 2017 25 5 362 374 10.1016/j.tim.2016.12.012 28089325
    [Google Scholar]
  83. Wang X. Du L. You J. King J.B. Cichewicz R.H. Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org. Biomol. Chem. 2012 10 10 2044 2050 10.1039/c2ob06856g 22281750
    [Google Scholar]
  84. Wang J. Gao Y. Zhao F. Phage–bacteria interaction network in human oral microbiome. Environ. Microbiol. 2016 18 7 2143 2158 10.1111/1462‑2920.12923 26036920
    [Google Scholar]
  85. Dudek N.K. Sun C.L. Burstein D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 2017 27 24 3752 3762.e6 10.1016/j.cub.2017.10.040 29153320
    [Google Scholar]
  86. Presti R.M. Handley S.A. Droit L. Alterations in the oral microbiome in HIV-infected participants after antiretroviral therapy administration are influenced by immune status. AIDS 2018 32 10 1279 1287 10.1097/QAD.0000000000001811 29851662
    [Google Scholar]
  87. Sällberg M. Oral viral infections of children. Periodontol. 2000 2009 49 1 87 95 10.1111/j.1600‑0757.2008.00277.x 19152527
    [Google Scholar]
  88. Dzidic M. Collado M.C. Abrahamsson T. Oral microbiome development during childhood: An ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 2018 12 9 2292 2306 10.1038/s41396‑018‑0204‑z 29899505
    [Google Scholar]
  89. Gomez A. Espinoza J.L. Harkins D.M. Host genetic control of the oral microbiome in health and disease. Cell Host Microbe 2017 22 3 269 278.e3 10.1016/j.chom.2017.08.013 28910633
    [Google Scholar]
  90. Hujoel P.P. Hujoel M.L.A. Kotsakis G.A. Personal oral hygiene and dental caries: A systematic review of randomised controlled trials. Gerodontology 2018 35 4 282 289 10.1111/ger.12331 29766564
    [Google Scholar]
  91. Tanner A.C.R. Kressirer C.A. Faller L.L. Understanding caries from the oral microbiome perspective. J. Calif. Dent. Assoc. 2016 44 7 437 446 10.1080/19424396.2016.12221036 27514155
    [Google Scholar]
  92. Marsh P.D. Bradshaw D.J. Dental plaque as a biofilm. J. Ind. Microbiol. 1995 15 3 169 175 10.1007/BF01569822 8519474
    [Google Scholar]
  93. Marsh P.D. Dental plaque as a biofilm and a microbial community – Implications for health and disease. BMC Oral Health 2006 6 S1 S14 10.1186/1472‑6831‑6‑S1‑S14 16934115
    [Google Scholar]
  94. Marsh P.D. Moter A. Devine D.A. Dental plaque biofilms: Communities, conflict and control. Periodontol. 2000 2011 55 1 16 35 10.1111/j.1600‑0757.2009.00339.x 21134226
    [Google Scholar]
  95. Lappin-Scott H. Burton S. Stoodley P. Revealing a world of biofilms — The pioneering research of Bill Costerton. Nat. Rev. Microbiol. 2014 12 11 781 787 10.1038/nrmicro3343 25157698
    [Google Scholar]
  96. Marsh P.D. Zaura E. Dental biofilm: Ecological interactions in health and disease. J. Clin. Periodontol. 2017 44 S18 S12 S22 10.1111/jcpe.12679 28266111
    [Google Scholar]
  97. Millward T.A. Wilson M. The effect of chlorhexidine on Streptococcus sanguis biofilms. Microbios 1989 58 236-237 155 164 2770556
    [Google Scholar]
  98. Dobson J. Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch. Oral Biol. 1992 37 11 883 887 10.1016/0003‑9969(92)90058‑G 1334649
    [Google Scholar]
  99. Sim C.P.C. Dashper S.G. Reynolds E.C. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J. Dent. 2016 50 1 11 10.1016/j.jdent.2016.04.010 27131496
    [Google Scholar]
  100. Yadav K. Prakash S. Dental Caries: A microbiological approach. J Clin Infect Dis Pract 2017 2 1 1 5 10.4172/2476‑213X.1000118
    [Google Scholar]
  101. Chen X. Daliri E.B.M. Kim N. Kim J.R. Yoo D. Oh D.H. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens 2020 9 7 569 10.3390/pathogens9070569 32674310
    [Google Scholar]
  102. van der Mei H.C. Engels E. de Vries J. Busscher H.J. Effects of amine fluoride on biofilm growth and salivary pellicles. Caries Res. 2008 42 1 19 27 10.1159/000111746 18042986
    [Google Scholar]
  103. Lamont R.J. Koo H. Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018 16 12 745 759 10.1038/s41579‑018‑0089‑x 30301974
    [Google Scholar]
  104. Seminario A. Broukal Z. Ivancaková R. Mutans streptococci and the development of dental plaque. Prague Med. Rep. 2005 106 4 349 358 16572928
    [Google Scholar]
  105. Widyarman A.S. Theodorea C.F. Effect of reuterin on dual-species biofilm in vitro of Streptococcus mutans and Veillonella parvula. J Int Dent 2019 12 77 83
    [Google Scholar]
  106. Fakhruddin K.S. Ngo H.C. Samaranayake L.P. Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview. Oral Dis. 2019 25 4 982 995 10.1111/odi.12932 29969843
    [Google Scholar]
  107. Liu J. Lu Y. Liu J. Jin C. Meng Y. Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health 2019 19 1 73 10.1186/s12903‑019‑0768‑7 31046751
    [Google Scholar]
  108. Obata J. Fujishima K. Nagata E. Oho T. Pathogenic mechanisms of cariogenic Propionibacterium acidifaciens. Arch. Oral Biol. 2019 105 46 51 10.1016/j.archoralbio.2019.06.005 31254840
    [Google Scholar]
  109. Alshahrani A.M. Gregory R.L. In vitro Cariostatic effects of cinnamon water extract on nicotine-induced Streptococcus mutans biofilm. BMC Complement Med Ther 2020 20 1 45 10.1186/s12906‑020‑2840‑x 32046702
    [Google Scholar]
  110. Zhang Q. Qin S. Huang Y. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats. J. Oral Microbiol. 2020 12 1 1703883 10.1080/20002297.2019.1703883 32002130
    [Google Scholar]
  111. Abranches J Zeng L Kajfasz JK Biology of oral streptococci. Microbiol Spectr 2018 6 5 6.5.11. 10.1128/microbiolspec.GPP3‑0042‑2018 30338752
    [Google Scholar]
  112. Palmer S.R. Ren Z. Hwang G. Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties. J. Bacteriol. 2018 201 1 e00396 e18 30322852
    [Google Scholar]
  113. Zhang Q. Nijampatnam B. Hua Z. Structure-based discovery of small molecule inhibitors of cariogenic virulence. Sci. Rep. 2017 7 1 5974 10.1038/s41598‑017‑06168‑1 28729722
    [Google Scholar]
  114. Bowen W.H. Burne R.A. Wu H. Koo H. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018 26 3 229 242 10.1016/j.tim.2017.09.008 29097091
    [Google Scholar]
  115. Elgamily H. Safy R. Makharita R. Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: An in-vitro study. Open Access Maced. J. Med. Sci. 2019 7 14 2328 2334 10.3889/oamjms.2019.653 31592282
    [Google Scholar]
  116. Philip N. Leishman S.J. Bandara H. Walsh L.J. Polyphenol-rich cranberry extracts modulate virulence of streptococcus mutans-candida albicans biofilms implicated in the pathogenesis of early childhood caries. Pediatr. Dent. 2019 41 1 56 62 30803479
    [Google Scholar]
  117. Manome A. Abiko Y. Kawashima J. Washio J. Fukumoto S. Takahashi N. Acidogenic potential of oral bifidobacterium and its high fluoride tolerance. Front. Microbiol. 2019 10 1099 10.3389/fmicb.2019.01099 31156604
    [Google Scholar]
  118. do Rosário Palma A.L. Domingues N. de Barros P.P. Brito G.N.B. Jorge A.O.C. Influence of Streptococcus mitis and Streptococcus sanguinis on virulence of Candida albicans: In vitro and in vivo studies. Folia Microbiol. 2019 64 2 215 222 10.1007/s12223‑018‑0645‑9 30232727
    [Google Scholar]
  119. Mira A. Buetas E. Rosier B.T. Development of an in vitro system to study oral biofilms in real time through impedance technology: Validation and potential applications. J. Oral Microbiol. 2019 11 1 1609838 10.1080/20002297.2019.1609838 31105900
    [Google Scholar]
  120. Shu M. Wong L. Miller J.H. Sissons C.H. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch. Oral Biol. 2000 45 1 27 40 10.1016/S0003‑9969(99)00111‑9 10669090
    [Google Scholar]
  121. Peres M.A. Macpherson L.M.D. Weyant R.J. Oral diseases: A global public health challenge. Lancet 2019 394 10194 249 260 10.1016/S0140‑6736(19)31146‑8 31327369
    [Google Scholar]
  122. Štšepetova J. Truu J. Runnel R. Impact of polyols on oral microbiome of estonian schoolchildren. BMC Oral Health 2019 19 1 60 10.1186/s12903‑019‑0747‑z 30634966
    [Google Scholar]
  123. Mensch K. Nagy G. Nagy Á. Bródy A. Characteristics, diagnosis and treatment of the most common bacterial diseases of the oral cavity. Orv. Hetil. 2019 160 19 739 746 10.1556/650.2019.31377 31055960
    [Google Scholar]
  124. Mosaddad S.A. Tahmasebi E. Yazdanian A. Oral microbial biofilms: An update. Eur. J. Clin. Microbiol. Infect. Dis. 2019 38 11 2005 2019 10.1007/s10096‑019‑03641‑9 31372904
    [Google Scholar]
  125. Moore W.E.C. Moore L.V.H. The bacteria of periodontal diseases. Periodontol. 2000 1994 5 1 66 77 10.1111/j.1600‑0757.1994.tb00019.x 9673163
    [Google Scholar]
  126. Wade W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013 69 1 137 143 10.1016/j.phrs.2012.11.006 23201354
    [Google Scholar]
  127. Dewhirst F.E. Chen T. Izard J. The human oral microbiome. J. Bacteriol. 2010 192 19 5002 5017 10.1128/JB.00542‑10 20656903
    [Google Scholar]
  128. Hooper L.V. Gordon J.I. Commensal host-bacterial relationships in the gut. Science 2001 292 5519 1115 1118 10.1126/science.1058709 11352068
    [Google Scholar]
  129. Socransky S.S. Haffajee A.D. Periodontal microbial ecology. Periodontol. 2000 2005 38 1 135 187 10.1111/j.1600‑0757.2005.00107.x 15853940
    [Google Scholar]
  130. Sullivan Å. Edlund C. Nord C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001 1 2 101 114 10.1016/S1473‑3099(01)00066‑4 11871461
    [Google Scholar]
  131. Lundberg J.M. An audience with... Jan M. Lundberg. Nat. Rev. Drug Discov. 2005 4 6 452 10.1038/nrd1764 15959949
    [Google Scholar]
  132. Kapil V. Milsom A.B. Okorie M. Inorganic nitrate supplementation lowers blood pressure in humans: Role for nitrite-derived NO. Hypertension 2010 56 2 274 281 10.1161/HYPERTENSIONAHA.110.153536 20585108
    [Google Scholar]
  133. Doel J.J. Hector M.P. Amirtham C.V. Al-Anzan L.A. Benjamin N. Allaker R.P. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur. J. Oral Sci. 2004 112 5 424 428 10.1111/j.1600‑0722.2004.00153.x 15458501
    [Google Scholar]
  134. Aas J.A. Paster B.J. Stokes L.N. Olsen I. Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005 43 11 5721 5732 10.1128/JCM.43.11.5721‑5732.2005 16272510
    [Google Scholar]
  135. Abusleme L. Dupuy A.K. Dutzan N. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013 7 5 1016 1025 10.1038/ismej.2012.174 23303375
    [Google Scholar]
  136. Mager D.L. Ximenez-Fyvie L.A. Haffajee A.D. Socransky S.S. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol. 2003 30 7 644 654 10.1034/j.1600‑051X.2003.00376.x 12834503
    [Google Scholar]
  137. Paster B.J. Olsen I. Aas J.A. Dewhirst F.E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000 2006 42 1 80 87 10.1111/j.1600‑0757.2006.00174.x 16930307
    [Google Scholar]
  138. Mason M.R. Preshaw P.M. Nagaraja H.N. Dabdoub S.M. Rahman A. Kumar P.S. The subgingival microbiome of clinically healthy current and never smokers. ISME J. 2015 9 1 268 272 10.1038/ismej.2014.114 25012901
    [Google Scholar]
  139. Griffen A.L. Beall C.J. Campbell J.H. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012 6 6 1176 1185 10.1038/ismej.2011.191 22170420
    [Google Scholar]
  140. Zaura E. Mira A. Editorial: The oral microbiome in an ecological perspective. Front. Cell. Infect. Microbiol. 2015 5 39 10.3389/fcimb.2015.00039 25973398
    [Google Scholar]
  141. Kumar P.S. Mason M.R. Brooker M.R. O’Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J. Clin. Periodontol. 2012 39 5 425 433 10.1111/j.1600‑051X.2012.01856.x 22417294
    [Google Scholar]
  142. Paster B.J. Boches S.K. Galvin J.L. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001 183 12 3770 3783 10.1128/JB.183.12.3770‑3783.2001 11371542
    [Google Scholar]
  143. Ho K.K.H.Y. Haufe T.C. Ferruzzi M.G. Neilson A.P. Production and polyphenolic composition of tea. Nutr. Today 2019 54 2 87 10.1097/NT.0000000000000337
    [Google Scholar]
  144. Hilal Y. Engelhardt U. Characterisation of white tea – Comparison to green and black tea. J. Verbraucherschutz Lebensmsicherh. 2007 2 4 414 421 10.1007/s00003‑007‑0250‑3
    [Google Scholar]
  145. Khokhar S. Magnusdottir S.G.M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom. J. Agric. Food Chem. 2002 50 3 565 570 10.1021/jf010153l 11804530
    [Google Scholar]
  146. Khan N. Mukhtar H. Tea polyphenols in promotion of human health. Nutrients 2018 11 1 39 10.3390/nu11010039 30585192
    [Google Scholar]
  147. Del Rio D. Rodriguez-Mateos A. Spencer J.P.E. Tognolini M. Borges G. Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013 18 14 1818 1892 10.1089/ars.2012.4581 22794138
    [Google Scholar]
  148. Yashin A.Y. Nemzer B.V. Combet E. Yashin Y.I. Determination of the chemical composition of tea by chromatographic methods: A review. J. Food Res. 2015 4 3 56 87 10.5539/jfr.v4n3p56
    [Google Scholar]
  149. Yong-mei X.U. Fang-bin Q.I.A.O. Ji-kun H.U.A.N.G. Black tea markets worldwide: Are they integrated? J. Integr. Agric. 2022 21 2 552 565 10.1016/S2095‑3119(21)63850‑9
    [Google Scholar]
  150. Koch W. Kukula-Koch W. Komsta Ł. Marzec Z. Szwerc W. Głowniak K. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 2018 23 7 1689 10.3390/molecules23071689 29997337
    [Google Scholar]
  151. Balentine D.A. Wiseman S.A. Bouwens L.C.M. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 1997 37 8 693 704 10.1080/10408399709527797 9447270
    [Google Scholar]
  152. Graham H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992 21 3 334 350 10.1016/0091‑7435(92)90041‑F 1614995
    [Google Scholar]
  153. Khan N. Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007 81 7 519 533 10.1016/j.lfs.2007.06.011 17655876
    [Google Scholar]
  154. Yang C.S. Kim S. Yang G.Y. Inhibition of carcinogenesis by tea: Bioavailability of tea polyphenols and mechanisms of actions. Proc. Soc. Exp. Biol. Med. 1999 220 4 213 217 10.1046/j.1525‑1373.1999.d01‑36.x 10202391
    [Google Scholar]
  155. Zhao T. Li C. Wang S. Song X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules 2022 27 12 3909 10.3390/molecules27123909 35745040
    [Google Scholar]
  156. Ciraj A.M. Sulaim J. Mamatha B. Gopalkrishna B.K. Shivananda P.G. Antibacterial activity of black tea (Camelia sinensis) extract against Salmonella serotypes causing enteric fever. Indian J. Med. Sci. 2001 55 7 376 381 11883337
    [Google Scholar]
  157. Ravindranath M. Sumobay C. Ramasamy V. Response of lymph node and organ metastasized melanoma cells to green tea catechins (EGCG, EGC & ECG) differs markedly from that of prostate and epithelial ovarian carcinomas. Cancer Res. 2007 67 9 5538
    [Google Scholar]
  158. Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc. Soc. Exp. Biol. Med. 1999 220 4 262 266 10.1046/j.1525‑1373.1999.d01‑45.x 10202400
    [Google Scholar]
  159. Namal Senanayake S.P.J. Green tea extract: Chemistry, antioxidant properties and food applications – A review. J. Funct. Foods 2013 5 4 1529 1541 10.1016/j.jff.2013.08.011
    [Google Scholar]
  160. Zhou B. Wu L.M. Yang L. Liu Z.L. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic. Biol. Med. 2005 38 1 78 84 10.1016/j.freeradbiomed.2004.09.023 15589374
    [Google Scholar]
  161. Dai F. Chen W.F. Zhou B. Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 2008 90 10 1499 1505 10.1016/j.biochi.2008.05.007 18554517
    [Google Scholar]
  162. Wang H. Provan G.J. Helliwell K. Tea flavonoids: Their functions, utilisation and analysis. Trends Food Sci. Technol. 2000 11 4-5 152 160 10.1016/S0924‑2244(00)00061‑3
    [Google Scholar]
  163. Finger A. Engelhardt U.H. Wray V. Flavonol glycosides in tea—kaempferol and quercetin rhamnodiglucosides. J. Sci. Food Agric. 1991 55 2 313 321 10.1002/jsfa.2740550216
    [Google Scholar]
  164. Chaiyasut C. Sivamaruthi B.S. Pengkumsri N. Anthocyanin profile and its antioxidant activity of widely used fruits, vegetables, and flowers in Thailand. Asian J. Pharm. Clin. Res. 2016 9 6 218 224 10.22159/ajpcr.2016.v9i6.14245
    [Google Scholar]
  165. Chen H. Zhang M. Qu Z. Xie B. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. J. Agric. Food Chem. 2007 55 6 2256 2260 10.1021/jf0632740 17305361
    [Google Scholar]
  166. Lv Y. Yang X. Zhao Y. Ruan Y. Yang Y. Wang Z. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem. 2009 112 3 742 746 10.1016/j.foodchem.2008.06.042
    [Google Scholar]
  167. Zhou X. Wang D. Sun P. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice. J. Agric. Food Chem. 2007 55 14 5523 5528 10.1021/jf070699t 17552542
    [Google Scholar]
  168. González-García E. Puchalska P. Marina M.L. García M.C. Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. J. Funct. Foods 2015 19 376 384 10.1016/j.jff.2015.08.033
    [Google Scholar]
  169. Brice C. Smith A. The effects of caffeine on simulated driving, subjective alertness and sustained attention. Hum. Psychopharmacol. 2001 16 7 523 531 10.1002/hup.327 12404548
    [Google Scholar]
  170. Yu Z. Yang Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2020 60 5 844 858 10.1080/10408398.2018.1552245 30614265
    [Google Scholar]
  171. Deb S. Dutta A. Phukan B.C. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem. Int. 2019 129 104478 10.1016/j.neuint.2019.104478 31145971
    [Google Scholar]
  172. Abe Y. Umemura S. Sugimoto K. Effect of green tea rich in? -aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am. J. Hypertens. 1995 8 1 74 79 10.1016/0895‑7061(94)00141‑W 7734101
    [Google Scholar]
  173. Chen R. Meng Q.J. Liu H.X. Li S. Wang C.L. Variance analysis of free amino acid composition in different kinds of tea. Food Sci Technol 2017 42 258 263
    [Google Scholar]
  174. Ma L. Cao D. Liu Y. Gong Z. Liu P. Jin X. A comparative analysis of the volatile components of green tea produced from various tea cultivars in China. Turk. J. Agric. For. 2019 43 5 451 463 10.3906/tar‑1807‑155
    [Google Scholar]
  175. Cheng Y. Huynh-Ba T. Blank I. Robert F. Temporal changes in aroma release of Longjing tea infusion: Interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem. 2008 56 6 2160 2169 10.1021/jf073132l 18298066
    [Google Scholar]
  176. Liu P. Xu Y. Yin J. Effect of main water quality factors on volatile components of Huangshan Maofeng tea with faint scent. J Chin Inst Food Sci Technol 2016 16 245 257
    [Google Scholar]
  177. Zhu Y. Yang T. Shi J. Analysis of aroma components in Xihu Longjing tea by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Zhongguo Nong Ye Ke Xue 2015 48 4120 4146
    [Google Scholar]
  178. Chen H. Yu F. Kang J. Li Q. Warusawitharana H.K. Li B. Quality chemistry, physiological functions, and health benefits of organic acids from tea (Camellia sinensis). Molecules 2023 28 5 2339 10.3390/molecules28052339 36903584
    [Google Scholar]
  179. Sharangi A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Res. Int. 2009 42 5-6 529 535 10.1016/j.foodres.2009.01.007
    [Google Scholar]
  180. Konieczynski P. Viapiana A. Wesolowski M. Comparison of infusions from black and green teas (Camellia sinensis L. Kuntze) and Erva-mate (Ilex paraguariensis A. St.-Hil.) based on the content of essential elements, secondary metabolites, and antioxidant activity. Food Anal. Methods 2017 10 9 3063 3070 10.1007/s12161‑017‑0872‑8
    [Google Scholar]
  181. Zhao L.Y. Cao C.Y. Chen G.T. Fang Y. Hu Q.H. Determination of nine mineral elements in three kinds of green tea with two grades by ICP-AES. Guangpuxue Yu Guangpu Fenxi 2011 31 1119 1121 21714273
    [Google Scholar]
  182. Guan Q.X. Dong W.F. Li H.J. Wang R. Zou Y. Extraction and stability of pigment from green tea. Food Ind. 2017 38 100102
    [Google Scholar]
  183. Gaur S. Agnihotri R. Green tea: A novel functional food for the oral health of older adults. Geriatr. Gerontol. Int. 2014 14 2 238 250 10.1111/ggi.12194 24261512
    [Google Scholar]
  184. Kato M.T. Magalhães A.C. Rios D. Hannas A.R. Attin T. Buzalaf M.A.R. Protective effect of green tea on dentin erosion and abrasion. J. Appl. Oral Sci. 2009 17 6 560 564 10.1590/S1678‑77572009000600004 20027426
    [Google Scholar]
  185. Hara K. Ohara M. Hayashi I. The green tea polyphenol (−)‐epigallocatechin gallate precipitates salivary proteins including alpha‐amylase: Biochemical implications for oral health. Eur. J. Oral Sci. 2012 120 2 132 139 10.1111/j.1600‑0722.2012.00947.x 22409219
    [Google Scholar]
  186. Narotzki B. Levy Y. Aizenbud D. Reznick A.Z. Green tea and its major polyphenol EGCG increase the activity of oral peroxidases. Adv. Exp. Med. Biol. 2013 756 99 104 10.1007/978‑94‑007‑4549‑0_13 22836624
    [Google Scholar]
  187. Hamada S. Slade H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 1980 44 2 331 384 10.1128/mr.44.2.331‑384.1980 6446023
    [Google Scholar]
  188. Khurshid Z. Naseem M. Sheikh Z. Najeeb S. Shahab S. Zafar M.S. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm. J. 2016 24 5 515 524 10.1016/j.jsps.2015.02.015 27752223
    [Google Scholar]
  189. Sakanaka S Sato T Kim M Yamamoto T Inhibitory effects of green tea polyphenols on glucan synthesis and cellular adherence of Cariogenic streptococci. Agric Biol Chem 1990 54 11 2925 9
    [Google Scholar]
  190. Sakanaka S. Okada Y. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium Porphyromonas gingivalis. J. Agric. Food Chem. 2004 52 6 1688 1692 10.1021/jf0302815 15030231
    [Google Scholar]
  191. Zafar M.S. Ahmed N. Therapeutic roles of fluoride released from restorative dental materials. Res Rev Fluoride 2015 48 3 184 194
    [Google Scholar]
  192. Zafar M.S. Effects of surface pre-reacted glass particles on fluoride release of dental restorative materials. World Appl. Sci. J. 2013 28 4 457 462
    [Google Scholar]
  193. Otake S. Makimura M. Kuroki T. Nishihara Y. Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res. 1991 25 6 438 443 10.1159/000261407 1667297
    [Google Scholar]
  194. Kashket S. Paolino V.J. Inhibition of salivary amylase by water-soluble extracts of tea. Arch. Oral Biol. 1988 33 11 845 846 10.1016/0003‑9969(88)90110‑0 2476976
    [Google Scholar]
  195. Zhang J. Kashket S. Inhibition of salivary amylase by black and green teas and their effects on the intraoral hydrolysis of starch. Caries Res. 1998 32 3 233 238 10.1159/000016458 9577990
    [Google Scholar]
  196. Ikigai H. Nakae T. Hara Y. Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta Biomembr. 1993 1147 1 132 136 10.1016/0005‑2736(93)90323‑R 8466924
    [Google Scholar]
  197. Bai L. Takagi S. Ando T. Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms. J. Vet. Med. Sci. 2016 78 9 1439 1445 10.1292/jvms.16‑0198 27246281
    [Google Scholar]
  198. Arakawa H. Maeda M. Okubo S. Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 2004 27 3 277 281 10.1248/bpb.27.277 14993788
    [Google Scholar]
  199. Wu M. Brown A.C. Applications of catechins in the treatment of bacterial infections. Pathogens 2021 10 5 546 10.3390/pathogens10050546 34062722
    [Google Scholar]
  200. Aragão M.G.B. Tedesco A.C. Borges H.S. Aires C.P. Corona S.A.M. Chitosan nanoparticles loaded with epigallocatechin-3- gallate: Synthesis, characterisation, and effects against Streptococcus mutans biofilm Epigallocatechin-loaded chitosan nanoparticles: Effects against Streptococcus mutans biofilm. Nat. Prod. Res. 2024 39 1 8
    [Google Scholar]
  201. Xu X. Dai Z. Zhang Z. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur. J. Pharmacol. 2021 897 173951 10.1016/j.ejphar.2021.173951 33607105
    [Google Scholar]
  202. Moreno A.P.D. Marcato P.D. Silva L.B. Antibacterial Activity of Epigallocatechin-3-gallate (EGCG) Loaded Lipid-chitosan Hybrid Nanoparticle against Planktonic Microorganisms. J. Oleo Sci. 2024 73 5 709 716 10.5650/jos.ess23155 38692893
    [Google Scholar]
  203. Sharma G. Garg N. Hasan S. Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb. Pathog. 2022 169 105673 10.1016/j.micpath.2022.105673 35843443
    [Google Scholar]
  204. Song P. Hao Y. Lin D. Jin Y. Lin J. Evaluation of the antibacterial effect of Epigallocatechin gallate on the major pathogens of canine periodontal disease and therapeutic effects on periodontal disease mice. Front. Microbiol. 2024 14 1329772 10.3389/fmicb.2023.1329772 38249491
    [Google Scholar]
  205. Higuchi T. Suzuki N. Nakaya S. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor. Arch. Oral Biol. 2019 98 243 247 10.1016/j.archoralbio.2018.11.027 30530235
    [Google Scholar]
  206. Hajishengallis G. Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021 21 7 426 440 10.1038/s41577‑020‑00488‑6 33510490
    [Google Scholar]
  207. Woelber J.P. Reichenbächer K. Groß T. Vach K. Ratka-Krüger P. Bartha V. Dietary and nutraceutical interventions as an adjunct to non-surgical periodontal therapy—A systematic review. Nutrients 2023 15 6 1538 10.3390/nu15061538 36986267
    [Google Scholar]
  208. Li Y. Cheng L. Li M. Effects of green tea extract epigallocatechin-3-gallate on oral diseases: A narrative review. Pathogens 2024 13 8 634 10.3390/pathogens13080634 39204235
    [Google Scholar]
  209. Wen W.C. Kuo P.J. Chiang C.Y. Chin Y.T. Fu M.M.J. Fu E. Epigallocatechin-3-gallate attenuates Porphyromonas gingivalis lipopolysaccharide-enhanced matrix metalloproteinase-1 production through inhibition of interleukin-6 in gingival fibroblasts. J. Periodontol. 2014 85 6 868 875 10.1902/jop.2013.120714 24215203
    [Google Scholar]
  210. Lombardo Bedran T.B. Feghali K. Zhao L. Palomari Spolidorio D.M. Grenier D. Green tea extract and its major constituent, epigallocatechin‐3‐gallate, induce epithelial beta‐defensin secretion and prevent beta‐defensin degradation by Porphyromonas gingivalis. J. Periodontal Res. 2014 49 5 615 623 10.1111/jre.12142 24206194
    [Google Scholar]
  211. Lombardo Bedran T.B. Palomari Spolidorio D. Grenier D. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. Arch. Oral Biol. 2015 60 6 845 853 10.1016/j.archoralbio.2015.02.021 25791329
    [Google Scholar]
  212. Lagha A.B. Grenier D. Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Sci. Rep. 2016 6 1 34520 10.1038/srep34520 27694921
    [Google Scholar]
  213. Morin M.P. Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts. Arch. Oral Biol. 2017 75 89 99 10.1016/j.archoralbio.2016.10.035 27825679
    [Google Scholar]
  214. Lagha A.B. Groeger S. Meyle J. Grenier D. Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathog. Dis. 2018 76 4 fty030 10.1093/femspd/fty030 29635433
    [Google Scholar]
  215. Barros S.P. Hefni E. Fahimipour F. Kim S. Arora P. Maintaining barrier function of infected gingival epithelial cells by inhibition of DNA methylation. J. Periodontol. 2020 91 S1 S68 S78 10.1002/JPER.20‑0262 32633810
    [Google Scholar]
  216. Karami E. Esfahrood Z. Mansouri R. Haerian A. Abdian-Asl A. Effect of epigallocatechin-3-gallate on tumor necrosis factor-alpha production by human gingival fibroblasts stimulated with bacterial lipopolysaccharide: An in vitro study. J. Indian Soc. Periodontol. 2021 25 1 11 16 10.4103/jisp.jisp_323_20 33642735
    [Google Scholar]
  217. Chang E.H. Brown A.C. Epigallocatechin gallate alters leukotoxin secretion and Aggregatibacter actinomycetemcomitans virulence. J. Pharm. Pharmacol. 2021 73 4 505 514 10.1093/jpp/rgaa051 33793838
    [Google Scholar]
  218. Ding C. Fu S. Chen X. Chen C. Wang H. Zhong L. Epigallocatechin gallate affects the proliferation of human alveolar osteoblasts and periodontal ligament cells, as well as promoting cell differentiation by regulating PI3K/Akt signaling pathway. Odontology 2021 109 3 729 740 10.1007/s10266‑021‑00597‑1 33674907
    [Google Scholar]
  219. Brennan C.A. Garrett W.S. Fusobacterium nucleatum — Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019 17 3 156 166 10.1038/s41579‑018‑0129‑6 30546113
    [Google Scholar]
  220. Duque C. Souza A.C.A. Aida K.L. Synergistic antimicrobial potential of EGCG and fosfomycin against biofilms associated with endodontic infections. J. Appl. Oral Sci. 2023 31 20220282 10.1590/1678‑7757‑2022‑0282 36995882
    [Google Scholar]
  221. Ben Lagha A. Haas B. Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep. 2017 7 1 44815 10.1038/srep44815 28322293
    [Google Scholar]
  222. Zheng S. Yu S. Fan X. Porphyromonas gingivalis survival skills: Immune evasion. J. Periodontal Res. 2021 56 6 1007 1018 10.1111/jre.12915 34254681
    [Google Scholar]
  223. Su B.Y. Chen Z.J. Lv J.C. Scalable fabrication of polymeric composite microspheres to inhibit oral pathogens and promote osteogenic differentiation of periodontal membrane stem cells. ACS Biomater. Sci. Eng. 2023 9 7 4431 4441 10.1021/acsbiomaterials.3c00452 37452570
    [Google Scholar]
  224. Asahi Y. Noiri Y. Miura J. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J. Appl. Microbiol. 2014 116 5 1164 1171 10.1111/jam.12458 24471579
    [Google Scholar]
  225. Fournier-Larente J. Morin M.P. Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch. Oral Biol. 2016 65 35 43 10.1016/j.archoralbio.2016.01.014 26849416
    [Google Scholar]
  226. Slots J. Rams T.E. Herpesvirus‐Bacteria pathogenic interaction in juvenile (aggressive) periodontitis. A novel etiologic concept of the disease. Periodontol. 2000 2024 94 1 532 538 10.1111/prd.12501 37345343
    [Google Scholar]
  227. Chen C. Feng P. Slots J. Herpesvirus‐bacteria synergistic interaction in periodontitis. Periodontol. 2000 2020 82 1 42 64 10.1111/prd.12311 31850623
    [Google Scholar]
  228. Vega B.A. Belinka B.A. Kachlany S.C. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera®): Mechanisms of action and therapeutic applications. Toxins 2019 11 9 489 10.3390/toxins11090489 31454891
    [Google Scholar]
  229. Chang E.H. Giaquinto P. Huang J. Balashova N.V. Brown A.C. Epigallocatechin gallate inhibits leukotoxin release by Aggregatibacter actinomycetemcomitans by promoting association with the bacterial membrane. Mol. Oral Microbiol. 2020 35 1 29 39 10.1111/omi.12275 31816197
    [Google Scholar]
  230. Sakanaka S. Aizawa M. Kim M. Yamamoto T. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis. Biosci. Biotechnol. Biochem. 1996 60 5 745 749 10.1271/bbb.60.745 8704303
    [Google Scholar]
  231. Chu C. Wang Y. Wang Y. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype. Mater. Sci. Eng. C 2019 99 73 82 10.1016/j.msec.2019.01.083 30889747
    [Google Scholar]
  232. Hampelska K. Jaworska M.M. Babalska Z.Ł. Karpiński T.M. The role of oral microbiota in intra-oral halitosis. J. Clin. Med. 2020 9 8 2484 10.3390/jcm9082484 32748883
    [Google Scholar]
  233. Tonzetich J. Production and origin of oral malodor: A review of mechanisms and methods of analysis. J. Periodontol. 1977 48 1 13 20 10.1902/jop.1977.48.1.13 264535
    [Google Scholar]
  234. Yasuda H. Arakawa T. Deodorizing mechanism of (-)-epigallocatechin gallate against methyl mercaptan. Biosci. Biotechnol. Biochem. 1995 59 7 1232 1236 10.1271/bbb.59.1232
    [Google Scholar]
  235. Xu X. Zhou X.D. Wu C.D. Tea catechin EGCg suppresses the mgl gene associated with halitosis. J. Dent. Res. 2010 89 11 1304 1308 10.1177/0022034510378682 20858778
    [Google Scholar]
  236. Lippman S.M. Hong W.K. Molecular markers of the risk of oral cancer. N. Engl. J. Med. 2001 344 17 1323 1326 10.1056/NEJM200104263441710 11320393
    [Google Scholar]
  237. Li N. Han C. Chen J. Tea preparations protect against DMBA-induced oral carcinogenesis in hamsters. Nutr. Cancer 1999 35 1 73 79 10.1207/S1532791473‑79 10624709
    [Google Scholar]
  238. Li N. Chen X. Liao J. Inhibition of 7,12-dimethylbenz] [a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 2002 23 8 1307 1313 10.1093/carcin/23.8.1307 12151348
    [Google Scholar]
  239. Chen D. Milacic V. Chen M.S. Tea polyphenols, their biological effects and potential molecular targets. Histol. Histopathol. 2008 23 4 487 496 10.14670/HH‑23.487 18228206
    [Google Scholar]
  240. Chen P.N. Chu S.C. Kuo W.H. Chou M.Y. Lin J.K. Hsieh Y.S. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells. J. Agric. Food Chem. 2011 59 8 3836 3844 10.1021/jf1049408 21388137
    [Google Scholar]
  241. Lambert J.D. Yang C.S. Mechanisms of cancer prevention by tea constituents. J. Nutr. 2003 133 10 3262S 3267S 10.1093/jn/133.10.3262S 14519824
    [Google Scholar]
  242. Lim Y.X. Mierzwa M.L. Sartor M.A. D’Silva N.J. Clinical, morphologic and molecular heterogeneity of HPV-associated oropharyngeal cancer. Oncogene 2023 42 40 2939 2955 10.1038/s41388‑023‑02819‑y 37666939
    [Google Scholar]
  243. Song J.Y. Han J.H. Song Y. Lee J.H. Choi S.Y. Park Y.M. Epigallocatechin-3-gallate can prevent type 2 human papillomavirus E7 from suppressing interferon-stimulated genes. Int. J. Mol. Sci. 2021 22 5 2418 10.3390/ijms22052418 33670861
    [Google Scholar]
  244. Yap J.K.W. Kehoe S.T. Woodman C.B.J. Dawson C.W. The major constituent of green tea, epigallocatechin-3-Gallate (EGCG), inhibits the growth of HPV18-infected keratinocytes by stimulating proteasomal turnover of the E6 and E7 oncoproteins. Pathogens 2021 10 4 459 10.3390/pathogens10040459 33920477
    [Google Scholar]
  245. Pons-Fuster López E. Gómez García F. López Jornet P. Combination of 5-Florouracil and polyphenol EGCG exerts suppressive effects on oral cancer cells exposed to radiation. Arch. Oral Biol. 2019 101 8 12 10.1016/j.archoralbio.2019.02.018 30851692
    [Google Scholar]
  246. Chen L. Guo X. Hu Y. Li L. Liang G. Zhang G. Epigallocatechin-3-gallate sensitises multidrug-resistant oral carcinoma xenografts to vincristine sulfate. FEBS Open Bio 2020 10 7 1403 1413 10.1002/2211‑5463.12905 32475087
    [Google Scholar]
  247. Awadalla H.I. Ragab M.H. Bassuoni M.W. Fayed M.T. Abbas M.O. A pilot study of the role of green tea use on oral health. Int. J. Dent. Hyg. 2011 9 2 110 116 10.1111/j.1601‑5037.2009.00440.x 21356006
    [Google Scholar]
  248. Kushiyama M. Shimazaki Y. Murakami M. Yamashita Y. Relationship between intake of green tea and periodontal disease. J. Periodontol. 2009 80 3 372 377 10.1902/jop.2009.080510 19254120
    [Google Scholar]
  249. Moghbel A. Farjzadeh A. Aghel N. Agheli H. Raisi N. Evaluation of the effect of green tea extract on mouth bacterial activity in the presence of propylene glycol. Jundishapur J. Nat. Pharm. Prod. 2012 7 2 56 60 10.17795/jjnpp‑3588 24624155
    [Google Scholar]
  250. Tao D.Y. Shu C.B. Lo E.C.M. Lu H.X. Feng X.P. A randomized trial on the inhibitory effect of chewing gum containing tea polyphenol on caries. J. Clin. Pediatr. Dent. 2013 38 1 67 70 10.17796/jcpd.38.1.c0tm02w572488064 24579286
    [Google Scholar]
  251. Shahakbari R. Eshghpour M. Rajaei A. Rezaei N.M. Golfakhrabadi P. Nejat A. Effectiveness of green tea mouthwash in comparison to chlorhexidine mouthwash in patients with acute pericoronitis: A randomized clinical trial. Int. J. Oral Maxillofac. Surg. 2014 43 11 1394 1398 10.1016/j.ijom.2014.05.017 24954134
    [Google Scholar]
  252. Taleghani F. Rezvani G. Birjandi M. Valizadeh M. Impact of green tea intake on clinical improvement in chronic periodontitis: A randomized clinical trial. J. Stomatol. Oral Maxillofac. Surg. 2018 119 5 365 368 10.1016/j.jormas.2018.04.010 29723659
    [Google Scholar]
  253. Hajiahmadi M. Yegdaneh A. Homayoni A. Parishani H. Moshkelgosha H. Salari-Moghaddam R. Comparative evaluation of efficacy of “green tea” and “green tea with Xylitol” mouthwashes on the salivary Streptococcus mutans and Lactobacillus colony count in children: A randomized clinical trial. J. Contemp. Dent. Pract. 2019 20 10 1190 1194 10.5005/jp‑journals‑10024‑2652 31883255
    [Google Scholar]
  254. Liao Y.C. Hsu L.F. Hsieh L.Y. Luo Y.Y. Effectiveness of green tea mouthwash for improving oral health status in oral cancer patients: A single-blind randomized controlled trial. Int. J. Nurs. Stud. 2021 121 103985 10.1016/j.ijnurstu.2021.103985 34186380
    [Google Scholar]
  255. Sharma P. Chandrashekar B.R. Mruthunjaya K. Bhaskar V. Evaluation of the effectiveness of green tea mouth rinse on oral halitosis, tongue coating, and plaque accumulation in comparison with 0.2% chlorhexidine mouth rinse – A double-blind randomized control trial. J. Indian Soc. Periodontol. 2023 27 3 308 314 10.4103/jisp.jisp_355_22 37346849
    [Google Scholar]
  256. Lan S. Jin S. Lin R. Effects of green tea based oral health strategies on disease activity in rheumatoid arthritis. Front. Med. 2024 11 1413753 10.3389/fmed.2024.1413753 39564506
    [Google Scholar]
  257. Zhu W. Mei H. Jia L. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: A prospective, non-randomised, phase 1 trial. Invest. New Drugs 2020 38 4 1129 1136 10.1007/s10637‑019‑00871‑8 31701429
    [Google Scholar]
  258. Fu J.Y. Gao J. Zhang Z.Y. Tea consumption and the risk of oral cancer incidence: A case-control study from China. Oral Oncol. 2013 49 9 918 922 10.1016/j.oraloncology.2013.05.002 23731795
    [Google Scholar]
  259. Abe S.K. Saito E. Sawada N. Green tea consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan. Eur. J. Epidemiol. 2019 34 10 917 926 10.1007/s10654‑019‑00545‑y 31392470
    [Google Scholar]
  260. Galeone C. Tavani A. Pelucchi C. Coffee and tea intake and risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol. Biomarkers Prev. 2010 19 7 1723 1736 10.1158/1055‑9965.EPI‑10‑0191 20570908
    [Google Scholar]
  261. Hildebrand J.S. Patel A.V. McCullough M.L. Coffee, tea, and fatal oral/pharyngeal cancer in a large prospective US cohort. Am. J. Epidemiol. 2013 177 1 50 58 10.1093/aje/kws222 23230042
    [Google Scholar]
  262. Lemos JA Palmer SR Zeng L The Biology of Streptococcus mutans. Microbiol Spectr 2019 7 1 7.1.03. 10.1128/microbiolspec.GPP3‑0051‑2018 30657107
    [Google Scholar]
  263. Jakubovics N.S. Goodman S.D. Mashburn-Warren L. Stafford G.P. Cieplik F. The dental plaque biofilm matrix. Periodontol. 2000 2021 86 1 32 56 10.1111/prd.12361 33690911
    [Google Scholar]
  264. Xu X. Zhou X.D. Wu C.D. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 2011 55 3 1229 1236 10.1128/AAC.01016‑10 21149622
    [Google Scholar]
  265. Han S. Washio J. Abiko Y. Zhang L. Takahashi N. Green tea-derived catechins suppress the acid productions of Streptococcus mutans and enhance the efficiency of fluoride. Caries Res. 2023 57 3 255 264 10.1159/000534055 37699359
    [Google Scholar]
  266. Han S. Abiko Y. Washio J. Luo Y. Zhang L. Takahashi N. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans streptococci. Caries Res. 2021 55 3 205 214 10.1159/000515814 34010838
    [Google Scholar]
  267. Chen D. Cao Y. Yu L. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express 2019 9 1 31 10.1186/s13568‑019‑0753‑1 30820691
    [Google Scholar]
  268. de Souza-e-Silva CM, da Silva Ventura TM, de Pau L, de Lima Leite A, Buzalaf MAR, Buzalaf MAR. Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Arch. Oral Biol. 2017 82 92 98 10.1016/j.archoralbio.2017.05.024 28622550
    [Google Scholar]
  269. Senpuku H. Tuna E.B. Nagasawa R. Nakao R. Ohnishi M. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS One 2019 14 11 0225584 10.1371/journal.pone.0225584 31774855
    [Google Scholar]
  270. Zhang Q. Ma Q. Wang Y. Wu H. Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int. J. Oral Sci. 2021 13 1 30 10.1038/s41368‑021‑00137‑1 34588414
    [Google Scholar]
  271. Schneider-Rayman M. Steinberg D. Sionov R.V. Friedman M. Shalish M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study. BMC Oral Health 2021 21 1 447 10.1186/s12903‑021‑01798‑4 34525984
    [Google Scholar]
  272. Wu C.Y. Su T.Y. Wang M.Y. Yang S.F. Mar K. Hung S.L. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain. Arch. Oral Biol. 2018 94 69 77 10.1016/j.archoralbio.2018.06.019 29979975
    [Google Scholar]
  273. Hairul Islam M.I. Arokiyaraj S. Kuralarasan M. Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis. Microb. Pathog. 2020 143 104129 10.1016/j.micpath.2020.104129 32169491
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128393965250927115025
Loading
/content/journals/cpd/10.2174/0113816128393965250927115025
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: periodontal disease ; halitosis ; Green tea ; catechins ; oral health ; dental caries
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test