Skip to content
2000
image of Ferric Pyrophosphate in Iron Deficiency Anemia Management: An Updated Review of Current Practices, Bioavailability Enhancement Techniques, and Future Directions

Abstract

According to the World Health Organization, Anemia is a health concern that impacts a substantial number of individuals globally, with 50% of cases due to iron deficiency and the remaining 50% being caused by other conditions and vitamin deficiencies. Iron deficiency anemia can cause several health issues, such as weakness, exhaustion, poor cognitive function, and a higher chance of pregnancy difficulties. Iron supplementation, particularly through dietary sources and supplement formulations, is fundamental in addressing this condition and is favored for managing mild to moderate cases. Ferrous and ferric iron are two types of iron that are often employed. Ferric pyrophosphate is a novel compound, complexed with pyrophosphate, is directly absorbed in the intestine, particularly by M cells in the duodenum. Ferric pyrophosphate is favored due to its higher elemental iron content, superior bioavailability, tolerability, and minimal impact on food color, taste, and texture. This review offers an in-depth investigation of ferric pyrophosphate as an alternative therapy for iron deficiency anemia because no review article currently available has compiled the research trends, benefits, and drawbacks of this drug. It summarizes pre-clinical and clinical studies on ferric pyrophosphate, exploring its pathogenesis, chemistry, safety, and efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128392575251013123818
2026-01-22
2026-01-27
Loading full text...

Full text loading...

References

  1. Tandon R. Jain A. Malhotra P. Management of iron deficiency anemia in pregnancy in india. Indian J. Hematol. Blood Transfus. 2018 34 2 204 215 10.1007/s12288‑018‑0949‑6 29622861
    [Google Scholar]
  2. Safiri S. Kolahi A.A. Noori M. Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 2021 14 1 185 10.1186/s13045‑021‑01202‑2 34736513
    [Google Scholar]
  3. Hailu M.K. Wudu M.A. Gebriye D.B. Birhanu T.A. Bekalu Y.E. Prevalence of Anemia and its associated factors among 6–59 months age children visiting public hospitals at Afar Region, Northeast Ethiopia: A hospital-based cross-sectional study. BMC Pediatr. 2024 24 1 589 10.1186/s12887‑024‑05078‑2 39289696
    [Google Scholar]
  4. Lopez A. Cacoub P. Macdougall I.C. Peyrin-Biroulet L. Iron deficiency anaemia. Lancet 2016 387 10021 907 916 10.1016/S0140‑6736(15)60865‑0 26314490
    [Google Scholar]
  5. Hershko C. Camaschella C. How I treat unexplained refractory iron deficiency anemia. Blood 2014 123 3 326 333 10.1182/blood‑2013‑10‑512624 24215034
    [Google Scholar]
  6. Camaschella C. Iron-deficiency anemia. N. Engl. J. Med. 2015 372 19 1832 1843 10.1056/NEJMra1401038 25946282
    [Google Scholar]
  7. Kumar A. Sharma E. Marley A. Samaan M.A. Brookes M.J. Iron deficiency anaemia: Pathophysiology, assessment, practical management. BMJ Open Gastroenterol. 2022 9 1 000759 10.1136/bmjgast‑2021‑000759 34996762
    [Google Scholar]
  8. Kumari R. Bharti R.K. Singh K. Prevalence of iron deficiency and iron deficiency anaemia in adolescent girls in a tertiary care hospital. J. Clin. Diagn. Res. 2017 11 8 BC04 BC06 10.7860/JCDR/2017/26163.10325 28969109
    [Google Scholar]
  9. Evstatiev R. Gasche C. Iron sensing and signalling. Gut 2012 61 6 933 952 10.1136/gut.2010.214312 22016365
    [Google Scholar]
  10. Hotez P.J. Bethony J. Bottazzi M.E. Brooker S. Buss P. Hookworm: “the great infection of mankind”. PLoS Med. 2005 2 3 67 10.1371/journal.pmed.0020067 15783256
    [Google Scholar]
  11. Li X. Yuan L. Zhao L. A comparative study on oxidation of acidic red 18 by persulfate with ferrous and ferric ions. Catalysts 2020 10 6 698 10.3390/catal10060698
    [Google Scholar]
  12. Malesza I.J. Bartkowiak-Wieczorek J. Winkler-Galicki J. The dark side of iron: The relationship between iron, inflammation and gut microbiota in selected diseases associated with iron deficiency anaemia—a narrative review. Nutrients 2022 14 17 3478 10.3390/nu14173478 36079734
    [Google Scholar]
  13. Gandhi A. Bhatt H. Patel M. Retrospective observational study to assess clinical impact of ferric pyrophosphate supplementation in antenatal settings of India (FEMINA study). Int. J. Reprod. Contracept. Obstet. Gynecol. 2024 13 10 2776 2784 10.18203/2320‑1770.ijrcog20242810
    [Google Scholar]
  14. Cancelo-Hidalgo M.J. Castelo-Branco C. Palacios S. Tolerability of different oral iron supplements: A systematic review. Curr. Med. Res. Opin. 2013 29 4 291 303 10.1185/03007995.2012.761599 23252877
    [Google Scholar]
  15. Hurrell R.F. Iron fortification practices and implications for iron addition to salt. J. Nutr. 2021 151 Suppl. 1 3S 14S 10.1093/jn/nxaa175 33582781
    [Google Scholar]
  16. Gupta A. Pratt R. Mishra B. Physicochemical characterization of ferric pyrophosphate citrate. Biometals 2018 31 6 1091 1099 10.1007/s10534‑018‑0151‑1 30324285
    [Google Scholar]
  17. Rohner F. Ernst F.O. Arnold M. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 2007 137 3 614 619 10.1093/jn/137.3.614 17311949
    [Google Scholar]
  18. Fishbane S. Ganz T. Pratt R.D. Ferric pyrophosphate citrate for parenteral administration of maintenance iron: Structure, mechanism of action, clinical efficacy and safety. Curr. Med. Res. Opin. 2022 38 8 1417 1429 10.1080/03007995.2022.2092373 35726771
    [Google Scholar]
  19. Bocchio R.M. Monaco M.L. Natoli G. A randomized controlled pilot study to compare the efficacy of different iron formulations: Sucrosomal ferric pyrophosphate, micronized microencapsulated ferric pyrophosphate, and intravenous ferric gluconate. Clin Transl Nutr Res 2022 20 4 685 690 10.37290/ctnr2641‑452X.20:685‑690
    [Google Scholar]
  20. Corbridge D.E.C. The structural chemistry of phosphates. Bull. Soc. Fr. Mineral. Cristallogr. 1971 94 3 271 299 10.3406/bulmi.1971.6534
    [Google Scholar]
  21. Greenfield T.J. Turnbull M.M. Zubieta J. Doyle R.P. Synthesis and structural and magnetic characterization of an Iron(III) pyrophosphate complex with 1,10′-phenanthroline. Inorg. Chim. Acta 2019 498 119084 10.1016/j.ica.2019.119084
    [Google Scholar]
  22. Rossi L. Velikov K.P. Philipse A.P. Colloidal iron(III) pyrophosphate particles. Food Chem. 2014 151 243 247 10.1016/j.foodchem.2013.11.050 24423528
    [Google Scholar]
  23. Zhang L. Brow R.K. A Raman study of iron–phosphate crystalline compounds and glasses. J. Am. Ceram. Soc. 2011 94 9 3123 3130 10.1111/j.1551‑2916.2011.04486.x
    [Google Scholar]
  24. Moslehi N. Van Eekelen M. Ferrous pyrophosphate and mixed divalent pyrophosphates as delivery systems for essential minerals. ACS Food Sci. Technol. 2024 10.1021/acsfoodscitech.4c00050
    [Google Scholar]
  25. McGee E. The fortification of salt with iodine, iron, and folic acid. University of Toronto 2012
    [Google Scholar]
  26. Scheuchzer P. Syryamina V.N. Zimmermann M.B. Ferric pyrophosphate forms soluble iron coordination complexes with zinc compounds and solubilizing agents in extruded rice and predicts increased iron solubility and bioavailability in young women. J. Nutr. 2023 153 3 636 644 10.1016/j.tjnut.2022.12.003 36931746
    [Google Scholar]
  27. Micheletto M. Gaio E. Tedesco E. Intestinal absorption study of a granular form of ferric pyrophosphate. Metabolites 2022 12 5 463 10.3390/metabo12050463 35629967
    [Google Scholar]
  28. Szudzik M. Mazgaj R. Lipiński P. Innovative oral sucrosomial ferric pyrophosphate-based supplementation rescues suckling piglets from iron deficiency anemia similarly to commonly used parenteral therapy with iron dextran. Ann. Anim. Sci. 2021 21 2 524 541 10.2478/aoas‑2020‑0084
    [Google Scholar]
  29. Anandaraman A. Novel approaches to deliver bioavailable iron: Iron-fatty acid complexes, iron chlorophyllin and low polyphenol finger millet. Doctoral dissertation, ETH Zurich 2022
    [Google Scholar]
  30. Trivedi S. Shah S. Patel R. Review on novel oral iron formulations with enhanced bioavailability for the treatment of iron deficiency. J. Drug Deliv. Sci. Technol. 2023 90 105181 10.1016/j.jddst.2023.105181
    [Google Scholar]
  31. Baumgartner J. Winkler H.C. Zandberg L. Iron from nanostructured ferric phosphate: Absorption and biodistribution in mice and bioavailability in iron deficient anemic women. Sci. Rep. 2022 12 1 2792 10.1038/s41598‑022‑06701‑x 35181698
    [Google Scholar]
  32. Pratt R.D. Swinkels D.W. Ikizler T.A. Gupta A. Pharmacokinetics of ferric pyrophosphate citrate, a novel iron salt, administered intravenously to healthy volunteers. J. Clin. Pharmacol. 2017 57 3 312 320 10.1002/jcph.819 27557937
    [Google Scholar]
  33. Wienk K.J.H. Marx J.J.M. Beynen A.C. The concept of iron bioavailability and its assessment. Eur. J. Nutr. 1999 38 2 51 75 10.1007/s003940050046 10352945
    [Google Scholar]
  34. Hoffman M. Delvalle R. Pratt R.D. Retrospective observational analysis of ferric pyrophosphate citrate (Triferic®) administered via dialysate. Experience at a single facility over 2 years. Arch Clin Nephrol 2021 7 1 44 49 10.17352/acn.000055
    [Google Scholar]
  35. Marbury T. van Heuveln F. van der Horst E. Pratt R.D. Pharmacokinetics and safety of intravenous ferric pyrophosphate citrate: Equivalence to administration via dialysate. J. Clin. Pharmacol. 2022 62 5 681 688 10.1002/jcph.1997 34743348
    [Google Scholar]
  36. Pratt R.D. Grimberg S. Zaritsky J.J. Warady B.A. Pharmacokinetics of ferric pyrophosphate citrate administered via dialysate and intravenously to pediatric patients on chronic hemodialysis. Pediatr. Nephrol. 2018 33 11 2151 2159 10.1007/s00467‑018‑4014‑3 30003313
    [Google Scholar]
  37. Lynch S.R. Stoltzfus R.J. Iron and ascorbic Acid: Proposed fortification levels and recommended iron compounds. J. Nutr. 2003 133 9 2978S 2984S 10.1093/jn/133.9.2978S 12949396
    [Google Scholar]
  38. Glahn R.P. Wortley G.M. South P.K. Miller D.D. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. J. Agric. Food Chem. 2002 50 2 390 395 10.1021/jf011046u 11782213
    [Google Scholar]
  39. Saini S. Soni B. Kaur M. Propellant free pressurized spray system of etodolac to manage acute pain conditions: in vitro and in vivo evaluation. AAPS PharmSciTech 2024 25 5 112 10.1208/s12249‑024‑02807‑9 38744715
    [Google Scholar]
  40. Srinivasu B.Y. Mitra G. Muralidharan M. Beneficiary effect of nanosizing ferric pyrophosphate as food fortificant in iron deficiency anemia: Evaluation of bioavailability, toxicity and plasma biomarker. RSC Advances 2015 5 76 61678 61687 10.1039/C5RA07724A
    [Google Scholar]
  41. Zimmermann M.B. The potential of encapsulated iron compounds in food fortification: A review. Int. J. Vitam. Nutr. Res. 2004 74 6 453 461 10.1024/0300‑9831.74.6.453 15743021
    [Google Scholar]
  42. Chertow G.M. Block G.A. Neylan J.F. Pergola P.E. Uhlig K. Fishbane S. Safety and efficacy of ferric citrate in patients with nondialysis-dependent chronic kidney disease. PLoS One 2017 12 11 0188712 10.1371/journal.pone.0188712 29186198
    [Google Scholar]
  43. Lysionek A.E. Zubillaga M.B. Salgueiro M.J. Stabilized ferrous gluconate as iron source for food fortification: Bioavailability and toxicity studies in rats. Biol. Trace Elem. Res. 2003 94 1 73 78 10.1385/BTER:94:1:73 12907829
    [Google Scholar]
  44. Geisser P. Burckhardt S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics 2011 3 1 12 33 10.3390/pharmaceutics3010012 24310424
    [Google Scholar]
  45. Walker S.E. Paton T.W. Cowan D.H. Manuel M.A. Dranitsaris G. Bioavailability of iron in oral ferrous sulfate preparations in healthy volunteers. CMAJ 1989 141 6 543 547 [PMID: 2776093
    [Google Scholar]
  46. Leary A. Barthe L. Clavel T. Pharmacokinetics of ferrous sulphate (Tardyferon®) after single oral dose administration in women with iron deficiency anaemia. Drug Res. 2015 66 1 51 56 10.1055/s‑0035‑1549934 25989284
    [Google Scholar]
  47. Cao G.Y. Li K.X. Jin P.F. Yue X.Y. Yang C. Hu X. Comparative bioavailability of ferrous succinate tablet formulations without correction for baseline circadian changes in iron concentration in healthy Chinese male subjects: A single-dose, randomized, 2-period crossover study. Clin. Ther. 2011 33 12 2054 2059 10.1016/j.clinthera.2011.10.028 22129567
    [Google Scholar]
  48. Li Y. Ju J. Comparison of the efficacy and adverse effects of oral ferrous succinate tablets and intravenous iron sucrose: A retrospective study. BMC Pharmacol. Toxicol. 2024 25 1 61 10.1186/s40360‑024‑00769‑z 39227996
    [Google Scholar]
  49. Kriplani A. Pal B. Bhat V. Swami O. Ferrous ascorbate: Current clinical place of therapy in the management of iron deficiency anemia. J. South Asian Fed. Obstet. Gynecol. 2021 13 3 103 109 10.5005/jp‑journals‑10006‑1896
    [Google Scholar]
  50. Valenzuela C. Olivares M. Brito A. Hamilton-West C. Pizarro F. Is a 40% absorption of iron from a ferrous ascorbate reference dose appropriate to assess iron absorption independent of iron status? Biol. Trace Elem. Res. 2013 155 3 322 326 10.1007/s12011‑013‑9797‑2 23979964
    [Google Scholar]
  51. Ahmad A.M.R. Ahmed W. Iqbal S. Javed M. Rashid S. Iahtisham-ul-Haq. Prebiotics and iron bioavailability? Unveiling the hidden association - A review. Trends Food Sci. Technol. 2021 110 584 590 10.1016/j.tifs.2021.01.085
    [Google Scholar]
  52. Shubham K. Anukiruthika T. Dutta S. Kashyap A.V. Moses J.A. Anandharamakrishnan C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020 99 58 75 10.1016/j.tifs.2020.02.021
    [Google Scholar]
  53. Piskin E. Cianciosi D. Gulec S. Tomas M. Capanoglu E. Iron absorption: Factors, limitations, and improvement methods. ACS Omega 2022 7 24 20441 20456 10.1021/acsomega.2c01833 35755397
    [Google Scholar]
  54. Hurrell R.F. Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res. 2004 74 6 445 452 10.1024/0300‑9831.74.6.445 15743020
    [Google Scholar]
  55. Wegmüller R. Zimmermann M.B. Moretti D. Hurrell R.F. Arnold M. Langhans W. Particle size reduction and encapsulation affect the bioavailability of ferric pyrophosphate in rats. J. Nutr. 2004 134 12 3301 3304 10.1093/jn/134.12.3301 15570029
    [Google Scholar]
  56. Srivastav A. Kshirsagar S. Adhav T. Ganu G. Shah A. Efficacy and safety of microsomal ferric pyrophosphate supplement for iron deficiency anemia in pregnancy. Cureus 2024 16 3 57108 10.7759/cureus.57108 38681420
    [Google Scholar]
  57. Shukla A. Dasgupta N. Ranjan S. Singh S. Chidambram R. Nanotechnology towards prevention of anaemia and osteoporosis: From concept to market. Biotechnol. Biotechnol. Equip. 2017 31 5 863 879 10.1080/13102818.2017.1335615
    [Google Scholar]
  58. Tian T. Blanco E. Smoukov S.K. Velev O.D. Velikov K.P. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability. Food Chem. 2016 208 97 102 10.1016/j.foodchem.2016.03.078 27132828
    [Google Scholar]
  59. Hackl L. Cercamondi C.I. Zeder C. Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes. Am. J. Clin. Nutr. 2016 103 5 1252 1259 10.3945/ajcn.115.128173 27053382
    [Google Scholar]
  60. Moslehi N. Bijlsma J. de Bruijn W.J.C. Velikov K.P. Vincken J-P. Kegel W.K. Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. J. Funct. Foods 2022 92 92 105066 10.1016/j.jff.2022.105066
    [Google Scholar]
  61. Bothwell T.H. MacPhail A.P. The potential role of NaFeEDTA as an iron fortificant. Int. J. Vitam. Nutr. Res. 2004 74 6 421 434 10.1024/0300‑9831.74.6.421 15743018
    [Google Scholar]
  62. Alsubhe E. Anastasiou A.D. Mehrabi M. Analysis of the osteogenic and mechanical characteristics of iron (Fe2+/Fe3+)-doped β calcium pyrophosphate. Mater. Sci. Eng. C 2020 115 111053 10.1016/j.msec.2020.111053 32600686
    [Google Scholar]
  63. Bryszewska M.A. Comparison study of iron bioaccessibility from dietary supplements and microencapsulated preparations. Nutrients 2019 11 2 273 10.3390/nu11020273 30691123
    [Google Scholar]
  64. Ali A. Zafar H. Zia M. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016 9 49 67 10.2147/NSA.S99986 27578966
    [Google Scholar]
  65. Fidler M.C. Walczyk T. Davidsson L. A micronised, dispersible ferric pyrophosphate with high relative bioavailability in man. Br. J. Nutr. 2004 91 1 107 112 10.1079/BJN20041018 14748943
    [Google Scholar]
  66. Moretti D. Zimmermann M.B. Wegmüller R. Walczyk T. Zeder C. Hurrell R.F. Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. Am. J. Clin. Nutr. 2006 83 3 632 638 10.1093/ajcn.83.3.632 16522911
    [Google Scholar]
  67. Laganà A.S. Costabile L. Filati P. Noventa M. Vitagliano A. D’Anna R. Effects of micronised dispersible ferric pyrophosphate combined with alpha-lactalbumin in pregnant women affected by iron deficiency anemia: Results from a prospective, double-blind, randomized controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2018 22 11 3602 3608 10.26355/eurrev_201806_15187 29917215
    [Google Scholar]
  68. Bertani L. Tricò D. Zanzi F. Oral sucrosomial iron is as effective as intravenous ferric carboxy-maltose in treating anemia in patients with ulcerative colitis. Nutrients 2021 13 2 608 10.3390/nu13020608 33673371
    [Google Scholar]
  69. Gómez-Ramírez S. Brilli E. Tarantino G. Girelli D. Muñoz M. Sucrosomial® iron: An updated review of its clinical efficacy for the treatment of iron deficiency. Pharmaceuticals 2023 16 6 847 10.3390/ph16060847 37375794
    [Google Scholar]
  70. Moretti D. Hurrell R.F. Cercamondi C.I. Bouillon cubes InFood fortification in a globalized world. United States Academic Press 2018 159 165 10.1016/B978‑0‑12‑802861‑2.00016‑X
    [Google Scholar]
  71. Akinbo D. Ferric pyrophosphate fortified extruded rice increased iron status in rats. Doctoral dissertation, Kansas State University 2022
    [Google Scholar]
  72. Cercamondi C.I. Duchateau G.S.M.J.E. Harika R.K. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate. Br. J. Nutr. 2016 116 3 496 503 10.1017/S0007114516002191 27267429
    [Google Scholar]
  73. Diego Quintaes K. Barberá R. Cilla A. Iron bioavailability in iron-fortified cereal foods: The contribution of in vitro studies. Crit. Rev. Food Sci. Nutr. 2017 57 10 2028 2041 10.1080/10408398.2013.866543
    [Google Scholar]
  74. Teichman D.L. Process development for double and multiple fortification of salt with ferric pyrophosphate and iron absorption enhancers. Master's thesis, University of Toronto, Canada 2022
    [Google Scholar]
  75. Sen S. Chakraborty R. Kalita P. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci. Technol. 2020 97 265 285 10.1016/j.tifs.2020.01.022
    [Google Scholar]
  76. Hurrell R. Use of ferrous fumarate to fortify foods for infants and young children. Nutr. Rev. 2010 68 9 522 530 10.1111/j.1753‑4887.2010.00312.x 20796217
    [Google Scholar]
  77. Akhtar S. Anjum F.M. Anjum M.A. Micronutrient fortification of wheat flour: Recent development and strategies. Food Res. Int. 2011 44 3 652 659 10.1016/j.foodres.2010.12.033
    [Google Scholar]
  78. Minj J. Dogra S. Significance of fortification of beneficial natural ingredients in milk and milk products. Dairy processing. J. Adv. Res. 2020 87 118 10.1007/978‑981‑15‑2608‑4_17
    [Google Scholar]
  79. Basrowi R.W. Dilantika C. Optimizing iron adequacy and absorption to prevent iron deficiency anemia: The role of combination of fortified iron and vitamin C. World Nutr J 2021 5 S1 33 39 10.25220/WNJ.V05.S1.0005
    [Google Scholar]
  80. Gomez-Ramírez S. Brilli E. Tarantino G. Muñoz M. Sucrosomial® iron: An innovative technology for oral iron supplementation. Updates in Pharmacology. Akhtar N. Hyderabad, India Vide Leaf 2020
    [Google Scholar]
  81. Andersson M. Thankachan P. Muthayya S. Dual fortification of salt with iodine and iron: A randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India. Am. J. Clin. Nutr. 2008 88 5 1378 1387 10.3945/ajcn.2008.26149 18996875
    [Google Scholar]
  82. Mahler G.J. Esch M.B. Tako E. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 2012 7 4 264 271 10.1038/nnano.2012.3 22327877
    [Google Scholar]
  83. Ciont C. Mesaroș A. Pop O.L. Vodnar D.C. Iron oxide nanoparticles carried by probiotics for iron absorption: A systematic review. J. Nanobiotechnology 2023 21 1 124 10.1186/s12951‑023‑01880‑9 37038224
    [Google Scholar]
  84. Cui X. Bao L. Wang X. Chen C. The nano–intestine interaction: Understanding the location‐oriented effects of engineered nanomaterials in the intestine. Small 2020 16 21 1907665 10.1002/smll.201907665 32347646
    [Google Scholar]
  85. McClements D.J. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 2015 80 7 N1602 N1611 10.1111/1750‑3841.12919 26073042
    [Google Scholar]
  86. Abe C. Miyazawa T. Miyazawa T. Current use of Fenton reaction in drugs and food. Molecules 2022 27 17 5451 10.3390/molecules27175451 36080218
    [Google Scholar]
  87. Iyer S. Chand D. Nanotechnology in iron deficiency anemia: A review. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). Noida, India, 04-05 June 2020 569 572 10.1109/ICRITO48877.2020.9197850
    [Google Scholar]
  88. Jabbar K.Q. Barzinjy A.A. Hamad S.M. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022 17 100661 10.1016/j.enmm.2022.100661
    [Google Scholar]
  89. Hashem F. Nasr M. Ahmed Y. Preparation and evaluation of iron oxide nanoparticles for treatment of iron deficiency anemia. Int. J. Pharm. Pharm. Sci. 2018 10 1 142 146 10.22159/ijpps.2018v10i1.22686
    [Google Scholar]
  90. Szostak-Paluch K. Drabik D. Jędruchniewicz N. Dwornikowska-Dąbrowska M. In vitro studies of a novel liposomal formulation for safe and efficient iron delivery. Eur. J. Lipid Sci. Technol. 2024 126 2 2300217 10.1002/ejlt.202300217
    [Google Scholar]
  91. Xu Z. Liu S. Wang H. Gao G. Encapsulation of iron in liposomes significantly improved the efficiency of iron supplementation in strenuously exercised rats. Biol. Trace Elem. Res. 2014 162 181 188 10.1007/s12011‑014‑0143‑0
    [Google Scholar]
  92. Hermida L.G. Roig A. Bregni C. Sabés-Xamaní M. Barnadas-Rodríguez R. Preparation and characterization of iron-containing liposomes: Their effect on soluble iron uptake by Caco-2 cells. J. Liposome Res. 2011 21 3 203 212 10.3109/08982104.2010.517536 20854064
    [Google Scholar]
  93. Sun J. Shen Q.J. Pan J.N. Zheng X. Yu T. Zhou W.W. Ferrous sulfate combined with ultrasound emulsified cinnamaldehyde nanoemulsion to cause ferroptosis in Escherichia coli O157:H7. Ultrason. Sonochem. 2024 106 106884 10.1016/j.ultsonch.2024.106884 38677267
    [Google Scholar]
  94. Silva H.D. Cerqueira M.Â. Vicente A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012 5 3 854 867 10.1007/s11947‑011‑0683‑7
    [Google Scholar]
  95. Smułek W. Jarzębski M. Hemp seed oil nanoemulsion with Sapindus saponins as a potential carrier for iron supplement and vitamin D. Rev. Adv. Mater. Sci. 2023 62 1 20220317 10.1515/rams‑2022‑0317
    [Google Scholar]
  96. Span K. Verhoef J.J.F. Hunt H. A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. Eur. J. Pharm. Biopharm. 2016 108 226 234 10.1016/j.ejpb.2016.09.002 27600943
    [Google Scholar]
  97. Zariwala M.G. Elsaid N. Jackson T.L. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int. J. Pharm. 2013 456 2 400 407 10.1016/j.ijpharm.2013.08.070 24012860
    [Google Scholar]
  98. Rahul B.S. Lakshmi S. Sneha L.S. Sidharth M.M. Rosemary M.J. Mucoadhesive microspheres of ferrous sulphate - A novel approach for oral iron delivery in treating anemia. Colloids Surf. B Biointerfaces 2020 195 111247 10.1016/j.colsurfb.2020.111247 32711237
    [Google Scholar]
  99. Rout S.R. Pradhan D. Haldar J. Recent advances in the formulation strategy to improve iron bioavailability: A review. J. Drug Deliv. Sci. Technol. 2024 105633 10.1016/j.jddst.2024.105633
    [Google Scholar]
  100. Ilyasoglu Buyukkestelli H. El S.N. Development and characterization of double emulsion to encapsulate iron. J. Food Eng. 2019 263 446 453 10.1016/j.jfoodeng.2019.07.026
    [Google Scholar]
  101. Yang L. Chen H. Zhu S. Pectin-coated iron-based metal–organic framework nanoparticles for enhanced foliar adhesion and targeted delivery of fungicides. ACS Nano 2024 18 8 6533 6549 10.1021/acsnano.3c12352 38355215
    [Google Scholar]
  102. Qu J. Yuan Y. Zhang X. Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution. J. Hazard. Mater. 2022 425 127876 10.1016/j.jhazmat.2021.127876 34844803
    [Google Scholar]
  103. Anastassiadou M. Arena M. Auteri D. Peer review of the pesticide risk assessment of the active substance ferric pyrophosphate. EFSA J. 2020 18 1 05986 10.2903/j.efsa.2020.5986
    [Google Scholar]
  104. Hazra M. A study on the aspects of pharmacoepidemiology and pharmacohaemovigilance of ferrous ascorbate, ferrous fumarate, ferrous sulphate and ferric ammonium citrate, among the rural anaemic women, in the Indian spectrum. Int. J. Basic Clin. Pharmacol. 2019 8 12 2751 2758 10.18203/2319‑2003.ijbcp20195291
    [Google Scholar]
  105. Bloor S.R. Schutte R. Hobson A.R. Oral iron supplementation-gastrointestinal side effects and the impact on the gut microbiota. Microbiol. Res. 2021 12 491 502 10.3390/microbiolres12020033
    [Google Scholar]
  106. Batchelor E.K. Kapitsinou P. Pergola P.E. Kovesdy C.P. Jalal D.I. Iron deficiency in chronic kidney disease: Updates on pathophysiology, diagnosis, and treatment. J. Am. Soc. Nephrol. 2020 31 3 456 468 10.1681/ASN.2019020213 32041774
    [Google Scholar]
  107. Bastida G. Herrera-de Guise C. Algaba A. Sucrosomial iron supplementation for the treatment of iron deficiency anemia in inflammatory bowel disease patient’s refractory to oral iron treatment. Nutrients 2021 13 6 1770 10.3390/nu13061770 34067320
    [Google Scholar]
  108. Soni B. Shivgotra R. Trehan K. An overview of contemporary and future therapeutic strategies for scalp psoriasis. Curr. Drug Targets 2024 25 5 353 373 10.2174/0113894501292755240304063020 38500274
    [Google Scholar]
  109. Kassianides X. The differential effect of intravenous iron in patients with non-dialysis chronic kidney disease in terms of fibroblast growth factor 23, phosphate, bone metabolism, functional status and quality of life and cardiovascular variables “Iron and Phosphaturia in CKD”. Thesis, Doctoral dissertation, University of York 2024
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128392575251013123818
Loading
/content/journals/cpd/10.2174/0113816128392575251013123818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test