Skip to content
2000
image of Combining Serum Pharmacochemistry and Metabolomics to Characterize the Synergistic Compatibility Principle of Polygonati Rhizoma and Angelicae Sinensis Radix for MAFLD Mitigation

Abstract

Introduction

Jiuzhuan Huangjing Pills (JHP) have been shown to exert therapeutic effects on metabolic dysfunction-associated fatty liver disease (MAFLD), with a stronger intervention effect than single herbs. The purpose of this study was to elucidate the chemical constituents and mechanisms of JHP and its raw materials, Polygonati Rhizoma (PR) and Angelicae Sinensis Radix (ASR), in the treatment of MAFLD.

Methods

Serum pharmacochemistry and metabolomics were performed to examine drug-derived and endogenous components in MAFLD rats. In addition, network pharmacology was used to predict the key active components and targets of JHP, PR, and ASR in MAFLD mitigation, followed by molecular docking. ELISA kits were used to detect the levels of LCAT, GPCPD1, NNMT, NMRK1, ADO, and CSAD in liver tissues, while Western blotting was applied to determine the expression of CYP7A1 and CYP27A1.

Results

A total of 22, 8, and 10 compounds from JHP, PR, and ASR, respectively, were identified in serum. Meanwhile, 15, 5, and 7 compounds from JHP, PR, and ASR, respectively, were detected in rat tissues. Moreover, 157, 131, and 114 differential metabolites involved in 27, 6, and 9 pathways were found to be altered by JHP, PR, and ASR, respectively. JHP, PR, and ASR regulated LCAT and GPCPD1 in glycerophospholipid metabolism. JHP and ASR regulated NNMT and NMRK1 in nicotinic and nicotinamide metabolism. JHP further regulated ADO and CSAD in taurine and hypotaurine metabolism, as well as CYP7A1 and CYP27A1 in primary bile acid biosynthesis. Ten components of JHP acted on 12 targets to regulate 12 pathways in MAFLD treatment. Three components of PR acted on seven targets to regulate four pathways, while five components of ASR acted on five targets to regulate three pathways. The binding energies between these drug-derived compounds and their targets were all less than −5 kcal·mol−1.

Discussion

These findings provide a theoretical foundation for the clinical application of JHP in MAFLD and underscore the value of traditional Chinese medicine formulas in addressing complex metabolic diseases through synergistic regulation. However, the intervention effects of JHP-derived components on MAFLD and their potential mechanisms of action on specific targets and metabolites require further investigation.

Conclusion

Our study found that JHP was associated with more components, targets, and pathways, which may be the mechanisms of JHP synergism.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128383909251126074658
2026-01-14
2026-02-22
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128383909251126074658/BMS-CPD-2025-34.html?itemId=/content/journals/cpd/10.2174/0113816128383909251126074658&mimeType=html&fmt=ahah

References

  1. Mantovani A. Scorletti E. Mosca A. Alisi A. Byrne C.D. Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020 111 154170 (Suppl.) 10.1016/j.metabol.2020.15417032006558
    [Google Scholar]
  2. Eslam M. Newsome P.N. Sarin S.K. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020 73 1 202 209 10.1016/j.jhep.2020.03.03932278004
    [Google Scholar]
  3. Sagnelli E. Macera M. Russo A. Coppola N. Sagnelli C. Epidemiological and etiological variations in hepatocellular carcinoma. Infection 2020 48 1 7 17 10.1007/s15010‑019‑01345‑y31347138
    [Google Scholar]
  4. Vitellius C. Desjonqueres E. Lequoy M. MASLD-related HCC: Multicenter study comparing patients with and without cirrhosis. JHEP Rep. Innov. Hepatol. 2024 6 10 101160 10.1016/j.jhepr.2024.10116039411648
    [Google Scholar]
  5. Feng G. Targher G. Byrne C.D. Global burden of metabolic dysfunction-associated steatotic liver disease, 2010 to 2021. JHEP Rep. Innov. Hepatol. 2025 7 3 101271 10.1016/j.jhepr.2024.10127139980749
    [Google Scholar]
  6. Rinaldi R. De Nucci S. Donghia R. Gender differences in liver steatosis and fibrosis in overweight and obese patients with metabolic dysfunction-associated steatotic liver disease before and after 8 weeks of very low-calorie ketogenic diet. Nutrients 2024 16 10 1408 10.3390/nu1610140838794646
    [Google Scholar]
  7. Vimalesvaran S Vajro P Dhawan A. Pediatric metabolic (dys function)-associated fatty liver disease: Current insights and future perspectives. Hepatol Int 2024 18 S2 873 83 (Suppl. 2) 10.1007/s12072‑024‑10691‑538879851
    [Google Scholar]
  8. Rong L. Zou J. Ran W. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front. Endocrinol. 2023 13 1087260 10.3389/fendo.2022.108726036726464
    [Google Scholar]
  9. Hong B. Wang Y. Hou Y. Liu R. Li W. Study on the mechanism of anti-hepatic fibrosis of Glycyrrhiza Uralensis-Salvia miltiorrhiza prescription based on serum and urine metabolomics and network pharmacology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1209 123416 10.1016/j.jchromb.2022.12341636027704
    [Google Scholar]
  10. Tan Y. Huang Z. Liu Y. Integrated serum pharmacochemistry, 16S rRNA sequencing and metabolomics to reveal the material basis and mechanism of Yinzhihuang granule against non-alcoholic fatty liver disease. J. Ethnopharmacol. 2023 310 116418 10.1016/j.jep.2023.11641836990301
    [Google Scholar]
  11. Zhao Y. Zhao M. Zhang Y. Bile acids metabolism involved in the beneficial effects of Danggui Shaoyao San via gut microbiota in the treatment of CCl4 induced hepatic fibrosis. J. Ethnopharmacol. 2024 319 Pt 3 117383 10.1016/j.jep.2023.11738337925004
    [Google Scholar]
  12. Yang J.Y. Gao M. Zuo A.R. Effect of β-catenin RNAi interference on signal mechanism of Huangjingwan in treating learning and memory impairment mice. Zhongguo Shiyan Fangjixue Zazhi 2021 27 01 53 62
    [Google Scholar]
  13. Shen P. Yu W. Deng B. Jiuzhuan Huangjing Pills alleviate fatigue by preventing energy metabolism dysfunctions in mitochondria. J. Funct. Foods 2024 119 106262 10.1016/j.jff.2024.106262
    [Google Scholar]
  14. Liu B. Tang Y. Song Z. Ge J. Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD induced mouse obesity via regulation of lipid metabolism and inflammatory response. Mol. Med. Rep. 2021 24 1 501 10.3892/mmr.2021.1214033982779
    [Google Scholar]
  15. Luo L. Zhang H. Chen W. Angelica sinensis polysaccharide ameliorates nonalcoholic fatty liver disease via restoring estrogen‐related receptor α expression in liver. Phytother. Res. 2023 37 11 5407 5417 10.1002/ptr.798237563852
    [Google Scholar]
  16. Yao W. Zhang L. Hua Y. The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int. Immunopharmacol. 2015 29 2 269 277 10.1016/j.intimp.2015.11.00626578286
    [Google Scholar]
  17. Mu J.K. Zi L. Li Y.Q. Jiuzhuan Huangjing Pills relieve mitochondrial dysfunction and attenuate high-fat diet-induced metabolic dysfunction-associated fatty liver disease. Biomed. Pharmacother. 2021 142 112092 10.1016/j.biopha.2021.11209234449316
    [Google Scholar]
  18. Wang T. Li Y.Q. Yu L.P. Compatibility of Polygonati Rhizoma and Angelicae sinensis Radix enhance the alleviation of metabolic dysfunction-associated fatty liver disease by promoting fatty acid β-oxidation. Biomed. Pharmacother. 2023 162 114584 10.1016/j.biopha.2023.11458436989710
    [Google Scholar]
  19. Jin R. Banton S. Tran V.T. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study. J. Pediatr. 2016 172 14 19.e5 10.1016/j.jpeds.2016.01.02626858195
    [Google Scholar]
  20. Abozaid Y.J. Ayada I. van Kleef L.A. Plasma circulating metabolites associated with steatotic liver disease and liver enzymes: A multiplatform population-based study. Gastro Hep Adv. 2025 4 2 100551 10.1016/j.gastha.2024.09.00639877862
    [Google Scholar]
  21. Maltais-Payette I. Bourgault J. Gauthier M.F. Associations between circulating amino acids and metabolic dysfunction‐associated steatotic liver disease in individuals living with severe obesity. Physiol. Rep. 2025 13 3 70171 10.14814/phy2.7017139868884
    [Google Scholar]
  22. Masoodi M. Gastaldelli A. Hyötyläinen T. Metabolomics and lipidomics in NAFLD: Biomarkers and non-invasive diagnostic tests. Nat. Rev. Gastroenterol. Hepatol. 2021 18 12 835 856 10.1038/s41575‑021‑00502‑934508238
    [Google Scholar]
  23. Gaggini M. Carli F. Rosso C. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018 67 1 145 158 10.1002/hep.2946528802074
    [Google Scholar]
  24. van der Veen JN Kennelly JP Wan S Vance JE Vance DE Jacobs RL The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Bio phys Acta Biomembr 2017 1859 9 1558 72 (9 Pt B) 10.1016/j.bbamem.2017.04.00628411170
    [Google Scholar]
  25. Forouzesh P. Kheirouri S. Alizadeh M. Predicting hepatic steatosis degree in metabolic dysfunction-associated steatotic liver disease using obesity and lipid-related indices. Sci. Rep. 2025 15 1 8612 10.1038/s41598‑024‑73132‑140074727
    [Google Scholar]
  26. Anwar S.D. Foster C. Ashraf A. Lipid disorders and metabolic-associated fatty liver disease. Endocrinol. Metab. Clin. North Am. 2023 52 3 445 457 10.1016/j.ecl.2023.01.00337495336
    [Google Scholar]
  27. Lane A.N. Fan T.W.M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015 43 4 2466 2485 10.1093/nar/gkv04725628363
    [Google Scholar]
  28. Donne R. Saroul-Ainama M. Cordier P. Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Dev. Cell 2022 57 14 1728 1741.e6 10.1016/j.devcel.2022.06.00335768000
    [Google Scholar]
  29. Zhang J. Chen F. Integrated transcriptome and metabolome study reveal the therapeutic effects of nicotinamide riboside and nicotinamide mononucleotide on nonalcoholic fatty liver disease. Biomed. Pharmacother. 2024 175 116701 10.1016/j.biopha.2024.11670138729053
    [Google Scholar]
  30. Yokouchi C. Nishimura Y. Goto H. Reduction of fatty liver in rats by nicotinamide via the regeneration of the methionine cycle and the inhibition of aldehyde oxidase. J. Toxicol. Sci. 2021 46 1 31 42 10.2131/jts.46.3133408299
    [Google Scholar]
  31. Nassir F. Ibdah J.A. Sirtuins and nonalcoholic fatty liver disease. World J. Gastroenterol. 2016 22 46 10084 10092 10.3748/wjg.v22.i46.1008428028356
    [Google Scholar]
  32. Zhang C. Bjornson E. Arif M. The acute effect of metabolic cofactor supplementation: A potential therapeutic strategy against non‐alcoholic fatty liver disease. Mol. Syst. Biol. 2020 16 4 9495 10.15252/msb.20949532337855
    [Google Scholar]
  33. Vvedenskaya O. Rose T.D. Knittelfelder O. Nonalcoholic fatty liver disease stratification by liver lipidomics. J. Lipid Res. 2021 62 100104 10.1016/j.jlr.2021.10010434384788
    [Google Scholar]
  34. Feng S. Guo L. Wang H. Yang S. Liu H. Bacterial PncA improves diet-induced NAFLD in mice by enabling the transition from nicotinamide to nicotinic acid. Commun. Biol. 2023 6 1 235 10.1038/s42003‑023‑04613‑836864222
    [Google Scholar]
  35. Luo X. Zhang B. Pan Y. Gu J. Tan R. Gong P. Phyllanthus emblica aqueous extract retards hepatic steatosis and fibrosis in NAFLD mice in association with the reshaping of intestinal microecology. Front. Pharmacol. 2022 13 893561 10.3389/fphar.2022.89356135959433
    [Google Scholar]
  36. Jiao N. Baker S.S. Chapa-Rodriguez A. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018 67 10 1881 1891 10.1136/gutjnl‑2017‑31430728774887
    [Google Scholar]
  37. Zhou J. Han J. Association of niacin intake and metabolic dysfunction-associated steatotic liver disease: Findings from National Health and Nutrition Examination Survey. BMC Public Health 2024 24 1 2742 10.1186/s12889‑024‑20161‑039379884
    [Google Scholar]
  38. Zhu F.L. Huang T. Lv Z.L. Taurine regulates the expression of interleukin-17/10 and intestinal flora and protects the liver and intestinal mucosa in a nonalcoholic fatty liver disease rat model. Diabetes Metab. Syndr. Obes. 2024 17 675 689 10.2147/DMSO.S44097838352234
    [Google Scholar]
  39. Yao Z. Liang G. Lv Z.L. Taurine reduces liver damage in non-alcoholic fatty liver disease model in rats by down-regulating IL-9 and tumor growth factor TGF-β. Bull. Exp. Biol. Med. 2021 171 5 638 643 10.1007/s10517‑021‑05285‑234617180
    [Google Scholar]
  40. Li Z. Vance D.E. Thematic review series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008 49 6 1187 1194 10.1194/jlr.R700019‑JLR20018204095
    [Google Scholar]
  41. Jacobs R.L. Devlin C. Tabas I. Vance D.E. Targeted deletion of hepatic CTP:Phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J. Biol. Chem. 2004 279 45 47402 47410 10.1074/jbc.M40402720015331603
    [Google Scholar]
  42. Song L. Huang Y. Liu L. Meteorin-like alleviates hepatic steatosis by regulating hepatic triglyceride secretion and fatty acid oxidation. Cell Rep. 2025 44 2 115246 10.1016/j.celrep.2025.11524639918960
    [Google Scholar]
  43. Simon J. Nuñez-García M. Fernández-Tussy P. Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly. Cell Metab. 2020 31 3 605 622.e10 10.1016/j.cmet.2020.01.01332084378
    [Google Scholar]
  44. Herrera-Marcos L.V. Arbones-Mainar J.M. Osada J. Lipoprotein lipidomics as a frontier in non-alcoholic fatty liver disease biomarker discovery. Int. J. Mol. Sci. 2024 25 15 8285 10.3390/ijms2515828539125855
    [Google Scholar]
  45. Mocciaro G. D’Amore S. Jenkins B. Lipidomic approaches to study HDL metabolism in patients with central obesity diagnosed with metabolic syndrome. Int. J. Mol. Sci. 2022 23 12 6786 10.3390/ijms2312678635743227
    [Google Scholar]
  46. Drew J.E. Farquharson A.J. Horgan G.W. Williams L.M. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding. J. Nutr. Biochem. 2016 37 20 29 10.1016/j.jnutbio.2016.07.01327592202
    [Google Scholar]
  47. Babula J.J. Bui D. Stevenson H.L. Watowich S.J. Neelakantan H. Nicotinamide N‐methyltransferase inhibition mitigates obesity‐related metabolic dysfunction. Diabetes Obes. Metab. 2024 26 11 5272 5282 10.1111/dom.1587939161060
    [Google Scholar]
  48. Wei X. Jia R. Wang G. Depot-specific regulation of NAD+/SIRTs metabolism identified in adipose tissue of mice in response to high-fat diet feeding or calorie restriction. J. Nutr. Biochem. 2020 80 108377 10.1016/j.jnutbio.2020.10837732278117
    [Google Scholar]
  49. Baliou S. Kyriakopoulos A. Spandidos D. Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int. J. Oncol. 2020 57 3 631 664 10.3892/ijo.2020.510032705269
    [Google Scholar]
  50. Cao T. Zhang W. Wang Q. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell 2024 187 9 2288 2304.e27 10.1016/j.cell.2024.03.01138565142
    [Google Scholar]
  51. Tan R. Li J. Liu L. CSAD ameliorates lipid accumulation in high-fat diet-fed mice. Int. J. Mol. Sci. 2022 23 24 15931 10.3390/ijms23241593136555571
    [Google Scholar]
  52. Ma H. Zheng F. Su L. Metabolomic profiling of brain protective effect of edaravone on cerebral ischemia-reperfusion injury in mice. Front. Pharmacol. 2022 13 814942 10.3389/fphar.2022.81494235237165
    [Google Scholar]
  53. Russell DW Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 2009 50 Suppl Suppl S120 S5 10.1194/jlr.R800026‑JLR20018815433
    [Google Scholar]
  54. Jones R.S. Meyers W.C. Regulation of hepatic biliary secretion. Annu. Rev. Physiol. 1979 41 1 67 82 10.1146/annurev.ph.41.030179.000435373604
    [Google Scholar]
  55. Stepanov V. Stankov K. Mikov M. The bile acid membrane receptor TGR5: A novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J. Recept. Signal Transduct. Res. 2013 33 4 213 223 10.3109/10799893.2013.80280523782454
    [Google Scholar]
  56. Pols T.W.H. Noriega L.G. Nomura M. Auwerx J. Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011 54 6 1263 1272 10.1016/j.jhep.2010.12.00421145931
    [Google Scholar]
  57. Liu M.L. Zhang A. Feng W. Comparation and analysis of three kinds of components in angelicae sinensis radix pieces and Danggui Jianzhong decoction by UHPLC-Q-TOF-MS. Chin pharm 2022 57 8 613 622 10.11669/cpj.2022.08.005
    [Google Scholar]
  58. Lu X. Zheng Y. Wen F. Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF-MS/MS and network pharmacology. Sci. Rep. 2021 11 1 1905 10.1038/s41598‑021‑81485‑033479376
    [Google Scholar]
  59. Wang Y.L. Liang Y.Z. Chen L. Analysis of bioactine components in Danggui (Radix Angelica Sinensis) by serum pharmacochemistry. Res Pract Chin Med 2004 18 S1 75 79 10.13728/j.1673‑427.2004.s1.02
    [Google Scholar]
  60. Wang L. Huang S. Chen B. Characterization of the anticoagulative constituents of angelicae sinensis radix and their metabolites in rats by HPLC-DAD-ESI-IT-TOF-MSn. Planta Med. 2016 82 4 362 370 10.1055/s‑0035‑155830926829520
    [Google Scholar]
  61. Chen X.F. Zhang X.L. Zhang Y.X. Study on the chemical constituents differences of polygonati rhizoma before and after simmering by UPLC-Q-exactive Orbitrap-MS. Zhong Yao Cai 2022 45 7 1595 1600 10.13863/j.issn1001‑4454.2022.07.012
    [Google Scholar]
  62. Li J. Wang Y.Q. Mei X.D. Characterization of chemical constituents in aqueous extracts and fermentation broth from Polygonati Rhizoma by UHPLC-LTQ-Orbitrap MS combined with solid phase extraction. Chin. Tradit. Herbal Drugs 2019 50 13 3029 3036 10.7501/j.issn.0253‑2670.2019.13.006
    [Google Scholar]
  63. Peng F. Gong X. Xiong L. Chen J. Li Y. The application of HPLC‐MS/MS to studies of pharmacokinetics and interconversion of isoliquiritigenin and neoisoliquiritigenin in rats. Biomed. Chromatogr. 2016 30 7 1155 1161 10.1002/bmc.365526577957
    [Google Scholar]
  64. Wang L. Fan S.S. Xu F. Liu G.X. Shang M.Y. Cai S.Q. Analysis of polarity components of Angelicae Sinensis Radix and its metabolites in rats by HPLC-MS~n. Zhongguo Zhongyao Zazhi 2019 44 22 4924 4931 10.9540/j.cnki.cjcmm.20190522.50331872602
    [Google Scholar]
  65. Bai C. Zhou X. Yu L. A rapid and sensitive UHPLC-MS/MS method for determination of chlorogenic acid and its application to distribution and neuroprotection in rat brain. Pharmaceuticals 2023 16 2 178 10.3390/ph1602017837259330
    [Google Scholar]
  66. Ren H.M. Zhang J.L. Deng Y.L. Analysis of chemical constitutions of polygonatum cyrtonema dried rhizomes before and after processing with wine based on UPLC-Q-TOF-MS. Zhongguo Shiyan Fangjixue Zazhi 2021 27 4 110 121 10.13422/j.cnki.syfjx.20202147
    [Google Scholar]
  67. Guan J. Wang L. Jin J. Simultaneous determination of calycosin-7-O-β-D-glucoside, cinnamic acid, paeoniflorin and albiflorin in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study of Huangqi Guizhi Wuwu Decoction. J. Pharm. Biomed. Anal. 2019 170 1 7 10.1016/j.jpba.2019.03.02230897430
    [Google Scholar]
  68. Jacobsen S.S. Knob F.C. Simon A.P. Oldoni T.L.C. Selective extraction process and characterization of antioxidant phenolic compounds from Pereskia aculeata leaves using UPLC-ESI-Q-TOF-MS/MS. ACS Omega 2024 9 35 37374 37385 10.1021/acsomega.4c0565239246475
    [Google Scholar]
  69. Tao Y. Chen X. Li W.D. Comparative analysis of 9 constituents in processed products of radix angelicae sinensis. Zhongyao Xinyao Yu Linchuang Yaoli 2017 28 1 88 92 10.19378/j.issn.1003‑9783.2017.01.019
    [Google Scholar]
  70. Gao P. Chang K. Wang S. Characterizing the phenolic compounds in iron walnut oil (Juglans sigillata dode) across Chinese regions. Foods 2025 14 5 899 10.3390/foods1405089940077602
    [Google Scholar]
  71. Liu L. Duan J.A. Tang Y.P. Study on chemical component and synergetic effect of concerted application of Chinese angelica and safflower by using UHPLC-Q-TOF-MS. Zhonghua Zhongyiyao Zazhi 2017 32 3 996 1000
    [Google Scholar]
  72. Chen L. Qi J. Chang Y. Zhu D. Yu B. Identification and determination of the major constituents in traditional Chinese medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. J. Pharm. Biomed. Anal. 2009 50 2 127 137 10.1016/j.jpba.2009.03.03919411155
    [Google Scholar]
  73. Xiong Q. Li H. Yan Y. A systematic UHPLC-Q-TOF-MS/MS-based strategy for analysis of chemical constituents and related in vivo metabolites of Buyang Huanwu decoction. J. Ethnopharmacol. 2025 337 Pt 3 118987 10.1016/j.jep.2024.11898739447712
    [Google Scholar]
  74. Kang K.B. Ryu J. Cho Y. Choi S.Z. Son M. Sung S.H. Combined application of UHPLC-QTOF/MS, HPLC-ELSD and H-NMR spectroscopy for quality assessment of DA-9801, a standardised dioscorea extract. Phytochem. Anal. 2017 28 3 185 194 10.1002/pca.265927910174
    [Google Scholar]
  75. Abdel Ghani A.E. Al-Saleem M.S.M. Abdel-Mageed W.M. AbouZeid E.M. Mahmoud M.Y. Abdallah R.H. UPLC-ESI-MS/MS profiling and cytotoxic, antioxidant, anti-inflammatory, antidiabetic, and antiobesity activities of the non-polar fractions of Salvia hispanica L. aerial parts. Plants 2023 12 5 1062 10.3390/plants1205106236903922
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128383909251126074658
Loading
/content/journals/cpd/10.2174/0113816128383909251126074658
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test