Skip to content
2000
Volume 31, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aim

This study is formulated to reveal the variables affecting the radio-sensitivity in lung adenocarcinoma (LUAD).

Background

LUAD patients show varied radiotherapy responses. While epidermal growth factor receptor (EGFR) mutations are often used to predict sensitivity, their reliability is debated, underscoring the need for better biomarkers.

Objective

The aim of this study was to identify key functional proteins that regulate the sensitivity of LUAD to radiotherapy and to assess the potential value of exosomal LAMC1 as a clinical predictive marker.

Methods

In this study, 103 LUAD patients receiving concurrent radiotherapy were included to assess the relationship between EGFR mutation and survival. Intrinsic radio-sensitivity and different radio-sensitivities in 14 LUAD cell lines with/out EGFR mutation were examined based on the surviving fraction at 2 Gy (SF). Data-independent acquisition (DIA) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics were used to investigate the proteomics of the LUAD cell lines. Subsequently, GO/KEGG enrichment analysis was combined with protein-protein interaction (PPI) network screening for key proteins. Nano-flow cytometry was employed to validate changes in radiosensitivity-associated protein expression within exosomes, while siRNA-mediated knockdown was performed to assess the functional impact of specific proteins on LUAD cells.

Results

EGFR mutations were not significantly associated with progression-free survival (PFS)/overall survival (OS). 14 LUAD cell lines displayed intrinsic variations in SF, and no difference between the EGFR mutation and wild-type groups was reported. 5425 proteins were identified DIA in 14 LUAD cell lines. After bio-informatics analysis, LAMC1, ITGB4, ITGA6, and CD44 were the most representative core differential proteins for the radio-sensitivity in LUAD cells. Notably, LAMC1 was confirmed as a radiation-resistant protein. Following radiotherapy, LUAD cells secreted exosomes with reduced LAMC1 levels. Moreover, LAMC1 knockdown significantly affected cellular proliferation and apoptosis following the irradiation.

Conclusion

LAMC1 serves as a critical functional determinant of radiotherapy resistance in LUAD. Its dynamic changes in exosomes demonstrate potential for predicting radiotherapy response, suggesting clinical utility for radiosensitivity assessment and personalized radiotherapy guidance.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128392494250430173324
2025-05-05
2025-09-10
Loading full text...

Full text loading...

References

  1. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  2. UllahA. RazzaqA. AlfaifiM.Y. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis.Curr. Mol. Pharmacol.202417e1876142926938310.2174/0118761429269383231119062233 38389415
    [Google Scholar]
  3. GadgeelS.M. RamalingamS.S. KalemkerianG.P. Treatment of lung cancer.Radiol. Clin. North Am.201250596197410.1016/j.rcl.2012.06.003 22974781
    [Google Scholar]
  4. VinodSK HauE Radiotherapy treatment for lung cancer: Current status and future directions.Respirology202025S26171(Suppl. 2)10.1111/resp.1387032516852
    [Google Scholar]
  5. CaoH. XueY. WangF. LiG. ZhenY. GuoJ. Identification of prognostic molecular subtypes and model based on CD8+ T cells for lung adenocarcinoma.Biocell202448347349010.32604/biocell.2024.048946
    [Google Scholar]
  6. ScottJ.G. BerglundA. SchellM.J. A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study.Lancet Oncol.201718220221110.1016/S1470‑2045(16)30648‑9 27993569
    [Google Scholar]
  7. HutchinsonB.D. ShroffG.S. TruongM.T. KoJ.P. Spectrum of lung adenocarcinoma.Semin. Ultrasound CT MR201940325526410.1053/j.sult.2018.11.009 31200873
    [Google Scholar]
  8. KleczkoE.K. LeA.T. HinzT.K. Novel EGFR-mutant mouse models of lung adenocarcinoma reveal adaptive immunity requirement for durable osimertinib response.Cancer Lett.202355621606210.1016/j.canlet.2023.216062 36657561
    [Google Scholar]
  9. MaE.S.K. NgW.K. WongC.L.P. EGFR gene mutation study in cytology specimens.Acta Cytol.201256666166810.1159/000343606 23207445
    [Google Scholar]
  10. WangS. ShiJ. YeZ. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.Eur. Respir. J.2019533180098610.1183/13993003.00986‑2018 30635290
    [Google Scholar]
  11. WuY.L. JohnT. GroheC. MajemM. GoldmanJ.W. KimS.W. Postoperative chemotherapy use and outcomes from ADAURA: Osimertinib as adjuvant therapy for resected EGFR-mutated NSCLC.J. Thorac. Oncol.202217342343310.1016/j.jtho.2021.10.014 34740861
    [Google Scholar]
  12. LiuX. JiangT. LiX. Exosomes transmit T790M mutation‐induced resistance in EGFR‐mutant NSCLC by activating PI3K/] AKT signalling pathway.J. Cell. Mol. Med.20202421529154010.1111/jcmm.14838 31894895
    [Google Scholar]
  13. DingH. ChenY. ZhaoY. The clinical significance and function of EGFR mutation in TKI treatments of NSCLC patients.Cancer Biomark.202235111912510.3233/CBM‑210281 35912729
    [Google Scholar]
  14. ChoiE.J. RyuY.K. KimS.Y. Targeting epidermal growth factor receptor-associated signaling pathways in non-small cell lung cancer cells: Implication in radiation response.Mol. Cancer Res.2010871027103610.1158/1541‑7786.MCR‑09‑0507 20587532
    [Google Scholar]
  15. YangT.J. WuA.J. Cranial irradiation in patients with EGFR-mutant non-small cell lung cancer brain metastases.Transl. Lung Cancer Res.201651134137 26958508
    [Google Scholar]
  16. TanakaH. KaritaM. UedaK. Differences in radiosensitivity according to EGFR mutation status in non-small cell lung cancer: A clinical and in vitro study.J. Pers. Med.20231412510.3390/jpm14010025 38248726
    [Google Scholar]
  17. QinQ. PengB. LiB. The impact of epidermal growth factor receptor mutations on the efficacy of definitive chemoradiotherapy in patients with locally advanced unresectable stage III non-small cell lung cancer: A systematic review and meta-analysis.Expert Rev. Anticancer Ther.201919653353910.1080/14737140.2019.1621754 31104529
    [Google Scholar]
  18. ZhongX. LuoG. ZhouX. Rad51 in regulating the radiosensitivity of non‐small cell lung cancer with different epidermal growth factor receptor mutation status.Thorac. Cancer201671506010.1111/1759‑7714.12274 26816539
    [Google Scholar]
  19. XieB. SunL. ChengY. ZhouJ. ZhengJ. ZhangW. Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro.Cancer Manag. Res.2018103551356010.2147/CMAR.S165831 30271203
    [Google Scholar]
  20. ShukenS.R. An introduction to mass spectrometry-based proteomics.J. Proteome Res.20232272151217110.1021/acs.jproteome.2c00838 37260118
    [Google Scholar]
  21. ZhangF. GeW. RuanG. CaiX. GuoT. Data‐independent acquisition mass spectrometry‐based proteomics and software tools: A glimpse in 2020.Proteomics20202017-18190027610.1002/pmic.201900276 32275110
    [Google Scholar]
  22. ZhuX. WangY. JiangC. Radiosensitivity-specific proteomic and signaling pathway network of non-small cell lung cancer (NSCLC).Int. J. Radiat. Oncol. Biol. Phys.2022112252954110.1016/j.ijrobp.2021.08.041 34506873
    [Google Scholar]
  23. MorakM.J. van KoetsveldP.M. KanaarR. HoflandL.J. van EijckC.H. Type I interferons as radiosensitisers for pancreatic cancer.Eur. J. Cancer201147131938194510.1016/j.ejca.2011.03.009 21478011
    [Google Scholar]
  24. HallD.E. RoyR. An evaluation of direct PCR amplification.Croat. Med. J.201455665566110.3325/cmj.2014.55.655 25559837
    [Google Scholar]
  25. CangS. LiuR. JinW. Integrated DIA proteomics and lipidomics analysis on non-small cell lung cancer patients with TCM syndromes.Chin. Med.202116112610.1186/s13020‑021‑00535‑x 34838074
    [Google Scholar]
  26. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118 22455463
    [Google Scholar]
  27. RitchieM.E. PhipsonB. WuD. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  28. WangS. XieC. HuH. iTRAQ-based proteomic analysis unveils NCAM1 as a novel regulator in doxorubicin-induced cardiotoxicity and DT-010-exerted cardioprotection.Curr. Pharm. Anal.202520996697710.2174/0115734129331758241022113026
    [Google Scholar]
  29. LuoW. BrouwerC. Pathview: An R/Bioconductor package for pathway-based data integration and visualization.Bioinformatics201329141830183110.1093/bioinformatics/btt285 23740750
    [Google Scholar]
  30. XiaS. TaoH. SuS. DNA methylation variation is identified in monozygotic twins discordant for congenital heart diseases.Congenit. Heart Dis.202419224725610.32604/chd.2024.052583
    [Google Scholar]
  31. ZhaoY. HuangT. HuangP. Integrated analysis of tumor mutation burden and immune infiltrates in hepatocellular carcinoma.Diagnostics2022128191810.3390/diagnostics12081918 36010268
    [Google Scholar]
  32. YanS. HanZ. WangT. Exploring the immune-related molecular mechanisms underlying the comorbidity of temporal lobe epilepsy and major depressive disorder through integrated data set analysis.Curr. Mol. Pharmacol.20251710.2174/0118761429380394250217093030 39976098
    [Google Scholar]
  33. SuL. XuJ. LuC. Nano-flow cytometry unveils mitochondrial permeability transition process and multi-pathway cell death induction for cancer therapy.Cell Death Discov.202410117610.1038/s41420‑024‑01947‑y 38622121
    [Google Scholar]
  34. LvW. ZhaoC. TanY. Identification of an aging-related gene signature in predicting prognosis and indicating tumor immune microenvironment in breast cancer.Front. Oncol.20211179655510.3389/fonc.2021.796555 34976839
    [Google Scholar]
  35. SunY. ShenW. HuS. LyuQ. WangQ. WeiT. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy.J. Exp. Clin. Cancer Res.20234216510.1186/s13046‑023‑02638‑9 36932427
    [Google Scholar]
  36. LeX. NilssonM. GoldmanJ. ReckM. NakagawaK. KatoT. Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-mutant NSCLC.J. Thorac. Oncol.202116220521510.1016/j.jtho.2020.10.006
    [Google Scholar]
  37. Giaj-LevraN. BorghettiP. BruniA. Current radiotherapy techniques in NSCLC: Challenges and potential solutions.Expert Rev. Anticancer Ther.202020538740210.1080/14737140.2020.1760094 32321330
    [Google Scholar]
  38. DasA.K. SatoM. StoryM.D. Non-small-cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation.Cancer Res.200666199601960810.1158/0008‑5472.CAN‑06‑2627 17018617
    [Google Scholar]
  39. da Cunha SantosG. ShepherdF.A. TsaoM.S. EGFR mutations and lung cancer.Annu. Rev. Pathol.201161496910.1146/annurev‑pathol‑011110‑130206 20887192
    [Google Scholar]
  40. SoriaJ.C. OheY. VansteenkisteJ. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer.N. Engl. J. Med.2018378211312510.1056/NEJMoa1713137 29151359
    [Google Scholar]
  41. BalanisN. CarlinC.R. Mutual cross-talk between fibronectin integrins and the EGF receptor.Cell. Logist.201221465110.4161/cl.20112 22645710
    [Google Scholar]
  42. AlexiX. BerditchevskiF. OdintsovaE. The effect of cell–ECM adhesion on signalling via the ErbB family of growth factor receptors.Biochem. Soc. Trans.201139256857310.1042/BST0390568 21428941
    [Google Scholar]
  43. BhatK.P.L. BalasubramaniyanV. VaillantB. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.Cancer Cell201324333134610.1016/j.ccr.2013.08.001 23993863
    [Google Scholar]
  44. YouG.R. ChangJ.T. LiY.L. Molecular interplays between cell invasion and radioresistance that lead to poor prognosis in head-neck cancer.Front. Oncol.20211168171710.3389/fonc.2021.681717 34307149
    [Google Scholar]
  45. YangL. ZhangX. HouQ. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns.BMC Genomics201920161110.1186/s12864‑019‑5970‑0 31345182
    [Google Scholar]
  46. BaiJ. ZhaoY. ShiK. HIF-1α-mediated LAMC1 overexpression is an unfavorable predictor of prognosis for glioma patients: Evidence from pan-cancer analysis and validation experiments.J. Transl. Med.202422139110.1186/s12967‑024‑05218‑3 38678297
    [Google Scholar]
  47. KunitomiH. KobayashiY. WuR.C. LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer.J. Gynecol. Oncol.2020312e1110.3802/jgo.2020.31.e11 31912669
    [Google Scholar]
  48. XiD. JiaQ. LiuX. LAMC1 is a novel prognostic factor and a potential therapeutic target in gastric cancer.Int. J. Gen. Med.2022153183319810.2147/IJGM.S353289 35342300
    [Google Scholar]
  49. DingF. LiuX. ChenQ. DaiL. WangQ. ShiL. Effect of Banxia Xiexin Decoction containing serum on adhesion and invasion of gastric cancer cells and peritoneal mesothelial cells induced by exosomes derived from gastric cancer cells and the expressions of FN1 and LAMC1.Chin J Inf Tradit Chin Med2023309108114
    [Google Scholar]
  50. KalluriR. The biology and function of exosomes in cancer.J. Clin. Invest.201612641208121510.1172/JCI81135 27035812
    [Google Scholar]
  51. WhitesideT.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment.Semin. Immunol.201835697910.1016/j.smim.2017.12.003 29289420
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128392494250430173324
Loading
/content/journals/cpd/10.2174/0113816128392494250430173324
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): EGFR; exosomes; LAMC1; Lung adenocarcinoma; proteomics; radiosensitivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test