Skip to content
2000
Volume 31, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Poly (ADP-ribose) polymerase 12 (PARP12) plays a crucial role in DNA damage response (DDR) through DNA repair, maintaining genomic stability. Mutations in PARP12 contribute to genomic instability, leading to cancer progression. Targeting PARP12 mutants with small molecule inhibitors offers a promising therapeutic strategy.

Objective

This study aims to identify potent inhibitors for PARP12 mutants using molecular docking-based virtual screening from the National Cancer Institute (NCI) compound library, followed by molecular dynamics (MD) simulations to validate binding stability.

Methods

Homology models of human PARP12 mutants were developed for virtual screening. The top-scoring compounds were refined through molecular docking, and their stability was analyzed using all-atomistic MD simulations. Binding free energy (MMGBSA) calculations and structural dynamics assessments, including RMSD, RMSF, RoG, and SASA, were conducted to evaluate the drug-receptor interactions.

Results

Three promising inhibitors, NCI-32743, NCI-32982, and NCI-659779, demonstrated high binding affinity and stability with PARP12 mutants. These compounds showed significant inhibitory potential, maintaining strong interactions with the target protein throughout the simulation period. ADMET and pharmacokinetic analyses confirmed their drug likeness and potential for further development.

Conclusion

The identified inhibitors exhibit strong potential for targeting PARP12 mutants in cancer therapy. Further and studies are required to confirm their efficacy and therapeutic viability for clinical applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369323250322044605
2025-04-22
2025-10-29
Loading full text...

Full text loading...

References

  1. OliverF.J. Menissier-de MurciaJ. de MurciaG. Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease.Am. J. Hum. Genet.19996451282128810.1086/302389 10205258
    [Google Scholar]
  2. BenjaminR.C. GillD.M. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks.J. Biol. Chem.198025521105021050810.1016/S0021‑9258(19)70491‑8 6253477
    [Google Scholar]
  3. AlmeleebiaT.M. AhamadS. AhmadI. Identification of PARP12 inhibitors by virtual screening and molecular dynamics simulations.Front. Pharmacol.20221384749910.3389/fphar.2022.847499 36016564
    [Google Scholar]
  4. PerinaD. MikočA. AhelJ. ĆetkovićH. ŽajaR. AhelI. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life.DNA Repair (Amst.)20142341610.1016/j.dnarep.2014.05.003 24865146
    [Google Scholar]
  5. VyasS. MaticI. UchimaL. Family-wide analysis of poly(ADP-ribose) polymerase activity.Nat. Commun.201451442610.1038/ncomms5426 25043379
    [Google Scholar]
  6. ShaoC. QiuY. LiuJ. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability.Cell Death Dis.20189985610.1038/s41419‑018‑0906‑1 30154409
    [Google Scholar]
  7. LeeD. LeeS.Y. RaM.J. Cancer therapeutic potential of hovetrichoside C from Jatropha podagrica on apoptosis of MDA-MB-231 human breast cancer cells.Food Chem. Toxicol.202419011479410.1016/j.fct.2024.114794 38849046
    [Google Scholar]
  8. LeeD. ShimS. KangK. 4,6′-Anhydrooxysporidinone from Fusarium lateritium SSF2 induces autophagic and apoptosis cell death in MCF-7 breast cancer cells.Biomolecules202111686910.3390/biom11060869 34208033
    [Google Scholar]
  9. ShangJ. SmithM.R. AnmangandlaA. LinH. NAD+-consuming enzymes in immune defense against viral infection.Biochem. J.2021478234071409210.1042/BCJ20210181 34871367
    [Google Scholar]
  10. LiL. ZhaoH. LiuP. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.Sci. Signal.201811535eaas933210.1126/scisignal.aas9332 29921658
    [Google Scholar]
  11. VyasS. ChangP. New PARP targets for cancer therapy.Nat. Rev. Cancer201414750250910.1038/nrc3748 24898058
    [Google Scholar]
  12. MartíJ.M. Fernández-CortésM. Serrano-SáenzS. The multifactorial role of PARP-1 in tumor microenvironment.Cancers (Basel)202012373910.3390/cancers12030739 32245040
    [Google Scholar]
  13. KeY. WangC. ZhangJ. The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond.Cells201989104710.3390/cells8091047 31500199
    [Google Scholar]
  14. SeifeldinS. SaeedM. AlshaghdaliK. Investigating the] effects of the ARG258HIS mutation on RAD51C in inherited] Fanconi Anemia and cancer disease.J. Biomol. Struct. Dyn.20242411110.1080/07391102.2024.2431656 39648652
    [Google Scholar]
  15. AdhikariN. LeeW.J. ParkS. KimS. ShimW.S. A phytosphingosine derivative mYG-II-6 inhibits histamine-mediated TRPV1 activation and MRGPRX2-dependent mast cell degranulation.Int. Immunopharmacol.202413311211310.1016/j.intimp.2024.112113 38657498
    [Google Scholar]
  16. UmmarinoS. HausmanC. Di RuscioA. The PARP way to epigenetic changes.Genes (Basel)202112344610.3390/genes12030446 33804735
    [Google Scholar]
  17. SandersonD.J. CohenM.S. Mechanisms governing PARP expression, localization, and activity in cells.Crit. Rev. Biochem. Mol. Biol.202055654155410.1080/10409238.2020.1818686 32962438
    [Google Scholar]
  18. AnwarM. AslamH.M. AnwarS. PARP inhibitors.Hered. Cancer Clin. Pract.2015131410.1186/s13053‑014‑0024‑8 25606064
    [Google Scholar]
  19. XieH. WangW. XiaB. JinW. LouG. Therapeutic applications of PARP inhibitors in ovarian cancer.Biomed. Pharmacother.202012711020410.1016/j.biopha.2020.110204 32422564
    [Google Scholar]
  20. CortesiL. RugoH.S. JackischC. An overview of PARP inhibitors for the treatment of breast cancer.Target. Oncol.202116325528210.1007/s11523‑021‑00796‑4 33710534
    [Google Scholar]
  21. HobbsE.A. LittonJ.K. YapT.A. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer.Expert Opin. Pharmacother.202122141825183710.1080/14656566.2021.1952181 34309473
    [Google Scholar]
  22. MinA. ImS.A. PARP inhibitors as therapeutics: Beyond modulation of PARylation.Cancers (Basel)202012239410.3390/cancers12020394 32046300
    [Google Scholar]
  23. JubinT. KadamA. JariwalaM. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival.Cell Prolif.201649442143710.1111/cpr.12268 27329285
    [Google Scholar]
  24. CataraG. GrimaldiG. SchembriL. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions.Sci. Rep.2017711403510.1038/s41598‑017‑14156‑8 29070863
    [Google Scholar]
  25. SutcuH.H. MattaE. IshchenkoA.A. Role of PARP-catalyzed ADP-ribosylation in the crosstalk between DNA strand breaks and epigenetic regulation.J. Mol. Biol.202043261769179110.1016/j.jmb.2019.12.019 31866292
    [Google Scholar]
  26. GupteR. LiuZ. KrausW.L. PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes.Genes Dev.201731210112610.1101/gad.291518.116 28202539
    [Google Scholar]
  27. DeményM.A. VirágL. The parp enzyme family and the hallmarks of cancer part 2: hallmarks related to cancer host interactions.Cancers (Basel)2021139205710.3390/cancers13092057 33923319
    [Google Scholar]
  28. GastonJ. CheradameL. YvonnetV. Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents.Oncotarget2016747772057722410.18632/oncotarget.12858 27791205
    [Google Scholar]
  29. LeeD. YuJ.S. HaJ.W. Antitumor potential of withanolide glycosides from ashwagandha (Withania somnifera) on apoptosis of human hepatocellular carcinoma cells and tube formation in human umbilical vein endothelial cells.Antioxidants2022119176110.3390/antiox11091761 36139835
    [Google Scholar]
  30. LeeY.J. LeeS.Y. Maclurin exerts anti-cancer effects in human osteosarcoma cells via prooxidative activity and modulations of PARP, p38, and ERK signaling.IUBMB Life20217381060107210.1002/iub.2506 34003554
    [Google Scholar]
  31. GaoC.Z. DongW. CuiZ.W. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors.J. Enzyme Inhib. Med. Chem.201934115016210.1080/14756366.2018.1530224 30427217
    [Google Scholar]
  32. NamS. LeeS. ParkS. PATHOME-Drug: A subpathway-based polypharmacology drug-repositioning method.Bioinformatics202238244445210.1093/bioinformatics/btab566 34515762
    [Google Scholar]
  33. IlyasS. LeeJ. HwangY. ChoiY. LeeD. Deciphering Cathepsin K inhibitors: A combined QSAR, docking and MD simulation based machine learning approaches for drug design.SAR QSAR Environ. Res.202435977179310.1080/1062936X.2024.2405626 39382544
    [Google Scholar]
  34. LeeS. ShinH. ChoeS. MetaLAB-HOI: Template standardization of health outcomes enable massive and accurate detection of adverse drug reactions from electronic health records.Pharmacoepidemiol. Drug Saf.2024331e569410.1002/pds.5694 37710363
    [Google Scholar]
  35. TasleemM. ShoaibA. Al-ShammaryA. Computational analysis of PTP-1B site-directed mutations and their structural binding to potential inhibitors.Cell. Mol. Biol.2022687758410.14715/cmb/2022.68.7.13 36495515
    [Google Scholar]
  36. ChandelT.I. ZamanM. KhanM.V. A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview.Int. J. Biol. Macromol.20181061115112910.1016/j.ijbiomac.2017.07.185 28890370
    [Google Scholar]
  37. CowanR. GrosdidierG. Visualization tools for monitoring and evaluation of distributed computing systems.Proc of the International Conference on Computing in High Energy and Nuclear PhysicsPadova, Italy200016
    [Google Scholar]
  38. KaurR. KumarP. KumarA. Insights on the nuclear shuttling of H2A-H2B histone chaperones.Nucleo Nucleo Nucl Acids202443990291410.1080/15257770.2023.2296616 38133493
    [Google Scholar]
  39. WelsbyI. HutinD. GueydanC. KruysV. RongvauxA. LeoO. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation.J. Biol. Chem.201428938266422665710.1074/jbc.M114.589515 25086041
    [Google Scholar]
  40. SchwedeT. KoppJ. GuexN. PeitschM.C. SWISS-MODEL: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg520 12824332
    [Google Scholar]
  41. BermanH.M. BattistuzT. BhatT.N. The protein data bank.Acta Crystallogr. D Biol. Crystallogr.200258689990710.1107/S0907444902003451 12037327
    [Google Scholar]
  42. GozgitJ.M. VasbinderM.M. AboR.P. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity.Cancer Cell202139912141226.e1010.1016/j.ccell.2021.06.018 34375612
    [Google Scholar]
  43. KarlbergT. KlepschM. ThorsellA.G. AnderssonC.D. LinussonA. SchülerH. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.J. Biol. Chem.2015290127336734410.1074/jbc.M114.630160 25635049
    [Google Scholar]
  44. PatilS.A. AkkiA.J. RaghuA.V. KulkarniR.V. AkamanchiK.G. Sugarcane polyphenol oxidase: Structural elucidation using molecular modeling and docking analyses.Process Biochem.202313424324910.1016/j.procbio.2023.09.013
    [Google Scholar]
  45. SheikS.S. SundararajanP. HussainA.S.Z. SekarK. Ramachandran plot on the web.Bioinformatics200218111548154910.1093/bioinformatics/18.11.1548 12424132
    [Google Scholar]
  46. DeLanoW.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl.Prot Crystall20024018292
    [Google Scholar]
  47. CardellinaJ.H. GustafsonK.R. BeutlerJ.A. National Cancer Institute intramural research on human immunodeficiency virus inhibitory and antitumor plant natural products.In: Human Medicinal Agents from Plants. ACS Symposium Series1993Vol. 53421822710.1021/bk‑1993‑0534.ch015
    [Google Scholar]
  48. ChikhaleR.V. GuptaV.K. EldesokyG.E. WabaidurS.M. PatilS.A. IslamM.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies.J. Biomol. Struct. Dyn.20203917116 32741259
    [Google Scholar]
  49. KumariN. DalalV. KumarP. RathS.N. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel.J. Biomol. Struct. Dyn.20224062395240610.1080/07391102.2020.1839558 33103598
    [Google Scholar]
  50. KaurR. KumarP. KumarA. Insights on the nuclear shuttling of H2A-H2B histone chaperones.Nucle Nucl Nuc Acids202443990291410.1080/15257770.2023.2296616 38133493
    [Google Scholar]
  51. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  52. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  53. DalalV. DhankharP. SinghV. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  54. IlyasS. MananA. ChoiY. LeeD. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): A computational approach.EXCLI J.20242314401458 39790561
    [Google Scholar]
  55. SutharS.K. MongaJ. SharmaM. LeeS.Y. Synthesis, biological evaluation, and in silico studies of lantadene-derived pentacyclic triterpenoids as anticancer agents targeting IKK-β.J. Biomol. Struct. Dyn.20242411710.1080/07391102.2024.2424993 39632748
    [Google Scholar]
  56. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  57. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  58. AbrahamM.J. MurtolaT. SchulzR. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  59. FernandesC.L. SachettL.G. Pol-FachinL. VerliH. GROMOS96 43a1 performance in predicting oligosaccharide conformational ensembles within glycoproteins.Carbohydr. Res.2010345566367110.1016/j.carres.2009.12.018 20106471
    [Google Scholar]
  60. van AaltenD.M.F. BywaterR. FindlayJ.B.C. HendlichM. HooftR.W.W. VriendG. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules.J. Comput. Aided Mol. Des.199610325526210.1007/BF00355047 8808741
    [Google Scholar]
  61. GlättliA. DauraX. van GunsterenW.F. Derivation of an improved simple point charge model for liquid water: SPC/A and SPC/L.J. Chem. Phys.2002116229811982810.1063/1.1476316
    [Google Scholar]
  62. IlnytskyiJ.M. WilsonM.R. A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles.Comput. Phys. Commun.20021481435810.1016/S0010‑4655(02)00467‑8
    [Google Scholar]
  63. van GunsterenW.F. BerendsenH.J.C. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry.Angew. Chem. Int. Ed. Engl.1990299992102310.1002/anie.199009921
    [Google Scholar]
  64. EssmannU. PereraL. BerkowitzM.L. DardenT. LeeH. PedersenL.G. A smooth particle mesh Ewald method.J. Chem. Phys.1995103198577859310.1063/1.470117
    [Google Scholar]
  65. HessB BekkerH BerendsenHJC FraaijeJGEM LINCS: A linear constraint solver for molecular simulations.J Comput Chem1997181214631472 http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
    [Google Scholar]
  66. El MahamdiM. DaoudiW. NaguibI.A. Enhanced corrosion protection of copper in saline environments using bio-nanocomposite coatings based on chitosan and chitosan Schiff base.Int. J. Biol. Macromol.2024282Pt 613670210.1016/j.ijbiomac.2024.136702 39522355
    [Google Scholar]
  67. ParkJ. WasimS. JungJ.H. Synthesis, in silico and in vitro characterization of novel n,n-substituted pyrazolopyrimidine acetamide derivatives for the 18KDa translocator protein (TSPO).Pharmaceuticals (Basel)202316457610.3390/ph16040576 37111333
    [Google Scholar]
  68. LeeS. JeongW. FrankC.W. YoonD.Y. Surface characteristics of poly(alkyl methacrylate)s from molecular dynamics simulations using all-atom force field.Macromol. Rapid Commun.20224312210061410.1002/marc.202100614 34873776
    [Google Scholar]
  69. DjordjevicB. KimJ.H. Modification of radiation response in synchronized HeLa cells by metabolic inhibitors: Effects of inhibitors of DNA and protein synthesis.Radiat. Res.196937343545010.2307/3572685 4237819
    [Google Scholar]
  70. PaulN.K. JhaM. BhullarK.S. RupasingheH.P.V. BalzariniJ. Jha A. All trans 1-(3-arylacryloyl)-3,5-bis(pyridin-4-ylmethylene)] piperidin-4-ones as curcumin-inspired antineoplastics.Eur. J. Med. Chem.20148746147010.1016/j.ejmech.2014.09.090 25282269
    [Google Scholar]
  71. JhaA. DuffieldK.M. NessM.R. Curcumin-inspired cytotoxic 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones: A novel group of topoisomerase II alpha inhibitors.Bioorg. Med. Chem.201523196404641710.1016/j.bmc.2015.08.023 26456623
    [Google Scholar]
  72. de GuzmanF.S. SchmitzF.J. Chemistry of 2-bromolepto-clinidinone, structure revision.Tetrahedron Lett.19893091069107010.1016/S0040‑4039(01)80361‑0
    [Google Scholar]
  73. AdnanM. JairajpuriD.S. ChaddhaM. Discovering tuberosin and villosol as potent and selective inhibitors of AKT1 for therapeutic targeting of oral squamous cell carcinoma.J. Pers. Med.2022127108310.3390/jpm12071083 35887580
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369323250322044605
Loading
/content/journals/cpd/10.2174/0113816128369323250322044605
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test