Skip to content
2000
image of Unveiling Promising PARP12 Inhibitors through Virtual Screening for Cancer Therapy

Abstract

Background

Poly (ADP-ribose) polymerase 12 (PARP12) plays a crucial role in DNA damage response (DDR) through DNA repair, maintaining genomic stability. Mutations in PARP12 contribute to genomic instability, leading to cancer progression. Targeting PARP12 mutants with small molecule inhibitors offers a promising therapeutic strategy.

Objective

This study aims to identify potent inhibitors for PARP12 mutants using molecular docking-based virtual screening from the National Cancer Institute (NCI) compound library, followed by molecular dynamics (MD) simulations to validate binding stability.

Methods

Homology models of human PARP12 mutants were developed for virtual screening. The top-scoring compounds were refined through molecular docking, and their stability was analyzed using all-atomistic MD simulations. Binding free energy (MMGBSA) calculations and structural dynamics assessments, including RMSD, RMSF, RoG, and SASA, were conducted to evaluate the drug-receptor interactions.

Results

Three promising inhibitors, NCI-32743, NCI-32982, and NCI-659779, demonstrated high binding affinity and stability with PARP12 mutants. These compounds showed significant inhibitory potential, maintaining strong interactions with the target protein throughout the simulation period. ADMET and pharmacokinetic analyses confirmed their drug likeness and potential for further development.

Conclusion

The identified inhibitors exhibit strong potential for targeting PARP12 mutants in cancer therapy. Further and studies are required to confirm their efficacy and therapeutic viability for clinical applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369323250322044605
2025-04-22
2025-09-06
Loading full text...

Full text loading...

References

  1. Oliver F.J. Menissier-de Murcia J. de Murcia G. Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am. J. Hum. Genet. 1999 64 5 1282 1288 10.1086/302389 10205258
    [Google Scholar]
  2. Benjamin R.C. Gill D.M. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J. Biol. Chem. 1980 255 21 10502 10508 10.1016/S0021‑9258(19)70491‑8 6253477
    [Google Scholar]
  3. Almeleebia T.M. Ahamad S. Ahmad I. Alshehri A. Alkhathami A.G. Alshahrani M.Y. Asiri M.A. Saeed A. Siddiqui J.A. Yadav D.K. Saeed M. Identification of PARP12 inhibitors by virtual screening and molecular dynamics simulations. Front. Pharmacol. 2022 13 847499 10.3389/fphar.2022.847499 36016564
    [Google Scholar]
  4. Perina D. Mikoč A. Ahel J. Ćetković H. Žaja R. Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst.) 2014 23 4 16 10.1016/j.dnarep.2014.05.003 24865146
    [Google Scholar]
  5. Vyas S. Matic I. Uchima L. Rood J. Zaja R. Hay R.T. Ahel I. Chang P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 2014 5 1 4426 10.1038/ncomms5426 25043379
    [Google Scholar]
  6. Shao C. Qiu Y. Liu J. Feng H. Shen S. Saiyin H. Yu W. Wei Y. Yu L. Su W. Wu J. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability. Cell Death Dis. 2018 9 9 856 10.1038/s41419‑018‑0906‑1 30154409
    [Google Scholar]
  7. Lee D. Lee S.Y. Ra M.J. Jung S.M. Yu J.N. Kang K.S. Kim K.H. Cancer therapeutic potential of hovetrichoside C from Jatropha podagrica on apoptosis of MDA-MB-231 human breast cancer cells. Food Chem. Toxicol. 2024 190 114794 10.1016/j.fct.2024.114794 38849046
    [Google Scholar]
  8. Lee D. Shim S. Kang K. 4,6′-Anhydrooxysporidinone from Fusarium lateritium SSF2 induces autophagic and apoptosis cell death in MCF-7 breast cancer cells. Biomolecules 2021 11 6 869 10.3390/biom11060869 34208033
    [Google Scholar]
  9. Shang J. Smith M.R. Anmangandla A. Lin H. NAD+-consuming enzymes in immune defense against viral infection. Biochem. J. 2021 478 23 4071 4092 10.1042/BCJ20210181 34871367
    [Google Scholar]
  10. Li L. Zhao H. Liu P. Li C. Quanquin N. Ji X. Sun N. Du P. Qin C.F. Lu N. Cheng G. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Sci. Signal. 2018 11 535 eaas9332 10.1126/scisignal.aas9332 29921658
    [Google Scholar]
  11. Vyas S. Chang P. New PARP targets for cancer therapy. Nat. Rev. Cancer 2014 14 7 502 509 10.1038/nrc3748 24898058
    [Google Scholar]
  12. Martí J.M. Fernández-Cortés M. Serrano-Sáenz S. Zamudio-Martinez E. Delgado-Bellido D. Garcia-Diaz A. Oliver F.J. The multifactorial role of PARP-1 in tumor microenvironment. Cancers (Basel) 2020 12 3 739 10.3390/cancers12030739 32245040
    [Google Scholar]
  13. Ke Y. Wang C. Zhang J. Zhong X. Wang R. Zeng X. Ba X. The role of PARPs in inflammation—and metabolic—related diseases: molecular mechanisms and beyond. Cells 2019 8 9 1047 10.3390/cells8091047 31500199
    [Google Scholar]
  14. Seifeldin S. Saeed M. Alshaghdali K. Yousif E. Abu Sabaa A. Rabie H. Siddiqui S. Saeed A. Investigating the effects of the ARG258HIS mutation on RAD51C in inherited Fanconi Anemia and cancer disease. J. Biomol. Struct. Dyn. 2024 24 1 11 10.1080/07391102.2024.2431656 39648652
    [Google Scholar]
  15. Adhikari N. Lee W.J. Park S. Kim S. Shim W.S. A phytosphingosine derivative mYG-II-6 inhibits histamine-mediated TRPV1 activation and MRGPRX2-dependent mast cell degranulation. Int. Immunopharmacol. 2024 133 112113 10.1016/j.intimp.2024.112113 38657498
    [Google Scholar]
  16. Ummarino S. Hausman C. Di Ruscio A. The PARP way to epigenetic changes. Genes (Basel) 2021 12 3 446 10.3390/genes12030446 33804735
    [Google Scholar]
  17. Sanderson D.J. Cohen M.S. Mechanisms governing PARP expression, localization, and activity in cells. Crit. Rev. Biochem. Mol. Biol. 2020 55 6 541 554 10.1080/10409238.2020.1818686 32962438
    [Google Scholar]
  18. Anwar M. Aslam H.M. Anwar S. PARP inhibitors. Hered. Cancer Clin. Pract. 2015 13 1 4 10.1186/s13053‑014‑0024‑8 25606064
    [Google Scholar]
  19. Xie H. Wang W. Xia B. Jin W. Lou G. Therapeutic applications of PARP inhibitors in ovarian cancer. Biomed. Pharmacother. 2020 127 110204 10.1016/j.biopha.2020.110204 32422564
    [Google Scholar]
  20. Cortesi L. Rugo H.S. Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 2021 16 3 255 282 10.1007/s11523‑021‑00796‑4 33710534
    [Google Scholar]
  21. Hobbs E.A. Litton J.K. Yap T.A. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer. Expert Opin. Pharmacother. 2021 22 14 1825 1837 10.1080/14656566.2021.1952181 34309473
    [Google Scholar]
  22. Min A. Im S.A. PARP inhibitors as therapeutics: beyond modulation of PARylation. Cancers (Basel) 2020 12 2 394 10.3390/cancers12020394 32046300
    [Google Scholar]
  23. Jubin T. Kadam A. Jariwala M. Bhatt S. Sutariya S. Gani A.R. Gautam S. Begum R. The PARP family: insights into functional aspects of poly (ADP‐ribose) polymerase‐1 in cell growth and survival. Cell Prolif. 2016 49 4 421 437 10.1111/cpr.12268 27329285
    [Google Scholar]
  24. Catara G. Grimaldi G. Schembri L. Spano D. Turacchio G. Lo Monte M. Beccari A.R. Valente C. Corda D. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci. Rep. 2017 7 1 14035 10.1038/s41598‑017‑14156‑8 29070863
    [Google Scholar]
  25. Sutcu H.H. Matta E. Ishchenko A.A. Role of PARP-catalyzed ADP-ribosylation in the crosstalk between DNA strand breaks and epigenetic regulation. J. Mol. Biol. 2020 432 6 1769 1791 10.1016/j.jmb.2019.12.019 31866292
    [Google Scholar]
  26. Gupte R. Liu Z. Kraus W.L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017 31 2 101 126 10.1101/gad.291518.116 28202539
    [Google Scholar]
  27. Demény M.A. Virág L. The parp enzyme family and the hallmarks of cancer part 2: hallmarks related to cancer host interactions. Cancers (Basel) 2021 13 9 2057 10.3390/cancers13092057 33923319
    [Google Scholar]
  28. Gaston J. Cheradame L. Yvonnet V. Deas O. Poupon M.F. Judde J.G. Cairo S. Goffin V. Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents. Oncotarget 2016 7 47 77205 77224 10.18632/oncotarget.12858 27791205
    [Google Scholar]
  29. Lee D. Yu J.S. Ha J.W. Lee S.R. Lee B.S. Kim J.C. Kim J.K. Kang K.S. Kim K.H. Antitumor potential of withanolide glycosides from ashwagandha (Withania somnifera) on apoptosis of human hepatocellular carcinoma cells and tube formation in human umbilical vein endothelial cells. Antioxidants 2022 11 9 1761 10.3390/antiox11091761 36139835
    [Google Scholar]
  30. Lee Y.J. Lee S.Y. Maclurin exerts anti‐cancer effects in human osteosarcoma cells via prooxidative activity and modulations of PARP, p38, and ERK signaling. IUBMB Life 2021 73 8 1060 1072 10.1002/iub.2506 34003554
    [Google Scholar]
  31. Gao C.Z. Dong W. Cui Z.W. Yuan Q. Hu X.M. Wu Q.M. Han X. Xu Y. Min Z.L. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2019 34 1 150 162 10.1080/14756366.2018.1530224 30427217
    [Google Scholar]
  32. Nam S. Lee S. Park S. Lee J. Park A. Kim Y.H. Park T. PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method. Bioinformatics 2022 38 2 444 452 10.1093/bioinformatics/btab566 34515762
    [Google Scholar]
  33. Ilyas S. Lee J. Hwang Y. Choi Y. Lee D. Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design. SAR QSAR Environ. Res. 2024 35 9 771 793 10.1080/1062936X.2024.2405626 39382544
    [Google Scholar]
  34. Lee S. Shin H. Choe S. Kang M.G. Kim S.H. Kang D.Y. Kim J.H. MetaLAB‐HOI : Template standardization of health outcomes enable massive and accurate detection of adverse drug reactions from electronic health records. Pharmacoepidemiol. Drug Saf. 2024 33 1 e5694 10.1002/pds.5694 37710363
    [Google Scholar]
  35. Tasleem Munazzah Shoaib Ambreen Al-Shammary Asma Abdelgadir Abdelmuhsin Alsamar Zeina Alrehaily Abdulwahed Bardcki Fevzi Lai Dakun Badroui Riadh Saeed Mohd Ansari I.A. Lai D. Badroui R. Yadav D.K. Saeed M. Computational analysis of PTP-1B site-directed mutations and their structural binding to potential inhibitors. Cell. Mol. Biol. 2022 68 7 75 84 10.14715/cmb/2022.68.7.13 36495515
    [Google Scholar]
  36. Chandel T.I. Zaman M. Khan M.V. Ali M. Rabbani G. Ishtikhar M. Khan R.H. A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview. Int. J. Biol. Macromol. 2018 106 1115 1129 10.1016/j.ijbiomac.2017.07.185 28890370
    [Google Scholar]
  37. Cowan R. Grosdidier G. Visualization tools for monitoring and evaluation of distributed computing systems. Proc. of the International Conference on Computing in High Energy and Nuclear Physics Padova, Italy, 2000, pp. 1-6.
    [Google Scholar]
  38. Kaur R. Kumar P. Kumar A. Insights on the nuclear shuttling of H2A-H2B histone chaperones. Nucleo. Nucleo. Nucl. Acids 2024 43 9 902 914 10.1080/15257770.2023.2296616 38133493
    [Google Scholar]
  39. Welsby I. Hutin D. Gueydan C. Kruys V. Rongvaux A. Leo O. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J. Biol. Chem. 2014 289 38 26642 26657 10.1074/jbc.M114.589515 25086041
    [Google Scholar]
  40. Schwede T. Kopp J. Guex N. Peitsch M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003 31 13 3381 3385 10.1093/nar/gkg520 12824332
    [Google Scholar]
  41. Berman H.M. Battistuz T. Bhat T.N. Bluhm W.F. Bourne P.E. Burkhardt K. Feng Z. Gilliland G.L. Iype L. Jain S. Fagan P. Marvin J. Padilla D. Ravichandran V. Schneider B. Thanki N. Weissig H. Westbrook J.D. Zardecki C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr. 2002 58 6 899 907 10.1107/S0907444902003451 12037327
    [Google Scholar]
  42. Gozgit J.M. Vasbinder M.M. Abo R.P. Kunii K. Kuplast-Barr K.G. Gui B. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. Canc. Cell. 2021 39 9 1214 1226.e10 10.1016/j.ccell.2021.06.018 34375612
    [Google Scholar]
  43. Karlberg T. Klepsch M. Thorsell A.G. Andersson C.D. Linusson A. Schüler H. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. J. Biol. Chem. 2015 290 12 7336 7344 10.1074/jbc.M114.630160 25635049
    [Google Scholar]
  44. Patil S.A. Akki A.J. Raghu A.V. Kulkarni R.V. Akamanchi K.G. Sugarcane polyphenol oxidase: Structural elucidation using molecular modeling and docking analyses. Process Biochem. 2023 134 243 249 10.1016/j.procbio.2023.09.013
    [Google Scholar]
  45. Sheik S.S. Sundararajan P. Hussain A.S.Z. Sekar K. Ramachandran plot on the web. Bioinformatics 2002 18 11 1548 1549 10.1093/bioinformatics/18.11.1548 12424132
    [Google Scholar]
  46. DeLano W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Prot. Crystall. 2002 40 1 82 92
    [Google Scholar]
  47. Cardellina J.H. Gustafson K.R. Beutler J.A. McKee T.C. Hallock Y.F. Fuller R.W. Boyd M.R. National Cancer Institute intramural research on human immunodeficiency virus inhibitory and antitumor plant natural products. ACS Symposium Series Washington, D.C. American Chemical Society. 1993 218 227 10.1021/bk‑1993‑0534.ch015
    [Google Scholar]
  48. Chikhale R.V. Gupta V.K. Eldesoky G.E. Wabaidur S.M. Patil S.A. Islam M.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 2020 39 17 1 16 32741259
    [Google Scholar]
  49. Kumari N. Dalal V. Kumar P. Rath S.N. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J. Biomol. Struct. Dyn. 2022 40 6 2395 2406 10.1080/07391102.2020.1839558 33103598
    [Google Scholar]
  50. Kaur R. Kumar P. Kumar A. Insights on the nuclear shuttling of H2A-H2B histone chaperones. Nucle. Nucl. Nuc. Acids 2024 43 9 902 914 10.1080/15257770.2023.2296616 38133493
    [Google Scholar]
  51. Tian W. Chen C. Lei X. Zhao J. Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 46 W1 W363 W367 10.1093/nar/gky473 29860391
    [Google Scholar]
  52. Friesner R.A. Banks J.L. Murphy R.B. Halgren T.A. Klicic J.J. Mainz D.T. Repasky M.P. Knoll E.H. Shelley M. Perry J.K. Shaw D.E. Francis P. Shenkin P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004 47 7 1739 1749 10.1021/jm0306430 15027865
    [Google Scholar]
  53. Dalal V. Dhankhar P. Singh V. Singh V. Rakhaminov G. Golemi-Kotra D. Kumar P. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021 40 2 148 165 10.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  54. Ilyas S. Manan A. Choi Y. Lee D. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): a computational approach. EXCLI J. 2024 23 1440 1458 39790561
    [Google Scholar]
  55. Suthar S.K. Monga J. Sharma M. Lee S.Y. Synthesis, biological evaluation, and in silico studies of lantadene-derived pentacyclic triterpenoids as anticancer agents targeting IKK-β. J. Biomol. Struct. Dyn. 2024 24 1 17 10.1080/07391102.2024.2424993 39632748
    [Google Scholar]
  56. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus : structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2022 40 20 9833 9847 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  57. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  58. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  59. Fernandes C.L. Sachett L.G. Pol-Fachin L. Verli H. GROMOS96 43a1 performance in predicting oligosaccharide conformational ensembles within glycoproteins. Carbohydr. Res. 2010 345 5 663 671 10.1016/j.carres.2009.12.018 20106471
    [Google Scholar]
  60. van Aalten D.M.F. Bywater R. Findlay J.B.C. Hendlich M. Hooft R.W.W. Vriend G. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 1996 10 3 255 262 10.1007/BF00355047 8808741
    [Google Scholar]
  61. Glättli A. Daura X. van Gunsteren W.F. Derivation of an improved simple point charge model for liquid water: SPC/A and SPC/L. J. Chem. Phys. 2002 116 22 9811 9828 10.1063/1.1476316
    [Google Scholar]
  62. Ilnytskyi J.M. Wilson M.R. A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles. Comput. Phys. Commun. 2002 148 1 43 58 10.1016/S0010‑4655(02)00467‑8
    [Google Scholar]
  63. van Gunsteren W.F. Berendsen H.J.C. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 1990 29 9 992 1023 10.1002/anie.199009921
    [Google Scholar]
  64. Essmann U. Perera L. Berkowitz M.L. Darden T. Lee H. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995 103 19 8577 8593 10.1063/1.470117
    [Google Scholar]
  65. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  66. El Mahamdi M. Daoudi W. Naguib I.A. Benhadi L. Dagdag O. Berisha A. Kim H. Noureddine B. El Aatiaoui A. Enhanced corrosion protection of copper in saline environments using bio-nanocomposite coatings based on chitosan and chitosan Schiff base. Int. J. Biol. Macromol. 2024 282 Pt 6 136702 10.1016/j.ijbiomac.2024.136702 39522355
    [Google Scholar]
  67. Park J. Wasim S. Jung J.H. Kim M. Lee B.C. Alam M.M. Lee S.Y. Synthesis, in silico and in vitro characterization of novel n,n-substituted pyrazolopyrimidine acetamide derivatives for the 18KDa translocator protein (TSPO). Pharmaceuticals (Basel) 2023 16 4 576 10.3390/ph16040576 37111333
    [Google Scholar]
  68. Lee S. Jeong W. Frank C.W. Yoon D.Y. Surface characteristics of poly(alkyl methacrylate)s from molecular dynamics simulations using all‐atom force field. Macromol. Rapid Commun. 2022 43 12 2100614 10.1002/marc.202100614 34873776
    [Google Scholar]
  69. Djordjevic B. Kim J.H. Modification of radiation response in synchronized HeLa cells by metabolic inhibitors: effects of inhibitors of DNA and protein synthesis. Radiat. Res. 1969 37 3 435 450 10.2307/3572685 4237819
    [Google Scholar]
  70. Paul N.K. Jha M. Bhullar K.S. Rupasinghe H.P.V. Balzarini J. Jha A. All trans 1-(3-arylacryloyl)-3,5-bis(pyridin-4-ylmethylene)piperidin-4-ones as curcumin-inspired antineoplastics. Eur. J. Med. Chem. 2014 87 461 470 10.1016/j.ejmech.2014.09.090 25282269
    [Google Scholar]
  71. Jha A. Duffield K.M. Ness M.R. Ravoori S. Andrews G. Bhullar K.S. Rupasinghe H.P.V. Balzarini J. Curcumin-inspired cytotoxic 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones: A novel group of topoisomerase II alpha inhibitors. Bioorg. Med. Chem. 2015 23 19 6404 6417 10.1016/j.bmc.2015.08.023 26456623
    [Google Scholar]
  72. de Guzman F.S. Schmitz F.J. Chemistry of 2-bromoleptoclinidinone, structure revision. Tetrahed. Lett. 1989 30 9 1069 1070 10.1016/S0040‑4039(01)80361‑0
    [Google Scholar]
  73. Adnan M. Jairajpuri D.S. Chaddha M. Khan M.S. Yadav D.K. Mohammad T. Elasbali A.M. Abu Al-Soud W. Hussain Alharethi S. Hassan M.I. Discovering tuberosin and villosol as potent and selective inhibitors of AKT1 for therapeutic targeting of oral squamous cell carcinoma. J. Pers. Med. 2022 12 7 1083 10.3390/jpm12071083 35887580
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369323250322044605
Loading
/content/journals/cpd/10.2174/0113816128369323250322044605
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: PARP12 inhibitors ; molecular docking ; Cancer ; molecular dynamics ; drug discovery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test