Skip to content
2000
image of Flavonoids as Dual Inhibitors of MELK and LYN Kinases in Cervical Cancer: An In Silico Molecular Docking Analysis

Abstract

Introduction

Cervical cancer (CC) is among the most prevalent cancers affecting women globally, with a substantial number of deaths reported annually. Despite advancements in treatment, the persistently high mortality rate underscores the urgent need for novel and effective therapeutic strategies.

Methods

This study screened a library of 240 flavonoids against maternal embryonic leucine zipper kinase (MELK) and LYN using molecular docking methods to achieve precise calculations. These proteins play critical roles in CC progression, and their simultaneous inhibition could mark a significant step forward in multitargeted drug design.

Results

Molecular docking revealed binding affinities ranging from -10.0649 to -8.14296 kcal/mol for MELK and -10.2748 to -8.5237 kcal/mol for LYN. The screening process was complemented by pharmacokinetics and interaction fingerprinting analyses, which confirmed that the flavonoids effectively bound to optimal sites, forming stable complexes through multiple interactions. Molecular dynamics simulations extended to 100 ns further validated the stability of these protein-ligand complexes.

Discussion

The findings indicate that the top-ranked compounds exhibit strong binding affinities and stable interactions, highlighting their potential as multitargeted therapeutic agents against CC.

Conclusion

These findings set the stage for future experimental and clinical studies to validate our results and facilitate the development of novel, flavonoid-based therapeutic strategies against cervical cancer, potentially revolutionizing the treatment landscape of this disease.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128387273250823102532
2025-09-05
2025-11-02
Loading full text...

Full text loading...

References

  1. Senapathy J.G. Umadevi P. Kannika P.S. The present scenario of cervical cancer control and HPV epidemiology in India: An outline. Asian Pac. J. Cancer Prev. 2011 12 5 1107 1115 21875253
    [Google Scholar]
  2. Drolet M. Laprise J.F. Martin D. Optimal human papillomavirus vaccination strategies to prevent cervical cancer in low-income and middle-income countries in the context of limited resources: A mathematical modelling analysis. Lancet Infect. Dis. 2021 21 11 1598 1610 10.1016/S1473‑3099(20)30860‑4 34245682
    [Google Scholar]
  3. Pramesh C.S. Badwe R.A. Bhoo-Pathy N. Priorities for cancer research in low- and middle-income countries: A global perspective. Nat. Med. 2022 28 4 649 657 10.1038/s41591‑022‑01738‑x 35440716
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Karim S.S.A. Churchyard G.J. Karim Q.A. Lawn S.D. HIV infection and tuberculosis in South Africa: An urgent need to escalate the public health response. Lancet 2009 374 9693 921 933 10.1016/S0140‑6736(09)60916‑8 19709731
    [Google Scholar]
  6. Sykes A.G. Seyi-Olajide J. Ameh E.A. Estimates of treatable deaths within the first 20 years of life from scaling up surgical care at first-level hospitals in low-and middle-income countries. World J. Surg. 2022 46 9 2114 2122 10.1007/s00268‑022‑06622‑w 35771254
    [Google Scholar]
  7. Arbyn M. Weiderpass E. Bruni L. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020 8 2 e191 e203 10.1016/S2214‑109X(19)30482‑6 31812369
    [Google Scholar]
  8. Wu Z. Yu L. Lei X. The association between human papillomavirus 16, 18 DNA load and E6 protein expression in cervical intraepithelial neoplasia and cancer. J. Clin. Virol. 2018 108 6 11 10.1016/j.jcv.2018.08.008 30196013
    [Google Scholar]
  9. Buchatskyi L.P. Stcherbyc V.J.B.A. Determining probability of cancer cell transfomation at human papillomavirus infection. Biotechnol. Acta 2021 14 5 74 83 10.15407/biotech14.05.074
    [Google Scholar]
  10. Chen S. Lu Z. Chen X. Maternal embryonic leucine zipper kinase: A novel biomarker and a potential therapeutic target in lung adenocarcinoma. Oncol. Lett. 2020 20 5 1 10.3892/ol.2020.12010 32934715
    [Google Scholar]
  11. Wang J. Wang Y. Shen F. Maternal embryonic leucine zipper kinase: A novel biomarker and a potential therapeutic target of cervical cancer. Cancer Med. 2018 7 11 5665 5678 10.1002/cam4.1816 30334367
    [Google Scholar]
  12. Mazon J.N. de Mello A.H. Ferreira G.K. Rezin G.T. The impact of obesity on neurodegenerative diseases. Life Sci. 2017 182 22 28 10.1016/j.lfs.2017.06.002 28583368
    [Google Scholar]
  13. Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun. Signal. 2012 10 1 21 10.1186/1478‑811X‑10‑21 22273506
    [Google Scholar]
  14. Primo L. Seano G. Roca C. Increased expression of α6 integrin in endothelial cells unveils a proangiogenic role for basement membrane. Cancer Res. 2010 70 14 5759 5769 10.1158/0008‑5472.CAN‑10‑0507 20570893
    [Google Scholar]
  15. Pettersen E.F. Goddard T.D. Huang C.C. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  16. Nabavi S.M. Šamec D. Tomczyk M. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020 38 107316 10.1016/j.biotechadv.2018.11.005 30458225
    [Google Scholar]
  17. Scarano A. Chieppa M. Santino A. Looking at flavonoid biodiversity in horticultural crops: A colored mine with nutritional benefits. Plants 2018 7 4 98 10.3390/plants7040098 30405037
    [Google Scholar]
  18. Liu J. Wang X. Yong H. Kan J. Jin C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018 116 1011 1025 10.1016/j.ijbiomac.2018.05.149 29800657
    [Google Scholar]
  19. Kofink M. Papagiannopoulos M. Galensa R. (-)-Catechin in cocoa and chocolate: Occurrence and analysis of an atypical flavan-3-ol enantiomer. Molecules 2007 12 7 1274 1288 10.3390/12071274 17909484
    [Google Scholar]
  20. Braicu C. Ladomery M.R. Chedea V.S. Irimie A. Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013 141 3 3282 3289 10.1016/j.foodchem.2013.05.122 23871088
    [Google Scholar]
  21. Arts I.C.W. van de Putte B. Hollman P.C.H. Chemistry F. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem. 2000 48 5 1752 1757 10.1021/jf000026+ 10820090
    [Google Scholar]
  22. Määttä-Riihinen K.R. Kamal-Eldin A. Törrönen A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004 52 20 6178 6187 10.1021/jf049450r 15453684
    [Google Scholar]
  23. Wu X. Gu L. Prior R.L. McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004 52 26 7846 7856 10.1021/jf0486850 15612766
    [Google Scholar]
  24. Arts I.C.W. van de Putte B. Hollman P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 2000 48 5 1746 1751 10.1021/jf000025h 10820089
    [Google Scholar]
  25. Vrhovsek U. Rigo A. Tonon D. Mattivi F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004 52 21 6532 6538 10.1021/jf049317z 15479019
    [Google Scholar]
  26. Landberg R. Naidoo N. van Dam R.M. Diet and endothelial function. Curr. Opin. Lipidol. 2012 23 2 147 155 10.1097/MOL.0b013e328351123a 22327611
    [Google Scholar]
  27. Mejri F. Selmi S. Martins A. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct. 2018 9 4 2051 2069 10.1039/C8FO00055G 29589631
    [Google Scholar]
  28. Romani A. Mulinacci N. Pinelli P. Vincieri F.F. Cimato A. Polyphenolic content in five tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999 47 3 964 967 10.1021/jf980264t 10552399
    [Google Scholar]
  29. Slimestad R. Fossen T. Vågen I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007 55 25 10067 10080 10.1021/jf0712503 17997520
    [Google Scholar]
  30. Pandjaitan N. Howard L.R. Morelock T. Gil M.I. Chemistry F. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agric. Food Chem. 2005 53 22 8618 8623 10.1021/jf052077i 16248562
    [Google Scholar]
  31. Fattorusso E. Iorizzi M. Lanzotti V. Taglialatela-Scafati O. Chemical composition of shallot (Allium ascalonicum Hort.). J. Agric. Food Chem. 2002 50 20 5686 5690 10.1021/jf020396t 12236699
    [Google Scholar]
  32. Kim S. Thiessen P.A. Bolton E.E. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  33. Yuan S. Chan H.C.S. Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017 7 2 e1298 10.1002/wcms.1298
    [Google Scholar]
  34. Tian W. Chen C. Lei X. Zhao J. CAST p 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 ••• 46
    [Google Scholar]
  35. Morris G.M. Huey R. Lindstrom W. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  36. Azam S.S. Abbasi S.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor. Biol. Med. Model. 2013 10 1 63 10.1186/1742‑4682‑10‑63 24156411
    [Google Scholar]
  37. Karunakar P. Girija C.R. Krishnamurthy V. Krishna V. Shivakumar K.V. In silico antitubercular activity analysis of benzofuran and naphthofuran derivatives. Tuberculosis Research and Treatment 2014 2014 697532 10.1155/2014/697532 25302118
    [Google Scholar]
  38. Adejoro I. Waheed S. Adeboye O.O. Molecular docking studies of Lonchocarpus cyanescens triterpenoids as inhibitors for malaria. J. Phys. Chem. Biophys. 2016 6 2 1000213
    [Google Scholar]
  39. Morris G.M. Goodsell D.S. Halliday R.S. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639:AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  40. Hossain M.A. Rahman M.H. Sultana H. An integrated in-silico Pharmaco-BioInformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Comput. Biol. Med. 2023 155 106656 10.1016/j.compbiomed.2023.106656 36805222
    [Google Scholar]
  41. Bakchi B. Krishna A.D. Sreecharan E. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022 1259 132712 10.1016/j.molstruc.2022.132712
    [Google Scholar]
  42. Azzam K. SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Kompleksnoe Ispolzovanie Mineralnogo SyraComplex Use of Mineral Resources 2023 325 2 14 21
    [Google Scholar]
  43. Dementyev I. Karimi A. Molecular Dynamical Investigation of the 7,8-dihydro-8-oxoguanine Mutation in dsDNA. McGill Sci. Undergrad. Res. J. 2021 16 1 25 30 10.26443/msurj.v16i1.56
    [Google Scholar]
  44. Mark P. Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  45. Ke Q. Gong X. Liao S. Duan C. Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022 365 120116 10.1016/j.molliq.2022.120116
    [Google Scholar]
  46. Petersen H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995 103 9 3668 3679 10.1063/1.470043
    [Google Scholar]
  47. Yang H. Lou C. Sun L. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  48. Shukla R. Tripathi TJC-add. Molecular dynamics simulation of protein and protein-ligand complexes. Computer-Aided Drug Design. 2020 133 61 10.1007/978‑981‑15‑6815‑2_7
    [Google Scholar]
  49. Kamaraju S. Drope J. Sankaranarayanan R. Shastri S.J.A.S.C.O.E.B. Cancer prevention in low-resource countries: An overview of the opportunity. Am. Soc. Clin. Oncol. Educ. Book 2020 40 1 12 10.1200/EDBK_280625 32239989
    [Google Scholar]
  50. Cohen P.A. Jhingran A. Oaknin A. Denny L.J.T.L. Cervical cancer. Asian Conf Intell Inf Database Syst 2019 393 10167 169 82
    [Google Scholar]
  51. Zhang S. Xu H. Zhang L. Qiao Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020 32 6 720 728 10.21147/j.issn.1000‑9604.2020.06.05 33446995
    [Google Scholar]
  52. Markovina S. Rendle K.A. Cohen A.C. Kuroki L.M. Grover S. Schwarz J.K. Improving cervical cancer survival-A multifaceted strategy to sustain progress for this global problem. Cancer 2022 128 23 4074 4084 10.1002/cncr.34485 36239006
    [Google Scholar]
  53. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  54. Ren W. Qiao Z. Wang H. Zhu L. Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003 23 4 519 534 10.1002/med.10033 12710022
    [Google Scholar]
  55. Fatima I. Rehman A. Wang P. He Z. Liao M. Discovery of small molecule inhibitors targeting ctnnb1 (β-catenin) for endometrial cancer: Employing 3d qsar, drug-likeness assessment, admet predictions, molecular docking and simulation. Curr. Med. Chem. 2024 ••• 31 10.2174/0109298673307257240826111754 39318004
    [Google Scholar]
  56. Rodríguez-García C. Sánchez-Quesada C. Gaforio J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019 8 5 137 10.3390/antiox8050137 31109072
    [Google Scholar]
  57. Fernández J. Silván B. Entrialgo-Cadierno R. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed. Pharmacother. 2021 143 112241 10.1016/j.biopha.2021.112241 34649363
    [Google Scholar]
  58. Berk Ş. Kaya S. Akkol E.K. Bardakçı H. A comprehensive and current review on the role of flavonoids in lung cancer-Experimental and theoretical approaches. Phytomedicine 2022 98 153938 10.1016/j.phymed.2022.153938 35123170
    [Google Scholar]
  59. Yadav P. Vats R. Bano A. Vashishtha A. Bhardwaj R. A phytochemicals approach towards the treatment of cervical cancer using polyphenols and flavonoids. Asian Pac. J. Cancer Prev. 2022 23 1 261 270 10.31557/APJCP.2022.23.1.261 35092396
    [Google Scholar]
  60. Khan A.U. Dagur H.S. Khan M. Malik N. Alam M. Mushtaque M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Eur J Med Chem Rep 2021 3 100010 10.1016/j.ejmcr.2021.100010
    [Google Scholar]
  61. Teodor E.D. Ungureanu O. Gatea F. Radu G.L. The potential of flavonoids and tannins from medicinal plants as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry 2020 20 18 2216 2227
    [Google Scholar]
  62. Thangaraj K. Ponnusamy L. Natarajan S.R. Manoharan R. MELK/MPK38 in cancer: From mechanistic aspects to therapeutic strategies. Drug Discov. Today 2020 25 12 2161 2173 10.1016/j.drudis.2020.09.029 33010478
    [Google Scholar]
  63. Sun Y. Yang Y. Zhao Y. Li X. Zhang Y. Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol. Immunol. 2021 131 121 126 10.1016/j.molimm.2020.12.028 33419562
    [Google Scholar]
  64. Pantaleão S.Q. Fernandes P.O. Gonçalves J.E. Maltarollo V.G. Honorio K.M. Recent advances in the prediction of pharmacokinetics properties in drug design studies: A review. ChemMedChem 2022 17 1 e202100542 10.1002/cmdc.202100542 34655454
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128387273250823102532
Loading
/content/journals/cpd/10.2174/0113816128387273250823102532
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test