Skip to content
2000
image of Design and Synthesis of Novel Spiropyridine Derivatives as Promising Anti-inflammatory and Gene-targeting Agents Against COVID-19

Abstract

Background

The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the urgent need for effective antiviral and anti-inflammatory therapies. Spiropyridine derivatives containing a chalcone moiety have shown potential in targeting key enzymes involved in viral replication and inflammation.

Objective

To evaluate the inhibitory effects of synthesized spiropyridine derivatives on SARS-CoV-2 main protease (Mpro), secreted phospholipase A2 (sPLA2), and cytosolic phospholipase A2 (cPLA2), and to assess their impact on inflammatory and oxidative stress markers in LPS-treated lung cells.

Aim

To develop novel therapeutic agents that can effectively manage COVID-19 and related inflammatory conditions.

Methods

The synthesized compounds () were tested for their inhibitory activity against SARS-CoV-2 Mpro, sPLA2, and cPLA2 using assays to determine IC values. Inflammatory markers (COX-2, IL-2, IL-4, TGF-1β, TNF-α) and oxidative stress markers (GSH, SOD, GR, MDA) were measured in LPS-treated lung cells. Gene expression levels of sPLA2 and cPLA2 were also assessed. Molecular docking studies were conducted to analyze the binding affinities and interactions of the compounds with the target enzymes.

Results

Compounds showed significant inhibitory activity against SARS-CoV-2 Mpro with IC values of 19.85 µM, 7.31 µM, and 3.73 µM, respectively. For comparison, baicalein's IC value was 13.63 µM. Additionally, these compounds inhibited sPLA2 with IC values of 8.36 µM, 7.31 µM, and 3.73 µM, and cPLA2 with IC values of 20.44 µM, 6.02 µM, and 4.61 µM, respectively. Baicalein's IC values for sPLA2 and cPLA2 were 11.73 µM and 5.89 µM, respectively. In LPS-treated lung cells, compounds significantly reduced COX-2 by up to 90.12%, IL-2 by 74.19%, IL-4 by 79.51%, TGF-1β by 44.57%, and TNF-α by 68.49%. They enhanced GSH by up to 194%, SOD by 357.19%, and GR by 445.87%, while reducing MDA by 77.90%. Gene expression of sPLA2 and cPLA2 was significantly downregulated by up to 82.31% and 64.59%, respectively. Molecular docking studies revealed binding affinities of -28.20, -28.20, and -28.07 kcal/mol for SARS-CoV-2 Mpro; -16.72, -17.21, and -15.89 kcal/mol for sPLA2; and -65.66, -66.95, and -79.24 kcal/mol for cPLA2, respectively.

Discussion

The results demonstrate that the structural integration of a spiropyridine core with a chalcone moiety yields compounds with superior multi-target inhibitory activity. The potent antiviral, anti-inflammatory, and antioxidant effects are significantly correlated with their strong binding interactions with the active sites of Mpro, sPLA2, and cPLA2, as validated by molecular docking. These findings align with and extend current research on targeting host-inflammatory pathways alongside viral replication for COVID-19 management.

Conclusion

The synthesized spiropyridine derivatives containing a chalcone moiety exhibit potent antiviral, anti-inflammatory, and antioxidant properties. These findings suggest that these compounds could be promising therapeutic agents for managing COVID-19 and related inflammatory conditions. Future studies should focus on experiments, clinical trials, and structural optimization to further develop these compounds for clinical use.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128379816250712091207
2025-10-27
2025-11-01
Loading full text...

Full text loading...

References

  1. WHO director-general’s opening remarks at the media briefing on COVID. 2020 Available from: https://www.who.int/director-general/speeches/detail/who-directorgeneral-s-opening-remarks-at-the-media-briefing-on
  2. Kneller D.W. Phillips G. O’Neill H.M. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020 11 1 3202 10.1038/s41467‑020‑16954‑7 32581217
    [Google Scholar]
  3. Kneller D.W. Galanie S. Phillips G. O’Neill H.M. Coates L. Kovalevsky A. Malleability of the SARS-CoV-2 3CL Mpro active-site cavity facilitates binding of clinical antivirals. Structure 2020 28 12 1313 1320.e3 10.1016/j.str.2020.10.007 33152262
    [Google Scholar]
  4. Hussein M.A. Administration of exogenous surfactant and cytosolic phospholipase A2α inhibitors may help COVID-19 infected patients with chronic diseases. Coronaviruses 2021 2 12 e080921192222 10.2174/2666796702666210311123323
    [Google Scholar]
  5. Wan Y. Shang J. Graham R. Baric R.S. Li F. Receptor recognition by the novel coronavirus from wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020 94 7 e00127 e20 10.1128/JVI.00127‑20 31996437
    [Google Scholar]
  6. Talluri S. Computational protein design of bacteriocins based on structural scaffold of aureocin A53. Int. J. Bioinform. Res. Appl. 2019 15 2 129 143 10.1504/IJBRA.2019.099575
    [Google Scholar]
  7. Mosaad Y.O. Baraka M.A. Warda A.E.A. Ateyya H. Hussein M.A. Gaber S. Plasma lipid profile: A predictive marker of disease severity among COVID-19 patients—an opportunity for low-income countries. Drugs Ther. Perspect. 2022 38 6 286 291 10.1007/s40267‑022‑00916‑8 35789563
    [Google Scholar]
  8. Hussein M.A. Ismail N.E.M. Mohamed A.H. Borik R.M. Ali A.A. Mosaad Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate covid-19 infection severity. Bioinform. Biol. Insights 2021 15 11779322211055891 10.1177/11779322211055891 34840499
    [Google Scholar]
  9. Gobba N.A.E.K. Hussein Ali A. El Sharawy D.E. Hussein M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health 2018 73 3 189 202 10.1080/19338244.2017.1314930 28375782
    [Google Scholar]
  10. El Gizawy H.A. Abo-Salem H.M. Ali A.A. Hussein M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega 2021 6 31 20492 20511 10.1021/acsomega.1c02340 34395996
    [Google Scholar]
  11. Borik R.M. Hussein M.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem. 2021 33 2 423 438 10.14233/ajchem.2021.23036
    [Google Scholar]
  12. Hussein M.A. Borik R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol. 2022 23 9 1179 1203 10.2174/1389201022666210601170650 34077343
    [Google Scholar]
  13. Hussein M.A. Borik R.M. Nafie M.S. Abo-Salem H.M. Boshra S.A. Mohamed Z.N. Structure activity relationship and molecular docking of some quinazolines bearing sulfamerazine moiety as new 3CLpro, cPLA2, sPLA2 inhibitors. Molecules 2023 28 16 6052 10.3390/molecules28166052 37630304
    [Google Scholar]
  14. Tutunchi H. Naeini F. Ostadrahimi A. Hosseinzadeh-Attar M.J. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID ‐19. Phytother. Res. 2020 34 12 3137 3147 10.1002/ptr.6781 32613637
    [Google Scholar]
  15. Wu W. Jiao X. Song W. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC. Front. Endocrinol. 2023 14 1187882 10.3389/fendo.2023.1187882 37347115
    [Google Scholar]
  16. Agrawal PK Agrawal C Blunden G Naringenin as a possible candidate against SARS-CoV-2 infection and in the pathogenesis of COVID-19. Nat Prod Commun 2021 16 (12) 1934578X211066723 10.1177/1934578X211066723
    [Google Scholar]
  17. Alberca R.W. Teixeira F.M.E. Beserra D.R. Perspective: The potential effects of naringenin in COVID-19. Front. Immunol. 2020 11 570919 10.3389/fimmu.2020.570919 33101291
    [Google Scholar]
  18. Oktavianawati I. Santoso M. Bakar M.F.A. Kim Y-U. Fatmawati S. Recent progress on drugs discovery study for treatment of COVID-19: Repurposing existing drugs and current natural bioactive molecules. Applied Biological Chemistry. 2023 66 1 89 10.1186/s13765‑023‑00842‑x
    [Google Scholar]
  19. Aboul-Fotouh S. Mahmoud A.N. Elnahas E.M. Habib M.Z. Abdelraouf S.M. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms. Virol. J. 2023 20 1 241 10.1186/s12985‑023‑02210‑z 37875904
    [Google Scholar]
  20. Wang Z. Yang L. Turning the tide: Natural products and natural-product-inspired chemicals as potential counters to SARS-COV-2 infection. Front. Pharmacol. 2020 11 1013 10.3389/fphar.2020.01013 32714193
    [Google Scholar]
  21. Bess A. Berglind F. Mukhopadhyay S. Identification of oral therapeutics using an AI platform against the virus responsible for COVID-19, SARS-CoV-2. Front. Pharmacol. 2023 14 1297924 10.3389/fphar.2023.1297924 38186640
    [Google Scholar]
  22. Taheri M. Jawhar Z.H. Microwave-assisted multi-component reaction for the green synthesis of novel 4-(5-hydroxybenzo[a] phenazin-6-yl)-5-phenyl-1,3-dihydro-2H-imidazol-2-one using H3PW12O40 @nano-TiO2 as recyclable catalyst. Green Chem. Lett. Rev. 2022 15 3 813 824 10.1080/17518253.2022.2138562
    [Google Scholar]
  23. Sun Y. Sun J. Yan C.G. Synthesis of spiro[dihydropyridine-oxindoles] via three-component reaction of arylamine, isatin and cyclopentane-1,3-dione. Beilstein J. Org. Chem. 2013 9 8 14 10.3762/bjoc.9.2 23399791
    [Google Scholar]
  24. Xu R. Wang W. Zhang W. As the SARS-CoV-2 virus evolves, should Omicron subvariant BA.2 be subjected to quarantine, or should we learn to live with it? Front. Public Health 2022 10 1039123 10.3389/fpubh.2022.1039123 36504951
    [Google Scholar]
  25. Murakami M. Taketomi Y. Miki Y. Sato H. Yamamoto K. Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: The 3rd edition. Biochimie 2014 107 (PT A) 105 13
    [Google Scholar]
  26. Murakami M. Novel functions of phospholipase A2s: Overview. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 6 763 765 10.1016/j.bbalip.2019.02.005 30769093
    [Google Scholar]
  27. Wang Y. Wang H. Zhang C. Lung fluid biomarkers for acute respiratory distress syndrome: A systematic review and meta-analysis. Crit. Care 2019 23 1 43 10.1186/s13054‑019‑2336‑6 30755248
    [Google Scholar]
  28. Murakami M. Yamamoto K. Miki Y. Murase R. Sato H. Taketomi Y. The roles of the secreted phospholipase A(2) gene family in immunology. Adv. Immunol. 2016 132 91 134 10.1016/bs.ai.2016.05.001 27769509
    [Google Scholar]
  29. van Hensbergen V.P. Wu Y. van Sorge N.M. Touqui L. Type IIA secreted phospholipase A2 in host defense against bacterial infections. Trends Immunol. 2020 41 4 313 326 10.1016/j.it.2020.02.003 32151494
    [Google Scholar]
  30. Papadopoulos S. Kazepidou E. Antonelou M.H. Secretory phospholipase A(2)-IIA protein and mRNA pools in extracellular vesicles of bronchoalveolar lavage fluid from patients with early acute respiratory distress syndrome: A new perception in the dissemination of inflammation? Pharmaceuticals 2020 13 11 415 10.3390/ph13110415 33238426
    [Google Scholar]
  31. Xin H. Tian J. Deng T. Chalcone derivatives containing 1,2,4-triazole and pyridine moiety: Design, synthesis, and antiviral activity. Mol. Divers. 2024 10.1007/s11030‑024‑11049‑7 39617870
    [Google Scholar]
  32. Tang X. Su S. Chen M. Novel chalcone derivatives containing a 1,2,4-triazine moiety: Design, synthesis, antibacterial and antiviral activities. RSC Advances 2019 9 11 6011 6020 10.1039/C9RA00618D 35517271
    [Google Scholar]
  33. Chen Y. Li P. Su S. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Advances 2019 9 40 23045 23052 10.1039/C9RA05139B 35514467
    [Google Scholar]
  34. Grosser T. Fries S. FitzGerald G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: Therapeutic challenges and opportunities. J. Clin. Invest. 2005 116 1 4 15 10.1172/JCI27291 16395396
    [Google Scholar]
  35. Hussein M.A. Prophylactic effect of resveratrol against ethinylestradiol-induced liver cholestasis. J. Med. Food 2013 16 3 246 254 10.1089/jmf.2012.0183 23305807
    [Google Scholar]
  36. Mohammed Abdalla H. Soad Mohamed A.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage. Malays. J. Nutr. 2010 16 1 161 170 [PMID: 22691863
    [Google Scholar]
  37. M Soliman S Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/] VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv. 2022 29 1 427 439 10.1080/10717544.2022.2032875 35098843
    [Google Scholar]
  38. Boshra S.A. Hussein M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed. 2016 8 217 227
    [Google Scholar]
  39. El-Gizawy H.A. Hussein M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt. Int. J. Phytomed. 2015 7 219 230
    [Google Scholar]
  40. M Fayed A A Abdalla E, Hassan SA, A Hussein M, M Roshdy T. Downregulation of TLR4-NF-?B-p38 MAPK signalling in cholestatic rats treated with cranberry extract. Pak. J. Biol. Sci. 2022 25 2 112 122 10.3923/pjbs.2022.112.122 35233999
    [Google Scholar]
  41. Elmoghazy H.M. Hussein M.A. Abdel-Aziz A. Elmasry S.A. Metwal A.M. CAPE improves vanin-1/AKT/miRNA-203 signaling pathways in DSS-induced ulcerative colitis. Biomed. Res. Ther. 2022 9 9 5313 5325 10.15419/bmrat.v9i9.769
    [Google Scholar]
  42. Elneklawi M.S. Mohamed Z.N. Hussein M.A. Mohamad E.A. STEN ameliorates VEGF gene expression by improving XBP1/mRNA-21/mRNA-330 signalling pathways in cisplatin-induced uterus injury in rats. J. Drug Deliv. Sci. Technol. 2023 87 104760 10.1016/j.jddst.2023.104760
    [Google Scholar]
  43. Alamir M. Hussein M.A. Aboud H.M. Khedr M.H. Zanaty M.I. Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/OB-Rb signaling pathway in HFD-induced obesity. Curr. Pharm. Biotechnol. 2025 26 1 92 107 10.2174/0113892010278684240105115516 38698746
    [Google Scholar]
  44. Al-nami S.Y. Alorabi A.Q. Al-Ahmed Z.A. Superficial and inkjet scalable printed sensors integrated with iron oxide and reduced graphene oxide for sensitive voltammetric determination of lurasidone. ACS Omega 2023 8 11 10449 10458 10.1021/acsomega.3c00040 36969426
    [Google Scholar]
  45. El-belbasy H.I. Hussein M.A. Alghitany M.E-M. Potential effects of cranberry extract against lead acetate-induced hepato-renal toxicity in rats. Adv. Anim. Vet. Sci. 2021 9 10 1669 1683
    [Google Scholar]
  46. Amer A.A. Kassem S.H. Hussein M.A. Chemical composition, antioxidant, cytotoxic, antiviral, and lung-protective activities of Salvia officinalis L. ethanol extract herb growing in Sinai, Egypt. Beni. Suef Univ. J. Basic Appl. Sci. 2024 13 1 39 10.1186/s43088‑024‑00498‑6
    [Google Scholar]
  47. Shehata M.R. Mohamed M.M.A. Shoukry M.M. Hussein M.A. Hussein F.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine. J. Coord. Chem. 2015 68 6 1101 1114 10.1080/00958972.2015.1007962
    [Google Scholar]
  48. Mosaad Y. Gobba N. Hussein M. Astaxanthin; A promising protector against gentamicin-induced nephrotoxicity in rats. Curr. Pharm. Biotechnol. 2016 17 13 1189 1197 10.2174/1389201017666160922110740 27658618
    [Google Scholar]
  49. Abdel-Gawad S.M. Ghorab M.M. El-Sharief A.M.S. El-Telbany F.A. Abdel-Alla M. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4‐d]pyrimidines. Heteroatom Chem. 2003 14 6 530 534 10.1002/hc.10187
    [Google Scholar]
  50. Ghosh A.K. Venkateswara Rao K. Yadav N.D. Structure-based design of highly selective β-secretase inhibitors: Synthesis, biological evaluation, and protein-ligand X-ray crystal structure. J. Med. Chem. 2012 55 21 9195 9207 10.1021/jm3008823 22954357
    [Google Scholar]
  51. Rynearson K.D. Buckle R.N. Herr R.J. Design and synthesis of novel methoxypyridine-derived gamma-secretase modulators. Bioorg. Med. Chem. 2020 28 22 115734 10.1016/j.bmc.2020.115734 33007551
    [Google Scholar]
  52. Kronenberger T. Laufer S.A. Pillaiyar T. COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discov. Today 2023 28 6 103579 10.1016/j.drudis.2023.103579 37028502
    [Google Scholar]
  53. Wang Y. Lv Z. Chu Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS 2015 7 95 104 10.2147/HIV.S79956 25897264
    [Google Scholar]
  54. de Leuw P. Stephan C. Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infect. Dis. 2017 5 Doc08 10.3205/id000034 30671330
    [Google Scholar]
  55. Al-Harrasi A. Behl T. Upadhyay T. Targeting natural products against SARS-CoV-2. Environ. Sci. Pollut. Res. Int. 2022 29 28 42404 42432 10.1007/s11356‑022‑19770‑2 35362883
    [Google Scholar]
  56. Cury Y. Picolo G. Gutierrez V.P. Ferreira S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011 25 3 243 254 10.1016/j.niox.2011.06.004 21723953
    [Google Scholar]
  57. Dong Q. Patel M. Scott K.F. Graham G.G. Russell P.J. Sved P. Oncogenic action of phospholipase A2 in prostate cancer. Cancer Lett. 2006 240 1 9 16 10.1016/j.canlet.2005.08.012 16182442
    [Google Scholar]
  58. Sved P. Scott K.F. McLeod D. Oncogenic action of secreted phospholipase A2 in prostate cancer. Cancer Res. 2004 64 19 6934 6940 10.1158/0008‑5472.CAN‑03‑3018 15466184
    [Google Scholar]
  59. Calligari P. Bobone S. Ricci G. Bocedi A. Molecular investigation of SARS-CoV-2 proteins and their interactions with antiviral drugs. Viruses 2020 12 4 445 10.3390/v12040445 32295237
    [Google Scholar]
  60. Zagórska A. Czopek A. Fryc M. Jończyk J. Inhibitors of SARS-CoV-2 main protease (Mpro) as anti-coronavirus agents. Biomolecules 2024 14 7 797 10.3390/biom14070797 39062511
    [Google Scholar]
  61. Huang C. Shuai H. Qiao J. A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Signal Transduct. Target. Ther. 2023 8 1 128 10.1038/s41392‑023‑01392‑w 36928316
    [Google Scholar]
  62. Higashi-Kuwata N. Bulut H. Hayashi H. An orally available P1′-5-fluorinated Mpro inhibitor blocks SARS-CoV-2 replication without booster and exhibits high genetic barrier. PNAS Nexus 2024 4 1 pgae578 10.1093/pnasnexus/pgae578 39831159
    [Google Scholar]
  63. Kumawat P. Agarwal L.K. Sharma K. An overview of SARS-CoV-2 potential targets, inhibitors, and computational insights to enrich the promising treatment strategies. Curr. Microbiol. 2024 81 7 169 10.1007/s00284‑024‑03671‑3 38733424
    [Google Scholar]
  64. Abou-Taleb N.I. Elblasy O.A. Elbesoumy E.A. Mechanism of antiangiogenic and antioxidant activity of newly synthesized CAMBA in ehrlich ascites carcinoma-bearing mice. Asian J. Chem. 2021 33 10 2465 2471 10.14233/ajchem.2021.23310
    [Google Scholar]
  65. Mosaad Y.O. Hussein M.A. Ateyya H. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients. J. Inflamm. Res. 2022 15 6745 6759 10.2147/JIR.S386506 36540060
    [Google Scholar]
  66. Hussein M.A. El-Gizawy H.A.E. Gobba N.A.E.K. Mosaad Y.O. Synthesis of cinnamyl and caffeoyl derivatives of Cucurbitacin-E-glycoside isolated from Citrullus colocynthis fruits and their structures antioxidant and anti-inflammatory activities. Curr. Pharm. Biotechnol. 2017 18 8 677 693 10.2174/1389201018666170519095433 28982326
    [Google Scholar]
  67. Hussein M.A. Farouk G.A. Abdelkader H.K. Vitexin’s role in colon cancer apoptosis: AMPK/mTOR pathway modulation explored through experimental and computational approaches In: Recent Pat Anticancer Drug Discov. 2025 10.2174/0115748928361989250226083146
    [Google Scholar]
  68. Krumm Z.A. Lloyd G.M. Francis C.P. Precision therapeutic targets for COVID-19. Virol. J. 2021 18 1 66 10.1186/s12985‑021‑01526‑y 33781287
    [Google Scholar]
  69. Currier A.W. Jeshurin M.C. Sampson V.B. SARS-CoV-2 targets and COVID-19 vaccines. COVID 2021 1 3 608 621 10.3390/covid1030051
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128379816250712091207
Loading
/content/journals/cpd/10.2174/0113816128379816250712091207
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: chalcone moiety ; COVID-19 ; sPLA2 and cPLA2 ; TNF-α ; SARS-CoV-2 ; TGF-1β ; Spiropyridine derivatives
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test