Skip to content
2000
image of Quantification and Engineering of Lipid Nanocapsule Formulations for the Delivery of Niclosamide as an Anti-Cancer Drug

Abstract

Introduction

Recent studies indicate that niclosamide demonstrates considerable promise as both an anthelmintic agent and a possible anticancer medication. Given the increasing interest in nano-sized drug delivery methods for cancer therapy, lipid nanocapsules (LNCs) have emerged as a viable approach to enhance the bioavailability of poorly soluble pharmaceuticals due to their beneficial properties. This research intends to develop niclosamide-loaded lipid nanocapsules (NIC-LNCs) using the phase inversion technique, followed by the optimization of these formulations the Box-Behnken experimental design.

Methods

A reverse-phase high-performance liquid chromatography (RP-HPLC) method was devised and validated for quantifying niclosamide in the LNC formulations. Optimal chromatographic separation was attained utilizing an Agilent Eclipse XDB-C18 column (150×4.6 mm, 5 µm i.d.) with a mobile phase of a 50:50 mixture of acetonitrile and 0.1% HPO phosphate buffer, at a flow rate of 1.2 mL/min. The detection wavelength was set at 335 nm, and the analysis was performed at 35°C. The developed analytical methodology was validated through a comprehensive evaluation of accuracy, linearity, precision, limit of detection, limit of quantitation, specificity, and stability.

Results

The optimization of the NIC-LNC formulation through the Box-Behnken design resulted in an optimal formulation labeled LNC5, consisting of 4% niclosamide, 20% lipid, and 20% surfactant. The proven RP-HPLC method enables accurate quantification of NIC in the LNC formulations. The refined NIC-LNC formulation exhibited developed attributes as assessed by the design.

Discussion

NIC-LNCs were successfully prepared with particle sizes below 100 nm, narrow size distributions (PDI<0.2), and negative zeta potential values in accordance with the literature. All formulations exhibited high encapsulation efficiency and sustained drug release profiles. The optimum formulation revealed a particle size of 43.29 ± 0.32 nm, encapsulation efficiency of 99.99 ± 0.02%, and drug release at one week of 68.85 ± 1.76%. The formulation maintained stability throughout the short-term study period.

Conclusion

The findings indicate that LNC systems are a promising method for drug administration, especially for anticancer drugs with limited solubility in water.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128385620250829061535
2025-09-12
2025-11-02
Loading full text...

Full text loading...

References

  1. Wieland A. Trageser D. Gogolok S. Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res. 2013 19 15 4124 4136 10.1158/1078‑0432.CCR‑12‑2895 23908450
    [Google Scholar]
  2. Chen W. Mook R.A. Premont R.T. Wang J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal. 2018 41 89 96 10.1016/j.cellsig.2017.04.001 28389414
    [Google Scholar]
  3. Ma R. Ma Z.G. Gao J.L. Injectable pegylated niclosamide (polyethylene glycol‐modified niclosamide) for cancer therapy. J. Biomed. Mater. Res. A 2020 108 1 30 38 10.1002/jbm.a.36788 31433913
    [Google Scholar]
  4. Hatamipour M. Jaafari M.R. Momtazi-Borojeni A.A. Ramezani M. Sahebkar A. Evaluation of the anti-tumor activity of niclosamide nanoliposomes against colon carcinoma. Curr. Mol. Pharmacol. 2020 13 3 245 250 10.2174/1874467212666190821142721 31433764
    [Google Scholar]
  5. Lin C.K. Bai M.Y. Hu T.M. Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget 2016 7 8 8993 9006 10.18632/oncotarget.7113 26848771
    [Google Scholar]
  6. Suliman M.A. Zhang Z. Na H. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int. J. Mol. Med. 2016 38 3 776 784 10.3892/ijmm.2016.2689 27460529
    [Google Scholar]
  7. Barbosa E.J. Löbenberg R. de Araujo G.L.B. Bou-Chacra N.A. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur. J. Pharm. Biopharm. 2019 141 58 69 10.1016/j.ejpb.2019.05.004 31078739
    [Google Scholar]
  8. Jug M. Laffleur F. Millotti G. Revisiting niclosamide formulation approaches–a pathway toward drug repositioning. Drug Des. Devel. Ther. 2024 18 4153 4182 10.2147/DDDT.S473178 39308694
    [Google Scholar]
  9. Formica M.L. Ullio Gamboa G.V. Tártara L.I. Luna J.D. Benoit J.P. Palma S.D. Triamcinolone acetonide-loaded lipid nanocapsules for ophthalmic applications. Int. J. Pharm. 2020 573 118795 10.1016/j.ijpharm.2019.118795 31682964
    [Google Scholar]
  10. Mohsen K. Azzazy H.M.E. Allam N.K. Basalious E.B. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: in vitro optimization and in vivo pharmacokinetic study. Mater. Sci. Eng. C 2020 116 111236 10.1016/j.msec.2020.111236 32806316
    [Google Scholar]
  11. Kumar P. Yadav N. Chaudhary B. Lipid nanocapsule: A novel approach to drug delivery system formulation development. Curr. Pharm. Biotechnol. 2024 25 3 268 284 10.2174/1389201024666230523114350 37231750
    [Google Scholar]
  12. Huynh N.T. Passirani C. Saulnier P. Benoît J.P. Lipid nanocapsules: A new platform for nanomedicine. Int. J. Pharm. 2009 379 2 201 209 10.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  13. Safwat S. Hathout R.M. Ishak R.A. Mortada N.D. Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: A potential for breast cancer treatment. J. Liposome Res. 2017 27 1 1 10 10.3109/08982104.2015.1137313 26872624
    [Google Scholar]
  14. Molaahmadi M.R. Varshosaz J. Taymouri S. Akbari V. Lipid nanocapsules for imatinib delivery: Design, optimization and evaluation of anticancer activity against melanoma cell line. Iran. J. Pharm. Res. 2019 18 4 1676 1693 10.22037/ijpr.2019.1100870 32184838
    [Google Scholar]
  15. Radwan Y. Arafa K.K. Ghoniem M.G. Al-Farraj E.S. El-Sherbiny I.M. An in-vitro quantitative investigation on the synergistic effect of capsaicin and 5-fluorouracil encapsulated into lipid nanocapsules to treat breast cancer. Drug Dev. Ind. Pharm. 2023 49 3 271 280 10.1080/03639045.2023.2203252 37067846
    [Google Scholar]
  16. Zhai Y. Liu M. Wan M. Li Y. Zhang M. Zhai G. Preparation and characterization of puerarin-loaded lipid nanocapsules. J. Nanosci. Nanotechnol. 2015 15 4 2643 2649 10.1166/jnn.2015.9514 26353476
    [Google Scholar]
  17. Heikal L.A. El-Habashy S.E. El-Kamel A.H. Mehanna R.A. Ashour A.A. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int. J. Pharm. 2024 661 124458 10.1016/j.ijpharm.2024.124458 38996823
    [Google Scholar]
  18. Gumustas M. Sengel-Turk C. Badilli U. Amasya G. Ozkan S. Tarimci N. Optimization of stability indicating LC method for the sensitive in vitro determination from solid lipid nanoparticles and ex vivo analysis from rat skin of etofenamate. Curr. Pharm. Anal. 2016 13 1 63 71 10.2174/1573412912666160422150845
    [Google Scholar]
  19. Chaudhari M.V. Chaudhari U. Sahu J.K. Bagade S.B. Stability indicating method development and validation for the estimation of bempedoic acid by RP-HPLC. Drug Metabolism Bioanalys Letter 2024 17 1 23 33 10.2174/0118723128278080240404052506 38994699
    [Google Scholar]
  20. Gumustas M. Sengel-Turk C.T. Hascicek C. Ozkan S.A. Optimization of a validated stability‐indicating RP‐LC method for the determination of fulvestrant from polymeric based nanoparticle systems, drugs and biological samples. Biomed. Chromatogr. 2014 28 10 1409 1417 10.1002/bmc.3183 24861889
    [Google Scholar]
  21. Reçber T. Timur S.S. Erdoğan Kablan S. A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies. J. Pharm. Biomed. Anal. 2022 214 114693 10.1016/j.jpba.2022.114693 35276385
    [Google Scholar]
  22. Gashaw M. Layloff T. Hymete A. Ashenef A. Stability indicating high performance thin layer chromatography method development and validation for quantitative determination of tetracycline hydrochloride in tetracycline hydrochloride active pharmaceutical ingredient (API) and its dosage forms. BMC Chem. 2024 18 1 82 10.1186/s13065‑024‑01183‑6 38659043
    [Google Scholar]
  23. Heurtault B. Saulnier P. Pech B. Proust J.E. Benoit J.P. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 2002 19 6 875 880 10.1023/A:1016121319668 12134960
    [Google Scholar]
  24. Varshosaz J. Taymouri S. Jahanian-Najafabadi A. Alizadeh A. Efavirenz oral delivery via lipid nanocapsules: Formulation, optimisation, and ex‐vivo gut permeation study. IET Nanobiotechnol. 2018 12 6 795 806 10.1049/iet‑nbt.2018.0006 30104454
    [Google Scholar]
  25. El-Sheridy N.A. Ramadan A.A. Eid A.A. El-Khordagui L.K. Itraconazole lipid nanocapsules gel for dermatological applications: in vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf. B Biointerfaces 2019 181 623 631 10.1016/j.colsurfb.2019.05.057 31202972
    [Google Scholar]
  26. Bohley M. Haunberger A. Goepferich A.M. Intracellular availability of poorly soluble drugs from lipid nanocapsules. Eur. J. Pharm. Biopharm. 2019 139 23 32 10.1016/j.ejpb.2019.03.007 30851353
    [Google Scholar]
  27. Ashour A.A. Ramadan A.A. Abdelmonsif D.A. El-Kamel A.H. Enhanced oral bioavailability of Tanshinone IIA using lipid nanocapsules: Formulation, in-vitro appraisal and pharmacokinetics. Int. J. Pharm. 2020 586 119598 10.1016/j.ijpharm.2020.119598 32629068
    [Google Scholar]
  28. Lollo G. Ullio-Gamboa G. Fuentes E. Matha K. Lautram N. Benoit J.P. in vitro anti-cancer activity and pharmacokinetic evaluation of curcumin-loaded lipid nanocapsules. Mater. Sci. Eng. C 2018 91 859 867 10.1016/j.msec.2018.06.014 30033321
    [Google Scholar]
  29. Tiatragoon W. Laffleur F. Netsomboon K. Development of curcumin-loaded lipid nanocapsules for drug delivery across mucus. J. Drug Deliv. Sci. Technol. 2024 99 106014 10.1016/j.jddst.2024.106014
    [Google Scholar]
  30. Zhang Y. Huo M. Zhou J. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010 12 3 263 271 10.1208/s12248‑010‑9185‑1 20373062
    [Google Scholar]
  31. Devarakonda B. Hill R.A. Liebenberg W. Brits M. de Villiers M.M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm. 2005 304 1-2 193 209 10.1016/j.ijpharm.2005.07.023 16198076
    [Google Scholar]
  32. Chaitra V.M. Sagheer Ahmed S. Annegowda H.V. Chetan I.A. Ramesh B. Majumder M. A simultaneous liquid chromatographic analysis of niclosamide and bicalutamide in rat plasma by protein precipitation extraction. Ann. Pharm. Fr. 2022 80 5 678 686 10.1016/j.pharma.2021.12.005 34968480
    [Google Scholar]
  33. Han S. Yu H. Pei Y. Chi Y. Selectivity-column temperature relationship as a new strategy in predicting separation of structural analogues in HPLC by using different stationary phases. RSC Advances 2015 5 77 62686 62696 10.1039/C5RA09524G
    [Google Scholar]
  34. Haseeb A. Fernandes M.X. Samuelsson J. Modelling the pH dependent retention and competitive adsorption of charged and ionizable solutes in mixed-mode and reversed-phase liquid chromatography. J. Chromatogr. A 2024 1730 465058 10.1016/j.chroma.2024.465058 38876077
    [Google Scholar]
  35. Wiczling P. Kubik Ł. Kaliszan R. pH effects on chromatographic retention modes. Analytical Separation Science. Wiley 2015 263 78 10.1002/9783527678129.assep013
    [Google Scholar]
  36. Cholifah S. Farina Kartinasari W. Indrayanto G. Simultaneous HPLC determination of levamisole hydrochloride and anhydrous niclosamide in veterinary powders, and its validation. J. Liq. Chromatogr. Relat. Technol. 2007 31 2 281 291 10.1080/10826070701739132
    [Google Scholar]
  37. Paghadar C. Vadia N.H. Development and validation of stability indicating RP-HPLC and HPTLC for determination of Niclosamide in bulk and in synthetic mixture. Arab. J. Chem. 2019 12 8 1803 1814 10.1016/j.arabjc.2014.11.064
    [Google Scholar]
  38. Ye Y. Zhang X. Zhang T. Wang H. Wu B. Design and evaluation of injectable niclosamide nanocrystals prepared by wet media milling technique. Drug Dev. Ind. Pharm. 2015 41 9 1416 1424 10.3109/03639045.2014.954585 25204767
    [Google Scholar]
  39. Lu D. Ma Z. Zhang T. Zhang X. Wu B. Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: Metabolite elucidation and main contributions from CYP1A2 and UGT1A1. Xenobiotica 2016 46 1 1 13 10.3109/00498254.2015.1047812 26068521
    [Google Scholar]
  40. Guideline I.C.H. Validation of analytical procedures: Text and methodology. ICH Harmonised Tripartite Guideline 2005 1 20 5
    [Google Scholar]
  41. Gamboa G.V.U. Palma S.D. Lifschitz A. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol. Res. 2016 115 5 1945 1953 10.1007/s00436‑016‑4937‑1 26852126
    [Google Scholar]
  42. Abdel-Rashid R.S. Helal D.A. Alaa-Eldin A.A. Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. Drug Deliv. 2022 29 1 294 304 10.1080/10717544.2022.2026535 35037528
    [Google Scholar]
  43. Vakilzadeh H. Varshosaz J. Soghrati S. Enhanced solubility and permeability of naringenin across non-everted sacs of rat small intestine by lipid nanocapsules. Recent Pat. Nanotechnol. 2021 15 1 55 69 10.2174/1872210514666200731181130 32735533
    [Google Scholar]
  44. Lamprecht A. Bouligand Y. Benoit J.P. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release 2002 84 1-2 59 68 10.1016/S0168‑3659(02)00258‑4 12399168
    [Google Scholar]
  45. Abdel-Mottaleb M.M.A. Neumann D. Lamprecht A. in vitro drug release mechanism from lipid nanocapsules (LNC). Int. J. Pharm. 2010 390 2 208 213 10.1016/j.ijpharm.2010.02.001 20149853
    [Google Scholar]
  46. Ding B. Chen H. Wang C. Zhai Y. Zhai G. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules. J. Nanosci. Nanotechnol. 2013 13 10 6546 6552 10.1166/jnn.2013.7763 24245113
    [Google Scholar]
  47. Hatahet T. Morille M. Shamseddin A. Aubert-Pouëssel A. Devoisselle J.M. Bégu S. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int. J. Pharm. 2017 518 1-2 167 176 10.1016/j.ijpharm.2016.12.043 28011344
    [Google Scholar]
  48. Amara R. Ramadan A. El-Moslemany R. Eissa M. El-Azzouni M. El-Khordagui L. Praziquantel–lipid nanocapsules: An oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int. J. Nanomedicine 2018 13 4493 4505 10.2147/IJN.S167285 30122922
    [Google Scholar]
  49. Ibrahim M.M. Basalious E.B. El-Nabarawi M.A. Makhlouf A.I.A. Sayyed M.E. Ibrahim I.T. Nose to brain delivery of mirtazapine via lipid nanocapsules: Preparation, statistical optimization, radiolabeling, in vivo biodistribution and pharmacokinetic study. Drug Deliv. Transl. Res. 2024 14 9 2539 2557 10.1007/s13346‑024‑01528‑7 38376620
    [Google Scholar]
  50. Kamel Y.N. El-Marakby E.M. Gad H.A. Intravenous delivery of furosemide using lipid-based versus polymer-based nanocapsules: in vitro and in vivo studies. Pharm. Dev. Technol. 2024 29 7 738 750 10.1080/10837450.2024.2389855 39105766
    [Google Scholar]
  51. Briot T. Roger E. Lautram N. Verger A. Clavreul A. Lagarce F. Development and in vitro evaluations of new decitabine nanocarriers for the treatment of acute myeloid leukemia. Int. J. Nanomedicine 2017 12 8427 8442 10.2147/IJN.S147659 29200853
    [Google Scholar]
  52. Zhang A. Sun R. Ran M. A novel eyes topical drug delivery system: CsA-LNC for the treatment of DED. Pharm. Res. 2020 37 7 146 10.1007/s11095‑020‑02872‑2 32666340
    [Google Scholar]
  53. Arrua E.C. Hartwig O. Loretz B. Formulation of benznidazole-lipid nanocapsules: Drug release, permeability, biocompatibility, and stability studies. Int. J. Pharm. 2023 642 123120 10.1016/j.ijpharm.2023.123120 37307960
    [Google Scholar]
  54. Bseiso E.A. AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA. Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv. 2022 29 1 2469 2480 10.1080/10717544.2022.2104405 35892291
    [Google Scholar]
  55. Cordeiro Lima Fernandes P. David de Moura L. Freitas de Lima F. Henrique Rodrigues da Silva G. Isaias Carvalho Souza R. de Paula E. Lipid nanocapsules loaded with prilocaine and lidocaine and incorporated in gel for topical application. Int. J. Pharm. 2021 602 120675 10.1016/j.ijpharm.2021.120675 33961954
    [Google Scholar]
  56. He J. Ding R. Tao Y. Folic acid-modified reverse micelle-lipid nanocapsules overcome intestinal barriers and improve the oral delivery of peptides. Drug Deliv. 2023 30 1 2181744 10.1080/10717544.2023.2181744 36855953
    [Google Scholar]
  57. Selmi M. Salek A. Barboura M. Thymoquinone-loaded lipid nanocapsules with promising anticancer activity for colorectal cancer. Nanoscale Adv. 2023 5 19 5390 5398 10.1039/D3NA00445G 37767034
    [Google Scholar]
  58. Christensen G. Urimi D. Lorenzo-Soler L. Schipper N. Paquet-Durand F. Ocular permeability, intraocular biodistribution of lipid nanocapsule formulation intended for retinal drug delivery. Eur. J. Pharm. Biopharm. 2023 187 175 183 10.1016/j.ejpb.2023.04.012 37088247
    [Google Scholar]
  59. Sengel-Turk C.T. Ozkan E. Bakar-Ates F. Box-Behnken design optimization and in vitro cell based evaluation of piroxicam loaded core-shell type hybrid nanocarriers for prostate cancer. J. Pharm. Biomed. Anal. 2022 216 114799 10.1016/j.jpba.2022.114799 35525111
    [Google Scholar]
  60. Xia N. Liu T. Wang Q. Xia Q. Bian X. In vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery. J. Microencapsul. 2017 34 6 571 581 10.1080/02652048.2017.1367852 28830289
    [Google Scholar]
  61. Mouzouvi C.R.A. Umerska A. Bigot A.K. Saulnier P. Surface active properties of lipid nanocapsules. PLoS One 2017 12 8 e0179211 10.1371/journal.pone.0179211 28796777
    [Google Scholar]
  62. Ayoub V.R. Abdel-Mottaleb M.M.A. Ibrahem I.T. Motaleb M.A. Geneidi A.S. Novel radioiodinated desvenlafaxine‐loaded lipid nanocapsule for brain delivery. Arch. Pharm. (Weinheim) 2024 357 4 2300618 10.1002/ardp.202300618 38161231
    [Google Scholar]
  63. Kalvodová A. Dvořáková K. Petrová E. Michniak-Kohn B.B. Zbytovská J. The Contest of nanoparticles: Searching for the most effective topical delivery of corticosteroids. Pharmaceutics 2023 15 2 513 10.3390/pharmaceutics15020513 36839836
    [Google Scholar]
  64. Wu L. Huang W. Peng K. Wang Y. Chen Q. Lu B. Enhancing the stability, BBB permeability and neuroprotective activity of verbascoside in vitro using lipid nanocapsules in combination with menthol. Food Chem. 2023 414 135682 10.1016/j.foodchem.2023.135682 36827775
    [Google Scholar]
  65. Kahan B.C. Bias in randomised factorial trials. Stat. Med. 2013 32 26 4540 4549 10.1002/sim.5869 23733397
    [Google Scholar]
  66. Abdul Rasool B.K. Mohammed A.A. Salem Y.Y. The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies. Sci. Pharm. 2021 89 3 33 10.3390/scipharm89030033
    [Google Scholar]
  67. Zuo J. Gao Y. Bou-Chacra N. Löbenberg R. Evaluation of the DDSolver software applications. BioMed Res. Int. 2014 2014 1 1 9 10.1155/2014/204925 24877067
    [Google Scholar]
  68. Papadopoulou V. Kosmidis K. Vlachou M. Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006 309 1-2 44 50 10.1016/j.ijpharm.2005.10.044 16376033
    [Google Scholar]
  69. Tomic I. Vidis-Millward A. Mueller-Zsigmondy M. Cardot J-M. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism. Int. J. Pharm. 2016 505 1-2 42 51 10.1016/j.ijpharm.2016.03.048 27025293
    [Google Scholar]
  70. Heredia N.S. Vizuete K. Flores-Calero M. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022 17 3 e0264825 10.1371/journal.pone.0264825 35271644
    [Google Scholar]
  71. Martín-Camacho U.J. Rodríguez-Barajas N. Sánchez-Burgos J.A. Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int. J. Pharm. 2023 640 123017 10.1016/j.ijpharm.2023.123017 37149112
    [Google Scholar]
  72. Pena-Rodríguez E. Lajarin-Reinares M. Mata-Ventosa A. Pérez-Torras S. Fernández-Campos F. Dexamethasone-loaded lipomers: Development, characterization, and skin biodistribution studies. Pharmaceutics 2021 13 4 533 10.3390/pharmaceutics13040533 33920403
    [Google Scholar]
  73. Wu I.Y. Bala S. Škalko-Basnet N. di Cagno M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019 138 105026 10.1016/j.ejps.2019.105026 31374254
    [Google Scholar]
  74. Rahman M. Afzal O. Altamimi A.S.A. Paclitaxel and curcumin as dual-drug-loaded lipid nanocapsules in the management of brain tumour. J. Cluster Sci. 2023 34 4 1927 1938 10.1007/s10876‑022‑02362‑y
    [Google Scholar]
  75. El-Tokhy F.S. Abdel-Mottaleb M.M.A. Abdel Mageed S.S. Mahmoud A.M.A. El-Ghany E.A. Geneidi A.S. Boosting the in vivo transdermal bioavailability of asenapine maleate using novel lavender oil-based lipid nanocapsules for management of schizophrenia. Pharmaceutics 2023 15 2 490 10.3390/pharmaceutics15020490 36839811
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128385620250829061535
Loading
/content/journals/cpd/10.2174/0113816128385620250829061535
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Box-Behnken design ; optimization ; validation ; lipid nanocapsules ; HPLC ; Niclosamide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test