Skip to content
2000
image of Astragalus-Safflower Combination Promotes Vascular Neogenesis in a Rat Model of Ischemic Stroke via Inhibition of MAPK/NF-κB and Activation of VEGF/Notch1 Pathways

Abstract

Introduction

The combination of Astragalus membranaceus and Safflower (AS) is known for its efficacy in benefiting Qi and activating blood circulation, making it a frequently used empirical combination in traditional Chinese medicine. Numerous reports have highlighted the interventional effect of this combination in treating ischemic stroke (IS). However, the active ingredients and potential mechanisms underlying its treatment of stroke have not been fully elucidated.

Methods

Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), along with various data processing methods, were utilized to identify and assess the chemical constituents in rat serum following AS gavage administration. Chemical constituent targets were predicted using the SEA and Swiss Target Prediction databases, while IS-related targets were sourced from the GeneCards, OMIM, and TTD databases. The intersecting targets of constituents and diseases were screened, and a core target network map was constructed using the String database and Cytoscape software. KEGG pathway enrichment of core targets was analyzed using DAVID and Metascape databases. The middle cerebral artery occlusion (MCAO) rat model was established to evaluate the cerebroprotective effects of AS. The accuracy of predicted pathways was validated using immunofluorescence (IF) and Western blot (WB) analyses.

Results

Thirty-five ingredients in serum were identified, and 437 targets and 3748 IS-related targets were identified, 291 of which overlapped. Protein-protein interaction (PPI) analysis predicted 15 major targets, including TNF and MAPK3. KEGG pathway analysis indicated that the MAPK/NF-κB and VEGF/Notch1 signaling pathways may play pivotal roles in the therapeutic effects of AS in IS. Moreover, AS significantly ameliorated neurological and motor function impairments, as well as brain histopathological damage, in MCAO rats. AS treatment led to reduced levels of the inflammatory cytokines IL-6 and TNF-α, inhibited astrocyte hyperactivation, decreased nuclear translocation of NF-κB p65, reduced expression of p-MAPK (Erk1/2)/ MAPK (Erk1/2) and p-NF-κB (p65)/NF-κB (p65) proteins, increased the number of CD31+/Ki67+ and VEGF+/ Ki67+-positive vessels, and upregulated the expression of VEGF, VEGFR-2, Notch1, and DLL4 proteins.

Conclusion

AS may regulate MAPK/NF-κB and VEGF/Notch1 pathways to reduce inflammation and promote post-ischemic neovascularization, providing a promising method for the treatment of ischemic stroke.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128381137250716212446
2025-07-31
2025-11-02
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128381137250716212446/BMS-CPD-2024-1411.html?itemId=/content/journals/cpd/10.2174/0113816128381137250716212446&mimeType=html&fmt=ahah

References

  1. Campbell B.C.V. De Silva D.A. Macleod M.R. Ischaemic stroke. Nat. Rev. Dis. Primers 2019 5 1 70 10.1038/s41572‑019‑0118‑8 31601801
    [Google Scholar]
  2. Zhang M. Liu Q. Meng H. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024 9 1 12 10.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  3. Fang J. Wang Z. Miao C. Angiogenesis after ischemic stroke. Acta Pharmacol. Sin. 2023 44 7 1305 1321 10.1038/s41401‑023‑01061‑2 36829053
    [Google Scholar]
  4. Le J. Xiao X. Zhang D. Neuroprotective effects of an edible pigment brilliant blue FCF against behavioral abnormity in MCAO rats. Pharmaceuticals 2022 15 8 1018 10.3390/ph15081018 36015166
    [Google Scholar]
  5. Geng Y.Q. Qiu L.N. Cheng Y.Q. Alleviating recombinant tissue plasminogen activator‐induced hemorrhagic transformation in ischemic stroke via targeted delivery of a ferroptosis inhibitor. Adv. Sci. 2024 11 24 2309517 10.1002/advs.202309517 38647405
    [Google Scholar]
  6. Orellana-Urzúa S. Rojas I. Líbano L. Rodrigo R. Pathophysiology of ischemic stroke: Role of oxidative stress. Curr. Pharm. Des. 2020 26 34 4246 4260 10.2174/1381612826666200708133912 32640953
    [Google Scholar]
  7. Qin C. Yang S. Chu Y.H. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  8. Alsbrook D.L. Di Napoli M. Bhatia K. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  9. Candelario-Jalil E. Dijkhuizen R.M. Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022 53 5 1473 1486 10.1161/STROKEAHA.122.036946 35387495
    [Google Scholar]
  10. Schulze-Osthoff K. Ferrari D. Riehemann K. Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology 1997 198 1-3 35 49 10.1016/S0171‑2985(97)80025‑3 9442376
    [Google Scholar]
  11. Gu J. Su S. Guo J. Zhu Y. Zhao M. Duan J. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats. J. Pharm. Pharmacol. 2018 70 2 268 277 10.1111/jphp.12841 29193143
    [Google Scholar]
  12. Yang Y. Torbey M.T. Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr. Neuropharmacol. 2020 18 12 1250 1265 10.2174/1570159X18666200720173316 32691713
    [Google Scholar]
  13. Zhang W. Han L. Wen Y. Su L. Li Y. Luo X. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia‐reperfusion injury. Brain Behav. 2023 13 3 e2912 10.1002/brb3.2912 36786352
    [Google Scholar]
  14. Wang Y. Shen Y. Liu Z. Dl-NBP (Dl-3-N-Butylphthalide) treatment promotes neurological functional recovery accompanied by the upregulation of white matter integrity and HIF-1α/VEGF/] Notch/Dll4 expression. Front. Pharmacol. 2020 10 1595 10.3389/fphar.2019.01595 32038259
    [Google Scholar]
  15. Gao P. Shi H. Jin X. Guo S. Zhou X. Gao W. Mechanism of astragaloside IV regulating NLRP3 through LOC102555978 to attenuate cerebral ischemia reperfusion induced microglia pyroptosis. Int. Immunopharmacol. 2024 131 111862 10.1016/j.intimp.2024.111862 38513574
    [Google Scholar]
  16. Xu S. Yang J. Wan H. Yu L. He Y. Combination of radix astragali and safflower promotes angiogenesis in rats with ischemic stroke via silencing PTGS2. Int. J. Mol. Sci. 2023 24 3 2126 10.3390/ijms24032126 36768450
    [Google Scholar]
  17. Wang K. Chen Y. Cao J. Mechanism of Huangqi-Honghua combination regulating the gut microbiota to affect bile acid metabolism towards preventing cerebral ischaemia-reperfusion injury in rats. Pharm. Biol. 2022 60 1 2189 2199 10.1080/13880209.2022.2136209 36307999
    [Google Scholar]
  18. Zhao D. Zhang X. Jin W. Huang P. Wan H. He Y. Efficacy of Astragalus membranaceus–Carthamus tinctorius in cerebral ischemia/reperfusion injury: Insights from metabolomics and mass spectrometry imaging. Phytomedicine 2024 133 155881 10.1016/j.phymed.2024.155881 39059267
    [Google Scholar]
  19. Li B. Zhang B. Li Z. Ginkgolide C attenuates cerebral ischemia/reperfusion-induced inflammatory impairments by suppressing CD40/NF-κB pathway. J. Ethnopharmacol. 2023 312 116537 10.1016/j.jep.2023.116537 37094696
    [Google Scholar]
  20. Zhang Y. He Y. Wu M. Rehmapicroside ameliorates cerebral ischemia-reperfusion injury via attenuating peroxynitrite-mediated mitophagy activation. Free Radic. Biol. Med. 2020 160 526 539 10.1016/j.freeradbiomed.2020.06.034 32784031
    [Google Scholar]
  21. Liu W. Zhou X. Zeng K. Study on the action mechanism of Buyang Huanwu Decoction against ischemic stroke based on S1P/S1PR1/PI3K/Akt signaling pathway. J. Ethnopharmacol. 2023 312 116471 10.1016/j.jep.2023.116471 37030556
    [Google Scholar]
  22. Wei W. Li H. Deng Y. Zheng X. Zhou Y. Xue X. The combination of Alisma and Atractylodes ameliorates cerebral ischaemia/] reperfusion injury by negatively regulating astrocyte-derived exosomal miR-200a-3p/141-3p by targeting SIRT1. J. Ethnopharmacol. 2023 313 116597 10.1016/j.jep.2023.116597 37146842
    [Google Scholar]
  23. Mazhar M. Yang G. Xu H. Zhilong Huoxue Tongyu capsule attenuates intracerebral hemorrhage induced redox imbalance by modulation of Nrf2 signaling pathway. Front. Pharmacol. 2023 14 1197433 10.3389/fphar.2023.1197433 37351503
    [Google Scholar]
  24. Cao J. Chen Z. Zhu Y. Huangqi−Honghua combination and its main components ameliorate cerebral infarction with Qi deficiency and blood stasis syndrome by antioxidant action in rats. J. Ethnopharmacol. 2014 155 2 1053 1060 10.1016/j.jep.2014.05.061 24960183
    [Google Scholar]
  25. Du Y. Li C. Xu S. Yang J. Wan H. He Y. LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: Application in pharmacokinetic and pharmacodynamic study. Phytomedicine 2022 106 154432 10.1016/j.phymed.2022.154432 36113188
    [Google Scholar]
  26. Ge N. Li Z. Yang L. Development and validation of a UPLC-MS/MS method for the quantification of components in the ancient classical chinese medicine formula of guyinjian. Molecules 2022 27 23 8611 10.3390/molecules27238611 36500703
    [Google Scholar]
  27. Yu S. Zou Y. Ma X. Evolution of LC–MS/MS in clinical laboratories. Clin. Chim. Acta 2024 555 117797 10.1016/j.cca.2024.117797 38280490
    [Google Scholar]
  28. Chen A.Q. Fang Z. Chen X.L. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 2019 10 7 487 10.1038/s41419‑019‑1716‑9 31221990
    [Google Scholar]
  29. Lockard G.M. Alayli A. Monsour M. Probing Interleukin-6 in stroke pathology and neural stem cell transplantation. Int. J. Mol. Sci. 2022 23 24 15453 10.3390/ijms232415453 36555094
    [Google Scholar]
  30. Li J. Xu P. Hong Y. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J. Neuroinflammation 2023 20 1 148 10.1186/s12974‑023‑02819‑5 37353794
    [Google Scholar]
  31. Liu M. Xu Z. Wang L. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation 2020 17 1 270 10.1186/s12974‑020‑01946‑7 32917229
    [Google Scholar]
  32. Yu H. Lin L. Zhang Z. Zhang H. Hu H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020 5 1 209 10.1038/s41392‑020‑00312‑6 32958760
    [Google Scholar]
  33. Akhter N. Wilson A. Arefanian H. Endoplasmic reticulum stress promotes the expression of TNF-α in THP-1 cells by mechanisms involving ROS/CHOP/HIF-1α and MAPK/NF-κB pathways. Int. J. Mol. Sci. 2023 24 20 15186 10.3390/ijms242015186 37894865
    [Google Scholar]
  34. Yu Z. Su G. Zhang L. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER-ERK-NF-κB signaling pathway. Mol. Med. 2022 28 1 142 10.1186/s10020‑022‑00573‑7 36447154
    [Google Scholar]
  35. Zhou W. Hou Y. Yu T. Wang T. Ding Y. Nie H. Submersion and hypoxia inhibit alveolar epithelial Na+ transport through ERK/NF-κB signaling pathway. Respir. Res. 2023 24 1 117 10.1186/s12931‑023‑02428‑z 37095538
    [Google Scholar]
  36. Kanazawa M. Hatakeyama M. Ninomiya I. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen. Res. 2020 15 1 16 19 10.4103/1673‑5374.264442 31535636
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128381137250716212446
Loading
/content/journals/cpd/10.2174/0113816128381137250716212446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: UPLC-Q-TOF/MS ; neuroinflammation ; angiogenesis ; safflower ; Astragalus ; MCAO ; network pharmacology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test