Skip to content
2000
Volume 32, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cancer is still one of the most serious and life-threatening diseases in humans, and the conventional chemotherapies, radiation treatments, and surgical methods have yet to provide an effective resolution due to some drawbacks concerning drug resistance, general toxicity, and poor targeting to tumor sites. To surmount these challenges, some innovative approaches are under exploration; hence, the emergence of more promising solutions in the format of nanotechnology that combine with stem cell (SC)-based drug delivery systems (DDS). Its advantages include autonomous proliferative potential and the ability to clonally generate various cell types, leading to malignant transformation. Additionally, they possess an innate ability to migrate toward tumor sites, making them highly effective vectors for targeted DDS. The integration of nanotechnology with SCs offers several benefits, such as controlled release of therapeutic molecules, improved bioavailability, and reduced systemic toxicity. These advantages may provide the opportunity to improve cancer therapy with fewer side effects than those resulting from conventional treatments. This review has focused on the emerging role of SC-nanotechnology-based DDS as a new era in targeted cancer treatment and has emphasized enhancing therapeutic outcomes with a more precise approach to cancer therapy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128379044250620122425
2025-07-08
2026-02-14
Loading full text...

Full text loading...

References

  1. HussainM.S. AfzalO. GuptaG. AltamimiA.S.A. AlmalkiW.H. AlzareaS.I. KazmiI. FuloriaN.K. SekarM. MeenakshiD.U. ThangaveluL. SharmaA. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling.Pathol. Res. Pract.202324915473810.1016/j.prp.2023.15473837595448
    [Google Scholar]
  2. MirR.H. MaqboolM. MirP.A. HussainM.S. din WaniS. PottooF.H. Mohi-ud-dinR. Green synthesis of silver nanoparticles and their potential applications in mitigating cancer.Curr. Pharm. Des.202430312445246710.2174/011381612829170524042806045638726783
    [Google Scholar]
  3. SuY. ZhangT. HuangT. GaoJ. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements.Int. J. Pharm.202160012047710.1016/j.ijpharm.2021.12047733737099
    [Google Scholar]
  4. ChuD.T. NguyenT.T. TienN.L.B. TranD.K. JeongJ.H. AnhP.G. ThanhV.V. TruongD.T. DinhT.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications.Cells20209356310.3390/cells903056332121074
    [Google Scholar]
  5. RamdasiS. SarangS. ViswanathanC. Potential of mesenchymal stem cell based application in cancer.Int. J. Hematol. Oncol. Stem Cell Res.2015929510325922650
    [Google Scholar]
  6. LiuX. LiW. FuX. XuY. The immunogenicity and immune tolerance of pluripotent stem cell derivatives.Front. Immunol.2017864510.3389/fimmu.2017.0064528626459
    [Google Scholar]
  7. KimH.J. ParkJ.S. Usage of human mesenchymal stem cells in cell-based therapy: Advantages and disadvantages.Dev. Reprod.201721111028484739
    [Google Scholar]
  8. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  9. PrinceAM HussainMS Ahmad KhandayM. Mohi-ud-dinR. PottooFH MirRH Immunomodulatory roles of mesenchymal stem cell-derived extracellular vesicles: A promising therapeutic approach for autoimmune diseases.Curr. Stem Cell Res. Ther.20242010.2174/011574888X34178124121604413039757602
    [Google Scholar]
  10. JinY. LiS. YuQ. ChenT. LiuD. Application of stem cells in regeneration medicine.MedComm202344e29110.1002/mco2.29137337579
    [Google Scholar]
  11. FrancoisS. MouiseddineM. Allenet-LepageB. VoswinkelJ. DouayL. BenderitterM. ChapelA. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects.BioMed Res. Int.2013201311410.1155/2013/15167924369528
    [Google Scholar]
  12. ZhangB. YeoR. TanK. LimS. Focus on extracellular vesicles: Therapeutic potential of stem cell-derived extracellular vesicles.Int. J. Mol. Sci.201617217410.3390/ijms1702017426861305
    [Google Scholar]
  13. HussainMS GuptaG GhabouraN MogladE AlmalkiWH AlzareaSI Exosomal ncRNAs in liquid biopsies for lung cancer.Clin. Chim. Acta.202556511998310.1016/j.cca.2024.119983
    [Google Scholar]
  14. SamuelP SundarrajS SudarmaniD. Nanotechnology-based stem cell therapy: Current status and perspectives.Possibilities and Limitations in Current Translational Stem Cell ResearchRijekaIntechOpen KitalaD. 202310.5772/intechopen.109275
    [Google Scholar]
  15. Al-ThaniA.N. JanA.G. AbbasM. GeethaM. SadasivuniK.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review.Life Sci.202435212289910.1016/j.lfs.2024.12289938992574
    [Google Scholar]
  16. HussainM.S. SharmaP. DhanjalD.S. KhuranaN. VyasM. SharmaN. MehtaM. TambuwalaM.M. SatijaS. SohalS.S. OliverB.G.G. SharmaH.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.Chem. Biol. Interact.202134810963710.1016/j.cbi.2021.10963734506765
    [Google Scholar]
  17. HmadchaA. Martin-MontalvoA. GauthierB.R. SoriaB. Capilla- GonzalezV. Therapeutic potential of mesenchymal stem cells for cancer therapy.Front. Bioeng. Biotechnol.202084310.3389/fbioe.2020.0004332117924
    [Google Scholar]
  18. LimS. KhooB. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review).Oncol. Lett.202122578510.3892/ol.2021.1304634594426
    [Google Scholar]
  19. AsghariF. KhademiR. RanjbarFE MalekshahiZV MajidiRF Application of nanotechnology in targeting of cancer stem cells: A review.Int. J. Stem Cells201912222723910.15283/ijsc1900631242721
    [Google Scholar]
  20. WangX. GaoJ.Q. OuyangX. WangJ. SunX. LvY. Mesenchymal stem cells loaded with paclitaxel–poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy.Int. J. Nanomedicine2018135231524810.2147/IJN.S16714230237710
    [Google Scholar]
  21. LayekB. ShettyM. NethiS.K. SehgalD. StarrT.K. PrabhaS. Mesenchymal stem cells as guideposts for nanoparticle-mediated targeted drug delivery in ovarian cancer.Cancers202012496510.3390/cancers1204096532295145
    [Google Scholar]
  22. VicinanzaC. LombardiE. RosF.D. MarangonM. DuranteC. MazzucatoM. AgostiniF. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications.World J. Stem Cells2022141547510.4252/wjsc.v14.i1.5435126828
    [Google Scholar]
  23. AlimardaniV. RahiminezhadZ. DehghanKholdM. FarahavarG. JafariM. AbediM. MoradiL. NiroumandU. AshfaqM. AbolmaaliS.S. YousefiG. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis.Drug Deliv. Transl. Res.202313118922110.1007/s13346‑022‑01211‑936074253
    [Google Scholar]
  24. HussainM.S. TyagiS. KhatriH. SinghS. Stem cell therapy for myocardial infarction: A mini-review.Asian J. Pharm. Res. Dev.202210212212410.22270/ajprd.v10i2.1155
    [Google Scholar]
  25. AuffingerB. MorshedR. TobiasA. ChengY. AhmedA.U. LesniakM.S. Drug-loaded nanoparticle systems and adult stem cells: A potential marriage for the treatment of malignant glioma?Oncotarget20134337839610.18632/oncotarget.93723594406
    [Google Scholar]
  26. LvL. ShiY. WuJ. LiG. Nanosized drug delivery systems for breast cancer stem cell targeting.Int. J. Nanomedicine2021161487150810.2147/IJN.S28211033654398
    [Google Scholar]
  27. BaigM.S. AhmadA. PathanR.R. MishraR.K. Precision nanomedicine with bio-inspired nanosystems: Recent trends and challenges in mesenchymal stem cells membrane-coated bioengineered nanocarriers in targeted nanotherapeutics.J. Xenobiot.202414382787210.3390/jox1403004739051343
    [Google Scholar]
  28. LanaoJ.M. Gutiérrez-MillánC. ColinoC.I. Cell-based drug delivery platforms.Pharmaceutics2020131210.3390/pharmaceutics1301000233374912
    [Google Scholar]
  29. GuptaG. HussainM.S. ThapaR. DahiyaR. MahapatraD.K. BhatA.A. SinglaN. SubramaniyanV. RawatS. JakhmolaV. SR. DuaK. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19.Regen. Med.202318967567810.2217/rme‑2023‑007737554111
    [Google Scholar]
  30. de la TorreP. Pérez-LorenzoM.J. Alcázar-GarridoÁ. FloresA.I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments.Molecules202025371510.3390/molecules2503071532046010
    [Google Scholar]
  31. ThamaraiP KarishmaS KamaleshR ShajiA SaravananA BibiS Current advancements in nanotechnology for stem cells.Int. Surg. J.2024110127456747610.1097/JS9.0000000000002082
    [Google Scholar]
  32. HussainMJAL Nanotoxicology: Nano toxicity in humans.Acad. Lett.202110.20935/AL4331
    [Google Scholar]
  33. DongY WuX ChenX ZhouP XuF LiangW Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook.Biomed. Pharmacother.202113711123610.1016/j.biopha.2021.111236
    [Google Scholar]
  34. TiwariA. TiwariV. SharmaA. MarrisettiA.L. KumarM. RochaniA. KaushikD. MittalV. Jyothi SR. AliH. HussainM.S. GuptaG. Unlocking the potential: Integrating phytoconstituents and nanotechnology in skin cancer therapy – A comprehensive review.J. Complement. Integr. Med.202410.1515/jcim‑2024‑033839668578
    [Google Scholar]
  35. Chawla PA, Reyaz HM, Chawla A, et al. 9 Nanotoxicity prediction in nanotechnology-driven drugs using QSPR modeling.Computational Drug DeliveryBerlin, BostonDe Gruyter202418322010.1515/9783111208671‑009
    [Google Scholar]
  36. DeligianniD.D. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration.Cell Adhes. Migr.20148655856210.4161/cam.3212425482646
    [Google Scholar]
  37. WangM. LiZ. QiaoH. ChenL. FanY. Effect of gold/Fe3O4 nanoparticles on biocompatibility and neural differentiation of rat olfactory bulb neural stem cells.J. Nanomater.20132013186742610.1155/2013/867426
    [Google Scholar]
  38. FengC. DengL. YongY.Y. WuJ.M. QinD.L. YuL. ZhouX.G. WuA.G. The application of biomaterials in spinal cord injury.Int. J. Mol. Sci.202324181610.3390/ijms2401081636614259
    [Google Scholar]
  39. JainS. BhattJ. GuptaS. BhatiaD.D. Nanotechnology at the crossroads of stem cell medicine.Biomater. Sci.202413116117810.1039/D4BM01257G39584588
    [Google Scholar]
  40. HussainS. KhanM.A. RajanR. JyotiJ. SharmaS. SahuS.K. Nanorobots: The future of healthcare.AIP Conf. Proc.2023280002017110.1063/5.0162904
    [Google Scholar]
  41. AngariaN. SainiS. HussainM.S. SharmaS. SinghG. KhuranaN. KumarR. Natural polymer-based hydrogels: Versatile biomaterials for biomedical applications.Int. J. Polym. Mater.202473171550156810.1080/00914037.2023.2301645
    [Google Scholar]
  42. GuptaG. HussainM.S. PantK. AliH. ThapaR. BhatA.A. Antibody-drug conjugates (ADCs): A novel therapy for triple-negative breast cancer (TNBC).Curr. Cancer Drug Targets202525210811210.2174/011568009634305624082819090039248064
    [Google Scholar]
  43. KazmiI. YadavH.K.S. Al-AbbasiF.A. AfzalM. NadeemM.S. AltaybH.N. RaizadayA. HussainM.S. AliH. ImamF. GuptaG. Design of in-situ implant for the brain-targeted drug delivery using cross-linked gellan gum polymer through response surface methodology.Ann. Pharm. Fr.2025831688010.1016/j.pharma.2024.10.00439419475
    [Google Scholar]
  44. KhosraviN PishavarE BaradaranB OroojalianF MokhtarzadehA Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics.J. Control. Release202234870672210.1016/j.jconrel.2022.06.026
    [Google Scholar]
  45. TanW.B. JiangS. ZhangY. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference.Biomaterials20072881565157110.1016/j.biomaterials.2006.11.01817161865
    [Google Scholar]
  46. SavlaR TaratulaO GarbuzenkoO MinkoT Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer.J. Control. Release20111531162210.1016/j.jconrel.2011.02.015
    [Google Scholar]
  47. RuanJ. SongH. QianQ. LiC. WangK. BaoC. CuiD. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer.Biomaterials201233297093710210.1016/j.biomaterials.2012.06.05322796163
    [Google Scholar]
  48. LiY. HeH. JiaX. LuW.L. LouJ. WeiY. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.Biomaterials201233153899390810.1016/j.biomaterials.2012.02.00422364698
    [Google Scholar]
  49. YangW. ChengY. XuT. WangX. WenL. Targeting cancer cells with biotin–dendrimer conjugates.Eur. J. Med. Chem.200944286286810.1016/j.ejmech.2008.04.02118550227
    [Google Scholar]
  50. MontetX. FunovicsM. Montet-AbouK. WeisslederR. JosephsonL. Multivalent effects of RGD peptides obtained by nanoparticle display.J. Med. Chem.200649206087609310.1021/jm060515m17004722
    [Google Scholar]
  51. TomaA. OtsujiE. KuriuY. OkamotoK. IchikawaD. HagiwaraA. ItoH. NishimuraT. YamagishiH. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma.Br. J. Cancer200593113113610.1038/sj.bjc.660266815970924
    [Google Scholar]
  52. ChandaN. KattumuriV. ShuklaR. ZambreA. KattiK. UpendranA. KulkarniR.R. KanP. FentG.M. CasteelS.W. SmithC.J. BooteE. RobertsonJ.D. CutlerC. LeverJ.R. KattiK.V. KannanR. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity.Proc. Natl. Acad. Sci. USA2010107198760876510.1073/pnas.100214310720410458
    [Google Scholar]
  53. HussainM.S. MujwarS. BabuM.A. GoyalK. ChellappanD.K. NegiP. SinghT.G. AliH. SinghS.K. DuaK. GuptaG. BalaramanA.K. Pharmacological, computational, and mechanistic insights into triptolide’s role in targeting drug-resistant cancers.Naunyn Schmiedebergs Arch. Pharmacol.20253986509653010.1007/s00210‑025‑03809‑5
    [Google Scholar]
  54. AhmadA. KhanF. MishraR.K. KhanR. Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting.J. Med. Chem.20196223104751049610.1021/acs.jmedchem.9b0051131339714
    [Google Scholar]
  55. RajS. KhuranaS. ChoudhariR. KesariK.K. KamalM.A. GargN. RuokolainenJ. DasB.C. KumarD. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.Semin. Cancer Biol.20216916617710.1016/j.semcancer.2019.11.00231715247
    [Google Scholar]
  56. GhaznaviH. AfzalipourR. KhoeiS. SargaziS. ShirvalilouS. SheervalilouR. New insights into targeted therapy of glioblastoma using smart nanoparticles.Cancer Cell Int.202424116010.1186/s12935‑024‑03331‑338715021
    [Google Scholar]
  57. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112433277608
    [Google Scholar]
  58. HassaninI. ElzoghbyA. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance.Cancer Drug Resist.20203493094635582218
    [Google Scholar]
  59. GanY. YuY. XuH. PiaoH. Liposomal nanomaterials: A rising star in glioma treatment.Int. J. Nanomedicine2024196757677638983132
    [Google Scholar]
  60. GabizonA. ShmeedaH. BarenholzY. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies.Clin. Pharmacokinet.200342541943610.2165/00003088‑200342050‑0000212739982
    [Google Scholar]
  61. LawrieT.A. RabbieR. ThomaC. MorrisonJ. Pegylated liposomal doxorubicin for first-line treatment of epithelial ovarian cancer.Cochrane Database Syst. Rev.2013201310CD01048224142521
    [Google Scholar]
  62. GradisharW.J. TjulandinS. DavidsonN. ShawH. DesaiN. BharP. HawkinsM. O’ShaughnessyJ. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.J. Clin. Oncol.200523317794780310.1200/JCO.2005.04.93716172456
    [Google Scholar]
  63. SocinskiM.A. BondarenkoI. KarasevaN.A. MakhsonA.M. VynnychenkoI. OkamotoI. HonJ.K. HirshV. BharP. ZhangH. IglesiasJ.L. RenschlerM.F. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: Final results of a phase III trial.J. Clin. Oncol.201230172055206210.1200/JCO.2011.39.584822547591
    [Google Scholar]
  64. Von HoffD.D. ErvinT. ArenaF.P. ChioreanE.G. InfanteJ. MooreM. SeayT. TjulandinS.A. MaW.W. SalehM.N. HarrisM. ReniM. DowdenS. LaheruD. BaharyN. RamanathanR.K. TaberneroJ. HidalgoM. GoldsteinD. Van CutsemE. WeiX. IglesiasJ. RenschlerM.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.N. Engl. J. Med.2013369181691170310.1056/NEJMoa130436924131140
    [Google Scholar]
  65. Wang-GillamA. LiC.P. BodokyG. DeanA. ShanY.S. JamesonG. MacarullaT. LeeK.H. CunninghamD. BlancJ.F. HubnerR.A. ChiuC.F. SchwartsmannG. SivekeJ.T. BraitehF. MoyoV. BelangerB. DhindsaN. BayeverE. Von HoffD.D. ChenL.T. AdooC. AndersonT. AsselahJ. AzambujaA. BamptonC. BarriosC.H. Bekaii-SaabT. BohuslavM. ChangD. ChenJ-S. ChenY-C. ChoiH.J. ChungI.J. ChungV. CsosziT. CubilloA. DeMarcoL. de WitM. DragovichT. EdenfieldW. FeinL.E. FrankeF. FuchsM. Gonzales-CruzV. GozzaA. FernandoR.H. IaffaioliR. JakesovaJ. KahanZ. KarimiM. KimJ.S. KorbenfeldE. LangI. LeeF-C. LeeK-D. LiptonL. MaW.W. MangelL. MenaR. PalmerD. PantS. ParkJ.O. PiacentiniP. PelzerU. PlazasJ.G. PrasadC. RauK-M. RaoulJ-L. RichardsD. RossP. SchlittlerL. SmakalM. StahalovaV. SternbergC. SeufferleinT. TebbuttN. VinholesJ.J. WadlowR. WenczlM. WongM. NAPOLI-1 Study Group Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial.Lancet20163871001854555710.1016/S0140‑6736(15)00986‑126615328
    [Google Scholar]
  66. NasirmoghadasP. MousakhaniA. BehzadF. BeheshtkhooN. HassanzadehA. NikooM. MehrabiM. KouhbananiM.A.J. Nanoparticles in cancer immunotherapies: An innovative strategy.Biotechnol. Prog.2021372e307010.1002/btpr.307032829506
    [Google Scholar]
  67. XiaY. YangR. ZhuJ. WangH. LiY. FanJ. FuC. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers.Front. Bioeng. Biotechnol.20221089025710.3389/fbioe.2022.89025736394039
    [Google Scholar]
  68. MuluhT.A. ChenZ. LiY. XiongK. JinJ. FuS. WuJ. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system.Int. J. Nanomedicine2021162389240410.2147/IJN.S29530033790556
    [Google Scholar]
  69. FanL WeiA GaoZ MuX Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy.Biomed. Pharmacother.202316111445110.1016/j.biopha.2023.114451
    [Google Scholar]
  70. Kumar R, Singh A, Kapoor B, et al. Nose to brain drug delivery through advanced drug delivery systems. In: Novel Drug Delivery Systems in the management of CNS Disorders; Chawla PA, Loebenberg R, Dua K, Parikh V, Chawla V, eds.; Academic Press 2025: pp. 105-19.10.1016/B978‑0‑443‑13474‑6.00001‑9
  71. PascucciL CoccèV BonomiA AmiD CeccarelliP CiusaniE Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery.J. Control. Release201419226227010.1016/j.jconrel.2014.07.042
    [Google Scholar]
  72. LiuY. ZhaoJ. JiangJ. ChenF. FangX. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer.Int. J. Nanomedicine2020152873288410.2147/IJN.S24278732368059
    [Google Scholar]
  73. LaiP.Y. HuangR.Y. LinS.Y. LinY.H. ChangC.W. Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications.RSC Advances20155119982229823010.1039/C5RA17447C
    [Google Scholar]
  74. VailD.M. AmanteaM.A. ColbernG.T. MartinF.J. HilgerR.A. WorkingP.K. Pegylated liposomal doxorubicin: Proof of principle using preclinical animal models and pharmacokinetic studies.Semin. Oncol.2004316Suppl. 13163510.1053/j.seminoncol.2004.08.00215717736
    [Google Scholar]
  75. AlexisF. PridgenE. MolnarL.K. FarokhzadO.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharm.20085450551510.1021/mp800051m18672949
    [Google Scholar]
  76. StudenyM. MariniF.C. DembinskiJ.L. ZompettaC. Cabreira-HansenM. BekeleB.N. ChamplinR.E. AndreeffM. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.J. Natl. Cancer Inst.200496211593160310.1093/jnci/djh29915523088
    [Google Scholar]
  77. LabuscaL. HereaD.D. MashayekhiK. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives.World J. Stem Cells2018105435610.4252/wjsc.v10.i5.4329849930
    [Google Scholar]
  78. KimM.S. HaneyM.J. ZhaoY. MahajanV. DeygenI. KlyachkoN.L. InskoeE. PiroyanA. SokolskyM. OkolieO. HingtgenS.D. KabanovA.V. BatrakovaE.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells.Nanomedicine201612365566410.1016/j.nano.2015.10.01226586551
    [Google Scholar]
  79. UrabeF. KosakaN. ItoK. KimuraT. EgawaS. OchiyaT. Extracellular vesicles as biomarkers and therapeutic targets for cancer.Am. J. Physiol. Cell Physiol.20203181C29C3910.1152/ajpcell.00280.201931693397
    [Google Scholar]
  80. ZhouL. LvT. ZhangQ. ZhuQ. ZhanP. ZhuS. ZhangJ. SongY. The biology, function and clinical implications of exosomes in lung cancer.Cancer Lett.2017407849210.1016/j.canlet.2017.08.00328807820
    [Google Scholar]
  81. SahebiR. LangariH. FathinezhadZ. Bahari SaniZ. AvanA. Ghayour MobarhanM. RezayiM. Exosomes: New insights into cancer mechanisms.J. Cell. Biochem.2020121171610.1002/jcb.2912031701565
    [Google Scholar]
  82. ZhaoW. LiuY. ZhangC. DuanC. Multiple roles of exosomal long noncoding RNAs in cancers.BioMed Res. Int.2019201911210.1155/2019/146057231360701
    [Google Scholar]
  83. ZouJ. YangW. CuiW. LiC. MaC. JiX. HongJ. QuZ. ChenJ. LiuA. WuH. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing.J. Nanobiotechnology20232111410.1186/s12951‑023‑01778‑636642728
    [Google Scholar]
  84. ZhaoW. LiK. LiL. WangR. LeiY. YangH. SunL. Mesenchymal stem cell-derived exosomes as drug delivery vehicles in disease therapy.Int. J. Mol. Sci.20242514771510.3390/ijms2514771539062956
    [Google Scholar]
  85. LopezK. LaiS.W.T. GonzalezEDJL DávilaRG. ShuckSC. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression.Front. Cell Dev. Biol.202311115457610.3389/fcell.2023.115457637025182
    [Google Scholar]
  86. LahoutyM. FadaeeM. ShanehbandiD. KazemiT. Exosome-driven nano-immunotherapy: Revolutionizing colorectal cancer treatment.Mol. Biol. Rep.20255218310.1007/s11033‑024‑10157‑939724304
    [Google Scholar]
  87. BagheriE. AbnousK. FarzadS.A. TaghdisiS.M. RamezaniM. AlibolandiM. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer.Life Sci.202026111836910.1016/j.lfs.2020.11836932882265
    [Google Scholar]
  88. YangC. GuanZ. PangX. TanZ. YangX. LiX. GuanF. Desialylated mesenchymal stem cells-derived extracellular vesicles loaded with doxorubicin for targeted inhibition of hepatocellular carcinoma.Cells20221117264210.3390/cells1117264236078050
    [Google Scholar]
  89. HussainM.S. BishtA.S. AliH. GuptaG. Advancing small nucleic acid drug delivery: From stability challenges to novel therapeutic applications.Curr. Drug Deliv.202510.2174/011567201837084725011009490739817375
    [Google Scholar]
  90. SohrabiB. DayeriB. ZahediE. KhoshbakhtS. Nezamabadi PourN. RanjbarH. Davari NejadA. NoureddiniM. AlaniB. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy.Cancer Gene Ther.2022298-91105111610.1038/s41417‑022‑00427‑835082400
    [Google Scholar]
  91. ManchonE. HirtN. BouazizJ.D. Jabrane-FerratN. Al-DaccakR. Stem cells-derived extracellular vesicles: Potential therapeutics for wound healing in chronic inflammatory skin diseases.Int. J. Mol. Sci.2021226313010.3390/ijms2206313033808520
    [Google Scholar]
  92. LuoT. von der OheJ. HassR. MSC-derived extracellular vesicles in tumors and therapy.Cancers20211320521210.3390/cancers1320521234680359
    [Google Scholar]
  93. Kimiz-GebologluI OncelSS Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake.J. Control. Release202234753354310.1016/j.jconrel.2022.05.027
    [Google Scholar]
  94. KibriaG. RamosE.K. WanY. GiusD.R. LiuH. Exosomes as a drug delivery system in cancer therapy: Potential and challenges.Mol. Pharm.20181593625363310.1021/acs.molpharmaceut.8b0027729771531
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128379044250620122425
Loading
/content/journals/cpd/10.2174/0113816128379044250620122425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test