Skip to content
2000
image of Stem Cell Nanotechnology Applications as Drug Delivery Systems for Cancer Therapy: A New Era in Targeted Treatment

Abstract

Cancer is still one of the most serious and life-threatening diseases in humans, and the conventional chemotherapies, radiation treatments, and surgical methods have yet to provide an effective resolution due to some drawbacks concerning drug resistance, general toxicity, and poor targeting to tumor sites. To surmount these challenges, some innovative approaches are under exploration; hence, the emergence of more promising solutions in the format of nanotechnology that combine with stem cell (SC)-based drug delivery systems (DDS). Its advantages include autonomous proliferative potential and the ability to clonally generate various cell types, leading to malignant transformation. Additionally, they possess an innate ability to migrate toward tumor sites, making them highly effective vectors for targeted DDS. The integration of nanotechnology with SCs offers several benefits, such as controlled release of therapeutic molecules, improved bioavailability, and reduced systemic toxicity. These advantages may provide the opportunity to improve cancer therapy with fewer side effects than those resulting from conventional treatments. This review has focused on the emerging role of SC-nanotechnology-based DDS as a new era in targeted cancer treatment and has emphasized enhancing therapeutic outcomes with a more precise approach to cancer therapy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128379044250620122425
2025-07-08
2025-09-11
Loading full text...

Full text loading...

References

  1. Hussain M.S. Afzal O. Gupta G. Altamimi A.S.A. Almalki W.H. Alzarea S.I. Kazmi I. Fuloria N.K. Sekar M. Meenakshi D.U. Thangavelu L. Sharma A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol. Res. Pract. 2023 249 154738 10.1016/j.prp.2023.154738 37595448
    [Google Scholar]
  2. Mir R.H. Maqbool M. Mir P.A. Hussain M.S. din Wani S. Pottoo F.H. Mohi-ud-din R. Green synthesis of silver nanoparticles and their potential applications in mitigating cancer. Curr. Pharm. Des. 2024 30 31 2445 2467 10.2174/0113816128291705240428060456 38726783
    [Google Scholar]
  3. Su Y. Zhang T. Huang T. Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int. J. Pharm. 2021 600 120477 10.1016/j.ijpharm.2021.120477 33737099
    [Google Scholar]
  4. Chu D.T. Nguyen T.T. Tien N.L.B. Tran D.K. Jeong J.H. Anh P.G. Thanh V.V. Truong D.T. Dinh T.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells 2020 9 3 563 10.3390/cells9030563 32121074
    [Google Scholar]
  5. Ramdasi S. Sarang S. Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2015 9 2 95 103 25922650
    [Google Scholar]
  6. Liu X. Li W. Fu X. Xu Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front. Immunol. 2017 8 645 10.3389/fimmu.2017.00645 28626459
    [Google Scholar]
  7. Kim H.J. Park J.S. Usage of human mesenchymal stem cells in cell-based therapy: Advantages and disadvantages. Dev. Reprod. 2017 21 1 1 10 28484739
    [Google Scholar]
  8. Hussain M.S. Altamimi A.S.A. Afzal M. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Shahwan M. Kukreti N. Wong L.S. Kumarasamy V. Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  9. Prince AM Hussain MS Ahmad Khanday M. Mohi-ud-din R. Pottoo FH Mir RH Immunomodulatory roles of mesenchymal stem cell-derived extracellular vesicles: A promising therapeutic approach for autoimmune diseases. Curr. Stem Cell Res. Ther. 2024 20 10.2174/011574888X341781241216044130 39757602
    [Google Scholar]
  10. Jin Y. Li S. Yu Q. Chen T. Liu D. Application of stem cells in regeneration medicine. MedComm 2023 4 4 e291 10.1002/mco2.291 37337579
    [Google Scholar]
  11. Francois S. Mouiseddine M. Allenet-Lepage B. Voswinkel J. Douay L. Benderitter M. Chapel A. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Res. Int. 2013 2013 1 14 10.1155/2013/151679 24369528
    [Google Scholar]
  12. Zhang B. Yeo R. Tan K. Lim S. Focus on extracellular vesicles: Therapeutic potential of stem cell-derived extracellular vesicles. Int. J. Mol. Sci. 2016 17 2 174 10.3390/ijms17020174 26861305
    [Google Scholar]
  13. Hussain MS Gupta G Ghaboura N Moglad E Almalki WH Alzarea SI Exosomal ncRNAs in liquid biopsies for lung cancer. Clin. Chim. Acta. 2025 565 119983 10.1016/j.cca.2024.119983
    [Google Scholar]
  14. Samuel P Sundarraj S Sudarmani D. Nanotechnology-based stem cell therapy: Current status and perspectives. Possibilities and Limitations in Current Translational Stem Cell Research Rijeka IntechOpen Kitala D. 2023 10.5772/intechopen.109275
    [Google Scholar]
  15. Al-Thani A.N. Jan A.G. Abbas M. Geetha M. Sadasivuni K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 352 122899 10.1016/j.lfs.2024.122899 38992574
    [Google Scholar]
  16. Hussain M.S. Sharma P. Dhanjal D.S. Khurana N. Vyas M. Sharma N. Mehta M. Tambuwala M.M. Satija S. Sohal S.S. Oliver B.G.G. Sharma H.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem. Biol. Interact. 2021 348 109637 10.1016/j.cbi.2021.109637 34506765
    [Google Scholar]
  17. Hmadcha A. Martin-Montalvo A. Gauthier B.R. Soria B. Capilla- Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front. Bioeng. Biotechnol. 2020 8 43 10.3389/fbioe.2020.00043 32117924
    [Google Scholar]
  18. Lim S. Khoo B. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncol. Lett. 2021 22 5 785 10.3892/ol.2021.13046 34594426
    [Google Scholar]
  19. Asghari F. Khademi R. Ranjbar FE Malekshahi ZV Majidi RF Application of nanotechnology in targeting of cancer stem cells: A review. Int. J. Stem Cells 2019 12 2 227 239 10.15283/ijsc19006 31242721
    [Google Scholar]
  20. Wang X. Gao J.Q. Ouyang X. Wang J. Sun X. Lv Y. Mesenchymal stem cells loaded with paclitaxel–poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int. J. Nanomedicine 2018 13 5231 5248 10.2147/IJN.S167142 30237710
    [Google Scholar]
  21. Layek B. Shetty M. Nethi S.K. Sehgal D. Starr T.K. Prabha S. Mesenchymal stem cells as guideposts for nanoparticle-mediated targeted drug delivery in ovarian cancer. Cancers 2020 12 4 965 10.3390/cancers12040965 32295145
    [Google Scholar]
  22. Vicinanza C. Lombardi E. Ros F.D. Marangon M. Durante C. Mazzucato M. Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J. Stem Cells 2022 14 1 54 75 10.4252/wjsc.v14.i1.54 35126828
    [Google Scholar]
  23. Alimardani V. Rahiminezhad Z. DehghanKhold M. Farahavar G. Jafari M. Abedi M. Moradi L. Niroumand U. Ashfaq M. Abolmaali S.S. Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv. Transl. Res. 2023 13 1 189 221 10.1007/s13346‑022‑01211‑9 36074253
    [Google Scholar]
  24. Hussain M.S. Tyagi S. Khatri H. Singh S. Stem cell therapy for myocardial infarction: A mini-review. Asian J. Pharm. Res. Dev. 2022 10 2 122 124 10.22270/ajprd.v10i2.1155
    [Google Scholar]
  25. Auffinger B. Morshed R. Tobias A. Cheng Y. Ahmed A.U. Lesniak M.S. Drug-loaded nanoparticle systems and adult stem cells: A potential marriage for the treatment of malignant glioma? Oncotarget 2013 4 3 378 396 10.18632/oncotarget.937 23594406
    [Google Scholar]
  26. Lv L. Shi Y. Wu J. Li G. Nanosized drug delivery systems for breast cancer stem cell targeting. Int. J. Nanomedicine 2021 16 1487 1508 10.2147/IJN.S282110 33654398
    [Google Scholar]
  27. Baig M.S. Ahmad A. Pathan R.R. Mishra R.K. Precision nanomedicine with bio-inspired nanosystems: Recent trends and challenges in mesenchymal stem cells membrane-coated bioengineered nanocarriers in targeted nanotherapeutics. J. Xenobiot. 2024 14 3 827 872 10.3390/jox14030047 39051343
    [Google Scholar]
  28. Lanao J.M. Gutiérrez-Millán C. Colino C.I. Cell-based drug delivery platforms. Pharmaceutics 2020 13 1 2 10.3390/pharmaceutics13010002 33374912
    [Google Scholar]
  29. Gupta G. Hussain M.S. Thapa R. Dahiya R. Mahapatra D.K. Bhat A.A. Singla N. Subramaniyan V. Rawat S. Jakhmola V. S R. Dua K. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19. Regen. Med. 2023 18 9 675 678 10.2217/rme‑2023‑0077 37554111
    [Google Scholar]
  30. de la Torre P. Pérez-Lorenzo M.J. Alcázar-Garrido Á. Flores A.I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments. Molecules 2020 25 3 715 10.3390/molecules25030715 32046010
    [Google Scholar]
  31. Thamarai P Karishma S Kamalesh R Shaji A Saravanan A Bibi S Current advancements in nanotechnology for stem cells. Int. Surg. J. 2024 110 12 7456 7476 10.1097/JS9.0000000000002082
    [Google Scholar]
  32. Hussain MJAL Nanotoxicology: Nano toxicity in humans. Acad. Lett. 2021 10.20935/AL4331
    [Google Scholar]
  33. Dong Y Wu X Chen X Zhou P Xu F Liang W Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed. Pharmacother. 2021 137 111236 10.1016/j.biopha.2021.111236
    [Google Scholar]
  34. Tiwari A. Tiwari V. Sharma A. Marrisetti A.L. Kumar M. Rochani A. Kaushik D. Mittal V. Jyothi S R. Ali H. Hussain M.S. Gupta G. Unlocking the potential: Integrating phytoconstituents and nanotechnology in skin cancer therapy – A comprehensive review. J. Complement. Integr. Med. 2024 10.1515/jcim‑2024‑0338 39668578
    [Google Scholar]
  35. Chawla PA, Reyaz HM, Chawla A, et al. 9 Nanotoxicity prediction in nanotechnology-driven drugs using QSPR modeling. Computational Drug Delivery Berlin, Boston De Gruyter 2024 183 220 10.1515/9783111208671‑009
    [Google Scholar]
  36. Deligianni D.D. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration. Cell Adhes. Migr. 2014 8 6 558 562 10.4161/cam.32124 25482646
    [Google Scholar]
  37. Wang M. Li Z. Qiao H. Chen L. Fan Y. Effect of gold/Fe3O4 nanoparticles on biocompatibility and neural differentiation of rat olfactory bulb neural stem cells. J. Nanomater. 2013 2013 1 867426 10.1155/2013/867426
    [Google Scholar]
  38. Feng C. Deng L. Yong Y.Y. Wu J.M. Qin D.L. Yu L. Zhou X.G. Wu A.G. The application of biomaterials in spinal cord injury. Int. J. Mol. Sci. 2023 24 1 816 10.3390/ijms24010816 36614259
    [Google Scholar]
  39. Jain S. Bhatt J. Gupta S. Bhatia D.D. Nanotechnology at the crossroads of stem cell medicine. Biomater. Sci. 2024 13 1 161 178 10.1039/D4BM01257G 39584588
    [Google Scholar]
  40. Hussain S. Khan M.A. Rajan R. Jyoti J. Sharma S. Sahu S.K. Nanorobots: The future of healthcare. AIP Conf. Proc. 2023 2800 020171 10.1063/5.0162904
    [Google Scholar]
  41. Angaria N. Saini S. Hussain M.S. Sharma S. Singh G. Khurana N. Kumar R. Natural polymer-based hydrogels: Versatile biomaterials for biomedical applications. Int. J. Polym. Mater. 2024 73 17 1550 1568 10.1080/00914037.2023.2301645
    [Google Scholar]
  42. Gupta G. Hussain M.S. Pant K. Ali H. Thapa R. Bhat A.A. Antibody-drug conjugates (ADCs): A novel therapy for triple-negative breast cancer (TNBC). Curr. Cancer Drug Targets 2025 25 2 108 112 10.2174/0115680096343056240828190900 39248064
    [Google Scholar]
  43. Kazmi I. Yadav H.K.S. Al-Abbasi F.A. Afzal M. Nadeem M.S. Altayb H.N. Raizaday A. Hussain M.S. Ali H. Imam F. Gupta G. Design of in-situ implant for the brain-targeted drug delivery using cross-linked gellan gum polymer through response surface methodology. Ann. Pharm. Fr. 2025 83 1 68 80 10.1016/j.pharma.2024.10.004 39419475
    [Google Scholar]
  44. Khosravi N Pishavar E Baradaran B Oroojalian F Mokhtarzadeh A Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics. J. Control. Release 2022 348 706 722 10.1016/j.jconrel.2022.06.026
    [Google Scholar]
  45. Tan W.B. Jiang S. Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2007 28 8 1565 1571 10.1016/j.biomaterials.2006.11.018 17161865
    [Google Scholar]
  46. Savla R Taratula O Garbuzenko O Minko T Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 2011 153 1 16 22 10.1016/j.jconrel.2011.02.015
    [Google Scholar]
  47. Ruan J. Song H. Qian Q. Li C. Wang K. Bao C. Cui D. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 2012 33 29 7093 7102 10.1016/j.biomaterials.2012.06.053 22796163
    [Google Scholar]
  48. Li Y. He H. Jia X. Lu W.L. Lou J. Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 2012 33 15 3899 3908 10.1016/j.biomaterials.2012.02.004 22364698
    [Google Scholar]
  49. Yang W. Cheng Y. Xu T. Wang X. Wen L. Targeting cancer cells with biotin–dendrimer conjugates. Eur. J. Med. Chem. 2009 44 2 862 868 10.1016/j.ejmech.2008.04.021 18550227
    [Google Scholar]
  50. Montet X. Funovics M. Montet-Abou K. Weissleder R. Josephson L. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 2006 49 20 6087 6093 10.1021/jm060515m 17004722
    [Google Scholar]
  51. Toma A. Otsuji E. Kuriu Y. Okamoto K. Ichikawa D. Hagiwara A. Ito H. Nishimura T. Yamagishi H. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 2005 93 1 131 136 10.1038/sj.bjc.6602668 15970924
    [Google Scholar]
  52. Chanda N. Kattumuri V. Shukla R. Zambre A. Katti K. Upendran A. Kulkarni R.R. Kan P. Fent G.M. Casteel S.W. Smith C.J. Boote E. Robertson J.D. Cutler C. Lever J.R. Katti K.V. Kannan R. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl. Acad. Sci. USA 2010 107 19 8760 8765 10.1073/pnas.1002143107 20410458
    [Google Scholar]
  53. Hussain M.S. Mujwar S. Babu M.A. Goyal K. Chellappan D.K. Negi P. Singh T.G. Ali H. Singh S.K. Dua K. Gupta G. Balaraman A.K. Pharmacological, computational, and mechanistic insights into triptolide’s role in targeting drug-resistant cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 6509 6530 10.1007/s00210‑025‑03809‑5
    [Google Scholar]
  54. Ahmad A. Khan F. Mishra R.K. Khan R. Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. 2019 62 23 10475 10496 10.1021/acs.jmedchem.9b00511 31339714
    [Google Scholar]
  55. Raj S. Khurana S. Choudhari R. Kesari K.K. Kamal M.A. Garg N. Ruokolainen J. Das B.C. Kumar D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021 69 166 177 10.1016/j.semcancer.2019.11.002 31715247
    [Google Scholar]
  56. Ghaznavi H. Afzalipour R. Khoei S. Sargazi S. Shirvalilou S. Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int. 2024 24 1 160 10.1186/s12935‑024‑03331‑3 38715021
    [Google Scholar]
  57. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 33277608
    [Google Scholar]
  58. Hassanin I. Elzoghby A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020 3 4 930 946 35582218
    [Google Scholar]
  59. Gan Y. Yu Y. Xu H. Piao H. Liposomal nanomaterials: A rising star in glioma treatment. Int. J. Nanomedicine 2024 19 6757 6776 38983132
    [Google Scholar]
  60. Gabizon A. Shmeeda H. Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin. Pharmacokinet. 2003 42 5 419 436 10.2165/00003088‑200342050‑00002 12739982
    [Google Scholar]
  61. Lawrie T.A. Rabbie R. Thoma C. Morrison J. Pegylated liposomal doxorubicin for first-line treatment of epithelial ovarian cancer. Cochrane Database Syst. Rev. 2013 2013 10 CD010482 24142521
    [Google Scholar]
  62. Gradishar W.J. Tjulandin S. Davidson N. Shaw H. Desai N. Bhar P. Hawkins M. O’Shaughnessy J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005 23 31 7794 7803 10.1200/JCO.2005.04.937 16172456
    [Google Scholar]
  63. Socinski M.A. Bondarenko I. Karaseva N.A. Makhson A.M. Vynnychenko I. Okamoto I. Hon J.K. Hirsh V. Bhar P. Zhang H. Iglesias J.L. Renschler M.F. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: Final results of a phase III trial. J. Clin. Oncol. 2012 30 17 2055 2062 10.1200/JCO.2011.39.5848 22547591
    [Google Scholar]
  64. Von Hoff D.D. Ervin T. Arena F.P. Chiorean E.G. Infante J. Moore M. Seay T. Tjulandin S.A. Ma W.W. Saleh M.N. Harris M. Reni M. Dowden S. Laheru D. Bahary N. Ramanathan R.K. Tabernero J. Hidalgo M. Goldstein D. Van Cutsem E. Wei X. Iglesias J. Renschler M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013 369 18 1691 1703 10.1056/NEJMoa1304369 24131140
    [Google Scholar]
  65. Wang-Gillam A. Li C.P. Bodoky G. Dean A. Shan Y.S. Jameson G. Macarulla T. Lee K.H. Cunningham D. Blanc J.F. Hubner R.A. Chiu C.F. Schwartsmann G. Siveke J.T. Braiteh F. Moyo V. Belanger B. Dhindsa N. Bayever E. Von Hoff D.D. Chen L.T. Adoo C. Anderson T. Asselah J. Azambuja A. Bampton C. Barrios C.H. Bekaii-Saab T. Bohuslav M. Chang D. Chen J-S. Chen Y-C. Choi H.J. Chung I.J. Chung V. Csoszi T. Cubillo A. DeMarco L. de Wit M. Dragovich T. Edenfield W. Fein L.E. Franke F. Fuchs M. Gonzales-Cruz V. Gozza A. Fernando R.H. Iaffaioli R. Jakesova J. Kahan Z. Karimi M. Kim J.S. Korbenfeld E. Lang I. Lee F-C. Lee K-D. Lipton L. Ma W.W. Mangel L. Mena R. Palmer D. Pant S. Park J.O. Piacentini P. Pelzer U. Plazas J.G. Prasad C. Rau K-M. Raoul J-L. Richards D. Ross P. Schlittler L. Smakal M. Stahalova V. Sternberg C. Seufferlein T. Tebbutt N. Vinholes J.J. Wadlow R. Wenczl M. Wong M. NAPOLI-1 Study Group Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016 387 10018 545 557 10.1016/S0140‑6736(15)00986‑1 26615328
    [Google Scholar]
  66. Nasirmoghadas P. Mousakhani A. Behzad F. Beheshtkhoo N. Hassanzadeh A. Nikoo M. Mehrabi M. Kouhbanani M.A.J. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol. Prog. 2021 37 2 e3070 10.1002/btpr.3070 32829506
    [Google Scholar]
  67. Xia Y. Yang R. Zhu J. Wang H. Li Y. Fan J. Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front. Bioeng. Biotechnol. 2022 10 890257 10.3389/fbioe.2022.890257 36394039
    [Google Scholar]
  68. Muluh T.A. Chen Z. Li Y. Xiong K. Jin J. Fu S. Wu J. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system. Int. J. Nanomedicine 2021 16 2389 2404 10.2147/IJN.S295300 33790556
    [Google Scholar]
  69. Fan L Wei A Gao Z Mu X Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy. Biomed. Pharmacother. 2023 161 114451 10.1016/j.biopha.2023.114451
    [Google Scholar]
  70. Kumar R, Singh A, Kapoor B, et al. Nose to brain drug delivery through advanced drug delivery systems. In: Novel Drug Delivery Systems in the management of CNS Disorders; Chawla PA, Loebenberg R, Dua K, Parikh V, Chawla V, eds.; Academic Press 2025: pp. 105-19. 10.1016/B978‑0‑443‑13474‑6.00001‑9
  71. Pascucci L Coccè V Bonomi A Ami D Ceccarelli P Ciusani E Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J. Control. Release 2014 192 262 270 10.1016/j.jconrel.2014.07.042
    [Google Scholar]
  72. Liu Y. Zhao J. Jiang J. Chen F. Fang X. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int. J. Nanomedicine 2020 15 2873 2884 10.2147/IJN.S242787 32368059
    [Google Scholar]
  73. Lai P.Y. Huang R.Y. Lin S.Y. Lin Y.H. Chang C.W. Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Advances 2015 5 119 98222 98230 10.1039/C5RA17447C
    [Google Scholar]
  74. Vail D.M. Amantea M.A. Colbern G.T. Martin F.J. Hilger R.A. Working P.K. Pegylated liposomal doxorubicin: Proof of principle using preclinical animal models and pharmacokinetic studies. Semin. Oncol. 2004 31 6 Suppl. 13 16 35 10.1053/j.seminoncol.2004.08.002 15717736
    [Google Scholar]
  75. Alexis F. Pridgen E. Molnar L.K. Farokhzad O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008 5 4 505 515 10.1021/mp800051m 18672949
    [Google Scholar]
  76. Studeny M. Marini F.C. Dembinski J.L. Zompetta C. Cabreira-Hansen M. Bekele B.N. Champlin R.E. Andreeff M. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 2004 96 21 1593 1603 10.1093/jnci/djh299 15523088
    [Google Scholar]
  77. Labusca L. Herea D.D. Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J. Stem Cells 2018 10 5 43 56 10.4252/wjsc.v10.i5.43 29849930
    [Google Scholar]
  78. Kim M.S. Haney M.J. Zhao Y. Mahajan V. Deygen I. Klyachko N.L. Inskoe E. Piroyan A. Sokolsky M. Okolie O. Hingtgen S.D. Kabanov A.V. Batrakova E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016 12 3 655 664 10.1016/j.nano.2015.10.012 26586551
    [Google Scholar]
  79. Urabe F. Kosaka N. Ito K. Kimura T. Egawa S. Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am. J. Physiol. Cell Physiol. 2020 318 1 C29 C39 10.1152/ajpcell.00280.2019 31693397
    [Google Scholar]
  80. Zhou L. Lv T. Zhang Q. Zhu Q. Zhan P. Zhu S. Zhang J. Song Y. The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett. 2017 407 84 92 10.1016/j.canlet.2017.08.003 28807820
    [Google Scholar]
  81. Sahebi R. Langari H. Fathinezhad Z. Bahari Sani Z. Avan A. Ghayour Mobarhan M. Rezayi M. Exosomes: New insights into cancer mechanisms. J. Cell. Biochem. 2020 121 1 7 16 10.1002/jcb.29120 31701565
    [Google Scholar]
  82. Zhao W. Liu Y. Zhang C. Duan C. Multiple roles of exosomal long noncoding RNAs in cancers. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/1460572 31360701
    [Google Scholar]
  83. Zou J. Yang W. Cui W. Li C. Ma C. Ji X. Hong J. Qu Z. Chen J. Liu A. Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. J. Nanobiotechnology 2023 21 1 14 10.1186/s12951‑023‑01778‑6 36642728
    [Google Scholar]
  84. Zhao W. Li K. Li L. Wang R. Lei Y. Yang H. Sun L. Mesenchymal stem cell-derived exosomes as drug delivery vehicles in disease therapy. Int. J. Mol. Sci. 2024 25 14 7715 10.3390/ijms25147715 39062956
    [Google Scholar]
  85. Lopez K. Lai S.W.T. Gonzalez EDJL Dávila RG. Shuck SC. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Front. Cell Dev. Biol. 2023 11 1154576 10.3389/fcell.2023.1154576 37025182
    [Google Scholar]
  86. Lahouty M. Fadaee M. Shanehbandi D. Kazemi T. Exosome-driven nano-immunotherapy: Revolutionizing colorectal cancer treatment. Mol. Biol. Rep. 2025 52 1 83 10.1007/s11033‑024‑10157‑9 39724304
    [Google Scholar]
  87. Bagheri E. Abnous K. Farzad S.A. Taghdisi S.M. Ramezani M. Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020 261 118369 10.1016/j.lfs.2020.118369 32882265
    [Google Scholar]
  88. Yang C. Guan Z. Pang X. Tan Z. Yang X. Li X. Guan F. Desialylated mesenchymal stem cells-derived extracellular vesicles loaded with doxorubicin for targeted inhibition of hepatocellular carcinoma. Cells 2022 11 17 2642 10.3390/cells11172642 36078050
    [Google Scholar]
  89. Hussain M.S. Bisht A.S. Ali H. Gupta G. Advancing small nucleic acid drug delivery: From stability challenges to novel therapeutic applications. Curr. Drug Deliv. 2025 10.2174/0115672018370847250110094907 39817375
    [Google Scholar]
  90. Sohrabi B. Dayeri B. Zahedi E. Khoshbakht S. Nezamabadi Pour N. Ranjbar H. Davari Nejad A. Noureddini M. Alani B. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther. 2022 29 8-9 1105 1116 10.1038/s41417‑022‑00427‑8 35082400
    [Google Scholar]
  91. Manchon E. Hirt N. Bouaziz J.D. Jabrane-Ferrat N. Al-Daccak R. Stem cells-derived extracellular vesicles: Potential therapeutics for wound healing in chronic inflammatory skin diseases. Int. J. Mol. Sci. 2021 22 6 3130 10.3390/ijms22063130 33808520
    [Google Scholar]
  92. Luo T. von der Ohe J. Hass R. MSC-derived extracellular vesicles in tumors and therapy. Cancers 2021 13 20 5212 10.3390/cancers13205212 34680359
    [Google Scholar]
  93. Kimiz-Gebologlu I Oncel SS Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J. Control. Release 2022 347 533 543 10.1016/j.jconrel.2022.05.027
    [Google Scholar]
  94. Kibria G. Ramos E.K. Wan Y. Gius D.R. Liu H. Exosomes as a drug delivery system in cancer therapy: Potential and challenges. Mol. Pharm. 2018 15 9 3625 3633 10.1021/acs.molpharmaceut.8b00277 29771531
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128379044250620122425
Loading
/content/journals/cpd/10.2174/0113816128379044250620122425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test