Skip to content
2000
image of An in silico Approach for Identification of Novel Natural Selective ALR2 Inhibitors from Cynomorium songaricum for Treating Diabetic Complications

Abstract

Introduction

Aldose reductase-2 (ALR2) is a key enzyme in the polyol pathway whose overexpression is implicated in several diabetic complications, including neuropathy, nephropathy, retinopathy, and atherosclerotic plaque formation. Under hyperglycemic conditions, the intracellular accumulation of sorbitol and the depletion of NADPH lead to osmotic imbalance and oxidative stress, driven by the formation of reactive oxygen species and advanced glycation end products. Although various ALR2 inhibitors have been developed, their clinical application has been hampered by nonselective inhibition of both ALR2 and the homologous enzyme ALR1.

Methods

In this study, we employed a comprehensive approach to evaluate the inhibitory potential of natural compounds from against ALR2. Our workflow integrated with ADMET, molecular docking with scoring function and glide XP, molecular dynamics (MD) simulations, PCA, FEL, and MM/GBSA. Through this analysis, four natural compounds of (Compound Name: p-Coumaric acid, Vanillic acid, 4-Oxoniobenzoate, and Phloroglucinol) displayed significant bonds formation including hydrogen and hydrophobic bonds with the target protein.

Results

These bonds exhibited the ligand stability. Further, the MD simulation analysis, followed by post-simulation analysis, verified the dynamic stability of these four natural compounds and compared them with the native ligand of the target protein. These natural compounds exhibit particularly stable binding within the ALR2 selectivity pocket, demonstrating an inhibitory effect over ALR1 when compared with the reference inhibitor, Epalrestat.

Conclusion

These promising findings suggest that CID: 8468 and CID: 135 merit further evaluation through , , and clinical studies as potential selective inhibitors for the treatment of diabetic complications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128372035250526145207
2025-06-10
2025-10-06
Loading full text...

Full text loading...

References

  1. Tomic D. Shaw J.E. Magliano D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022 18 9 525 539 10.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  2. Lin X. Xu Y. Pan X. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020 10 1 14790 10.1038/s41598‑020‑71908‑9 32901098
    [Google Scholar]
  3. Banday M.Z. Sameer A.S. Nissar S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020 10 4 174 188 10.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  4. Papachristoforou E. Lambadiari V. Maratou E. Makrilakis K. Association of glycemic indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020 2020 1 17 10.1155/2020/7489795 33123598
    [Google Scholar]
  5. Kumar M. Choudhary S. Singh P.K. Silakari O. Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med. Chem. 2020 12 14 1327 1358 10.4155/fmc‑2020‑0032 32602375
    [Google Scholar]
  6. Kumari P. Kohal R. Bhavana, Gupta GD, Verma SK. Selectivity challenges for aldose reductase inhibitors: A review on comparative SAR and interaction studies. J. Mol. Struct. 2024 1318 139207 10.1016/j.molstruc.2024.139207
    [Google Scholar]
  7. Kousaxidis A. Petrou A. Lavrentaki V. Fesatidou M. Nicolaou I. Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur. J. Med. Chem. 2020 207 112742 10.1016/j.ejmech.2020.112742 32871344
    [Google Scholar]
  8. Kador P.F. Kinoshita J.H. Sharpless N.E. Aldose reductase inhibitors: A potential new class of agents for the pharmacological control of certain diabetic complications. J. Med. Chem. 1985 28 7 841 849 10.1021/jm00145a001 3925146
    [Google Scholar]
  9. Kumar M. Kumar Singh P. Choudhary S. Silakari O. Hydantoin based dual inhibitors of ALR2 and PARP-1: Design, synthesis, in-vitro and in-vivo evaluation. Bioorg. Chem. 2022 129 106108 10.1016/j.bioorg.2022.106108 36063781
    [Google Scholar]
  10. Singh M. Kapoor A. Bhatnagar A. Physiological and pathological roles of aldose reductase. Metabolites 2021 11 10 655 10.3390/metabo11100655 34677370
    [Google Scholar]
  11. Shehzad M.T. Imran A. Hameed A. Exploring synthetic and therapeutic prospects of new thiazoline derivatives as aldose reductase (ALR2) inhibitors. RSC Advances 2021 11 28 17259 17282 10.1039/D1RA01716K 35479726
    [Google Scholar]
  12. Bernardoni B.L. D’Agostino I. Scianò F. La Motta C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: A 2019-2023 update of the patent literature. Expert Opin. Ther. Pat. 2024 34 11 1085 1103 10.1080/13543776.2024.2412573 39365044
    [Google Scholar]
  13. Alshaghdali K. Alharazi T. Rezgui R. Identification and evaluation of putative type 2 diabetes mellitus inhibitors derived from Cichorium intybus. J. Mol. Struct. 2024 1306 137629 10.1016/j.molstruc.2024.137629
    [Google Scholar]
  14. Zhang J. Chen X. Han L. Research progress in traditional applications, phytochemistry, pharmacology, and safety evaluation of Cynomorium songaricum. Molecules 2024 29 5 941 10.3390/molecules29050941 38474452
    [Google Scholar]
  15. Cui J.L. Vijayakumar V. Zhang G. Partitioning of fungal endophyte assemblages in root-parasitic plant Cynomorium songaricum and its host Nitraria tangutorum. Front. Microbiol. 2018 9 666 10.3389/fmicb.2018.00666 29686655
    [Google Scholar]
  16. Liu Z. Li Q. Zhao F. Chen J. A decade review on phytochemistry and pharmacological activities of Cynomorium songaricum Rupr.: Insights into metabolic syndrome. Phytomedicine 2025 140 156602 10.1016/j.phymed.2025.156602 40058318
    [Google Scholar]
  17. Cui J-L Gong Y Xue X-Z Zhang Y-Y Wang M-L Wang J-H A phytochemical and pharmacological review on Cynomorium Songaricum as functional and medicinal food. Nat Product Commun 2018 13 4 1934578X1801300428 10.1177/1934578X1801300428
    [Google Scholar]
  18. Kim S. Chen J. Cheng T. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  19. Prival M.J. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ. Mol. Mutagen. 2001 37 1 55 69 10.1002/1098‑2280(2001)37:1<55:AID‑EM1006>3.0.CO;2‑5 11170242
    [Google Scholar]
  20. Berman H.M. Westbrook J. Feng Z. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  21. Zhang L. Zhang H. Zhao Y. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Lett. 2013 587 22 3681 3686 10.1016/j.febslet.2013.09.031 24100137
    [Google Scholar]
  22. Wu G. Robertson D.H. Brooks C.L. Vieth M. Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm. J. Comput. Chem. 2003 24 13 1549 1562 10.1002/jcc.10306 12925999
    [Google Scholar]
  23. Gustafsen C. Olsen D. Vilstrup J. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat. Commun. 2017 8 1 503 10.1038/s41467‑017‑00568‑7 28894089
    [Google Scholar]
  24. Puratchikody A. Irfan N. Balasubramaniyan S. Conceptual design of hybrid PCSK9 lead inhibitors against coronary artery disease. Biocatal. Agric. Biotechnol. 2019 17 427 440 10.1016/j.bcab.2018.12.014
    [Google Scholar]
  25. Wang S. Jiang J.H. Li R.Y. Deng P. Docking-based virtual screening of TβR1 inhibitors: Evaluation of pose prediction and scoring functions. BMC Chem. 2020 14 1 52 10.1186/s13065‑020‑00704‑3 32818203
    [Google Scholar]
  26. Friesner R.A. Banks J.L. Murphy R.B. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004 47 7 1739 1749 10.1021/jm0306430 15027865
    [Google Scholar]
  27. Release S. 2023-1: Glide. New York, NY Schrödinger, LLC 2023
    [Google Scholar]
  28. Schrödinger Release Maestro. New York, NY Schrödinger, LLC 2021
    [Google Scholar]
  29. Bowers K.J. Chow E. Xu H. Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing Tampa, FL, USA 11-17 November 2006 43 43 10.1109/SC.2006.54
    [Google Scholar]
  30. Shaw D.E. Desmond Molecular Dynamics System. In: 2023-1: Glide. New York, NY Schrödinger, LLC 2023
    [Google Scholar]
  31. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  32. Grant B.J. Rodrigues A.P.C. ElSawy K.M. McCammon J.A. Caves L.S.D. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 2006 22 21 2695 2696 10.1093/bioinformatics/btl461 16940322
    [Google Scholar]
  33. Kagami L.P. das Neves GM, Timmers LFSM, Caceres RA, Eifler-Lima VL. Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput. Biol. Chem. 2020 87 107322 10.1016/j.compbiolchem.2020.107322 32604028
    [Google Scholar]
  34. DeLano W.L. Pymol: An open-source molecular graphics tool. Protein Crystallogr 2002 40 82 92
    [Google Scholar]
  35. Pettersen E.F. Goddard T.D. Huang C.C. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  36. Li J. Yanagisawa K. Yoshikawa Y. Ohue M. Akiyama Y. Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning. Bioinformatics 2022 38 4 1110 1117 10.1093/bioinformatics/btab726 34849593
    [Google Scholar]
  37. Nair B.R. Pillai L.S. Molecular docking studies using Sinigrin and Tamoxifen. J. Pharmacogn. Phytochem. 2018 7 2 3217 3221
    [Google Scholar]
  38. Bhardwaj V.K. Singh R. Das P. Purohit R. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Comput. Biol. Med. 2021 128 104117 10.1016/j.compbiomed.2020.104117 33217661
    [Google Scholar]
  39. Lombardo F. Desai P.V. Arimoto R. In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): Utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development. J. Med. Chem. 2017 60 22 9097 9113 10.1021/acs.jmedchem.7b00487 28609624
    [Google Scholar]
  40. Krammer A. Kirchhoff P.D. Jiang X. Venkatachalam C.M. Waldman M. LigScore: A novel scoring function for predicting binding affinities. J. Mol. Graph. Model. 2005 23 5 395 407 10.1016/j.jmgm.2004.11.007 15781182
    [Google Scholar]
  41. Ahmed H. Bergmann F. Zeitlinger M. Protein binding in translational antimicrobial development-focus on interspecies differences. Antibiotics 2022 11 7 923 10.3390/antibiotics11070923 35884177
    [Google Scholar]
  42. Di L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin. Drug Discov. 2021 16 12 1453 1465 10.1080/17460441.2021.1961741 34403271
    [Google Scholar]
  43. Whale G. Parsons J. van Ginkel K. Improving our understanding of the environmental persistence of chemicals. Integr. Environ. Assess. Manag. 2021 17 6 1123 1135 10.1002/ieam.4438 33913596
    [Google Scholar]
  44. Prathipati P. Saxena A.K. Evaluation of binary QSAR models derived from LUDI and MOE scoring functions for structure based virtual screening. J. Chem. Inf. Model. 2006 46 1 39 51 16426038
    [Google Scholar]
  45. Quattrini L. La Motta C. Aldose reductase inhibitors: 2013-present. Expert Opin. Ther. Pat. 2019 29 3 199 213 10.1080/13543776.2019.1582646 30760060
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128372035250526145207
Loading
/content/journals/cpd/10.2174/0113816128372035250526145207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test