Skip to content
2000
image of Incretin-based Agents and Metabolic Dysfunction-associated Steatotic Liver Disease

Abstract

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disease worldwide, primarily driven by the rising prevalence of both obesity and type 2 diabetes mellitus (T2DM). Historically, treatment options for patients with more advanced stages of hepatic dysfunction (steatohepatitis, fibrosis, cirrhosis) have been limited, with only resmetirom, a thyroid hormone receptor-β agonist, recently being approved for use as a metabolic dysfunction-associated steatohepatitis (MASH)-specific treatment option. Incretin-based receptor agonists are emerging as promising treatments for MASLD, and multiple liver-biopsy powered trials are underway. This group of drugs has gained attention as possible treatment options for MASLD/MASH, due to their significant weight-loss and body fat reduction effects, and there is also a growing body of evidence that incretin-based agents lead to a significant reduction in liver fat content. However, the evidence concerning improvement of steatohepatitis and/or fibrosis is limited. Most authorities consider incretin mimetics to be only one contributing factor to the treatment paradigm of the MASLD/MASH/fibrosis/cirrhosis continuum. Specifically, according to the data to date, incretin-based treatments may improve metabolic abnormalities in MASLD/MASH patients, especially in patients with obesity and/or T2DM, and may mitigate its progression at the early stages. However, no incretin-based treatment is officially approved in this indication yet. This review discusses the rationale for the use of incretin-based treatment options in patients with MASLD/MASH, explaining the pathophysiological background of this disorder and describing the possible mechanism of action of these drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128378484250619080753
2025-07-09
2025-10-05
Loading full text...

Full text loading...

References

  1. Bowman-Busato J. Schreurs L. Halford J.C.G. Providing a common language for obesity: The European Association for the Study of Obesity obesity taxonomy. Int. J. Obes. 2025 49 2 182 191 10.1038/s41366‑024‑01565‑9 38902385
    [Google Scholar]
  2. Paik JM Henry L Younossi Y Ong J Alqahtani S Younossi ZM The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol Commun 2023 7 10 0251 10.1097/HC9.0000000000000251 37782469
    [Google Scholar]
  3. Younossi Z.M. Golabi P. Price J.K. The global epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among patients with type 2 diabetes. Clin. Gastroenterol. Hepatol. 2024 22 10 1999 2010 10.1016/j.cgh.2024.03.006
    [Google Scholar]
  4. Méndez-Sánchez N. Bugianesi E. Gish R.G. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol. Hepatol. 2022 7 5 388 390 10.1016/S2468‑1253(22)00062‑0 35248211
    [Google Scholar]
  5. Rinella M.E. Lazarus J.V. Ratziu V. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023 78 6 1966 1986 10.1097/HEP.0000000000000520 37363821
    [Google Scholar]
  6. Kokkorakis M. Muzurović E. Volčanšek Š. Steatotic liver disease: Pathophysiology and emerging pharmacotherapies. Pharmacol. Rev. 2024 76 3 454 499 10.1124/pharmrev.123.001087 38697855
    [Google Scholar]
  7. Muzurović E. Rizzo M. Mikhailidis D.P. Obesity and nonalcoholic fatty liver disease in type 1 diabetes mellitus patients. J. Diabetes Complications 2022 36 12 108359 10.1016/j.jdiacomp.2022.108359 36446208
    [Google Scholar]
  8. Chan W.K. Chuah K.H. Rajaram R.B. Lim L.L. Ratnasingam J. Vethakkan S.R. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art review. J. Obes. Metab. Syndr. 2023 32 3 197 213 10.7570/jomes23052 37700494
    [Google Scholar]
  9. Shang Y. Grip E.T. Modica A. Metabolic syndrome traits increase the risk of major adverse liver outcomes in type 2 diabetes. Diabetes Care 2024 47 6 978 985 10.2337/dc23‑1937 38498331
    [Google Scholar]
  10. Muzurović E. Maćešić M. Kavarić S. Liver fibrosis and atherosclerosis, a consequence of metabolic dysfunction—do they share a similar pathophysiological background? Angiology 2024 15 00033197241234076 10.1177/00033197241234076 38358750
    [Google Scholar]
  11. FDA approves first treatment for patients with liver scarring due to fatty liver disease. 2024 Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-liver-scarring-due-fatty-liver-disease
  12. Volčanšek Š. Janež A. Rizzo M. Muzurović E. Monitoring the liver as a part of the cardio-renal-metabolic continuum – What is cooking and burning with non-invasive tests and treatment options? J. Diabetes Complications 2024 38 12 108875 10.1016/j.jdiacomp.2024.108875 39353809
    [Google Scholar]
  13. Sahebkar A. Eid A.H. Hope on the horizon: Promising therapies for steatotic liver disease. Pharmacol. Rev. 2024 76 4 561 563 10.1124/pharmrev.124.001269 38876495
    [Google Scholar]
  14. Marso S.P. Daniels G.H. Brown-Frandsen K. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016 375 4 311 322 10.1056/NEJMoa1603827 27295427
    [Google Scholar]
  15. Gerstein H.C. Colhoun H.M. Dagenais G.R. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019 394 10193 121 130 10.1016/S0140‑6736(19)31149‑3 31189511
    [Google Scholar]
  16. Marso S.P. Bain S.C. Consoli A. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016 375 19 1834 1844 10.1056/NEJMoa1607141 27633186
    [Google Scholar]
  17. Muzurović E.M. Volčanšek Š. Tomšić K.Z. Glucagon-like peptide-1 receptor agonists and dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 receptor agonists in the treatment of obesity/metabolic syndrome, prediabetes/diabetes and non-alcoholic fatty liver disease—current evidence. J. Cardiovasc. Pharmacol. Ther. 2022 27 10742484221146371 10.1177/10742484221146371 36546652
    [Google Scholar]
  18. Janez A. Muzurovic E. Stoian A.P. Translating results from the cardiovascular outcomes trials with glucagon-like peptide-1 receptor agonists into clinical practice: Recommendations from a eastern and southern europe diabetes expert group. Int. J. Cardiol. 2022 365 8 18 10.1016/j.ijcard.2022.07.017 35905827
    [Google Scholar]
  19. Janez A. Muzurovic E. Bogdanski P. Modern management of cardiometabolic continuum: From overweight/obesity to prediabetes/type 2 diabetes mellitus. Recommendations from the Eastern and Southern Europe diabetes and obesity expert group. Diabetes Ther. 2024 15 9 1865 1892 10.1007/s13300‑024‑01615‑5 38990471
    [Google Scholar]
  20. Gribble F.M. Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 2019 15 4 226 237 10.1038/s41574‑019‑0168‑8 30760847
    [Google Scholar]
  21. Campbell J.E. Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013 17 6 819 837 10.1016/j.cmet.2013.04.008 23684623
    [Google Scholar]
  22. Nauck M.A. Meier J.J. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016 4 6 525 536 10.1016/S2213‑8587(15)00482‑9 26876794
    [Google Scholar]
  23. Michałowska J. Miller-Kasprzak E. Bogdański P. Incretin hormones in obesity and related cardiometabolic disorders: The clinical perspective. Nutrients 2021 13 2 351 10.3390/nu13020351 33503878
    [Google Scholar]
  24. Junker A.E. The role of incretin hormones and glucagon in patients with liver disease. Dan. Med. J. 2017 64 5 B5363 [PMID: 28552096
    [Google Scholar]
  25. Pouwels S. Sakran N. Graham Y. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022 22 1 63 10.1186/s12902‑022‑00980‑1 35287643
    [Google Scholar]
  26. Bu T. Sun Z. Pan Y. Deng X. Yuan G. Glucagon-like peptide-1: New regulator in lipid metabolism. Diabetes Metab. J. 2024 48 3 354 372 10.4093/dmj.2023.0277 38650100
    [Google Scholar]
  27. Andreasen C.R. Andersen A. Vilsbøll T. The future of incretins in the treatment of obesity and non-alcoholic fatty liver disease. Diabetologia 2023 66 10 1846 1858 10.1007/s00125‑023‑05966‑9 37498367
    [Google Scholar]
  28. Jastreboff A.M. Kushner R.F. New frontiers in obesity treatment: Glp-1 and nascent nutrient-stimulated hormone-based therapeutics. Annu. Rev. Med. 2023 74 1 125 139 10.1146/annurev‑med‑043021‑014919 36706749
    [Google Scholar]
  29. Xie C. Alkhouri N. Elfeki M.A. Role of incretins and glucagon receptor agonists in metabolic dysfunction-associated steatotic liver disease: Opportunities and challenges. World J. Hepatol. 2024 16 5 731 750 10.4254/wjh.v16.i5.731 38818288
    [Google Scholar]
  30. Drucker D.J. Holst J.J. The expanding incretin universe: From basic biology to clinical translation. Diabetologia 2023 66 10 1765 1779 10.1007/s00125‑023‑05906‑7 36976349
    [Google Scholar]
  31. Yabut J.M. Drucker D.J. Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocr. Rev. 2023 44 1 14 32 10.1210/endrev/bnac018 35907261
    [Google Scholar]
  32. Targher G. Mantovani A. Byrne C.D. Mechanisms and possible hepatoprotective effects of glucagon-like peptide-1 receptor agonists and other incretin receptor agonists in non-alcoholic fatty liver disease. Lancet Gastroenterol. Hepatol. 2023 8 2 179 191 10.1016/S2468‑1253(22)00338‑7 36620987
    [Google Scholar]
  33. Petrovic A. Igrec D. Rozac K. The role of GLP1-RAS in direct modulation of lipid metabolism in hepatic tissue as determined using in vitro models of NAFLD. Curr. Issues Mol. Biol. 2023 45 6 4544 4556 10.3390/cimb45060288 37367037
    [Google Scholar]
  34. Gupta N.A. Mells J. Dunham R.M. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010 51 5 1584 1592 10.1002/hep.23569 20225248
    [Google Scholar]
  35. Svegliati-Baroni G. Saccomanno S. Rychlicki C. Glucagon‐like peptide‐1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high‐fat diet in nonalcoholic steatohepatitis. Liver Int. 2011 31 9 1285 1297 10.1111/j.1478‑3231.2011.02462.x 21745271
    [Google Scholar]
  36. da Silva Lima N. Cabaleiro A. Novoa E. GLP-1 and GIP agonism has no direct actions in human hepatocytes or hepatic stellate cells. Cell. Mol. Life Sci. 2024 81 1 468 10.1007/s00018‑024‑05507‑6 39607493
    [Google Scholar]
  37. Chen J. Mei A. Wei Y. GLP-1 receptor agonist as a modulator of innate immunity. Front. Immunol. 2022 13 997578 10.3389/fimmu.2022.997578 36569936
    [Google Scholar]
  38. Bendotti G. Montefusco L. Lunati M.E. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022 182 106320 10.1016/j.phrs.2022.106320 35738455
    [Google Scholar]
  39. Armstrong M.J. Gaunt P. Aithal G.P. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016 387 10019 679 690 10.1016/S0140‑6736(15)00803‑X 26608256
    [Google Scholar]
  40. Zhu K. Kakkar R. Chahal D. Yoshida E.M. Hussaini T. Efficacy and safety of semaglutide in non-alcoholic fatty liver disease. World J. Gastroenterol. 2023 29 37 5327 5338 10.3748/wjg.v29.i37.5327 37899788
    [Google Scholar]
  41. Newsome P.N. Ambery P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J. Hepatol. 2023 79 6 1557 1565 10.1016/j.jhep.2023.07.033 37562748
    [Google Scholar]
  42. Campbell J.E. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol. Metab. 2021 46 101139 10.1016/j.molmet.2020.101139 33290902
    [Google Scholar]
  43. Mayendraraj A. Rosenkilde M.M. Gasbjerg L.S. GLP-1 and GIP receptor signaling in beta cells – A review of receptor interactions and co-stimulation. Peptides 2022 151 170749 10.1016/j.peptides.2022.170749 35065096
    [Google Scholar]
  44. Pelle M.C. Provenzano M. Zaffina I. Role of a dual glucose-dependent insulinotropic peptide (GIP)/glucagon-like peptide-1 receptor agonist (Twincretin) in glycemic control: From pathophysiology to treatment. Life (Basel) 2021 12 1 29 10.3390/life12010029 35054422
    [Google Scholar]
  45. Frias J.P. Nauck M.A. Van J. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018 392 10160 2180 2193 10.1016/S0140‑6736(18)32260‑8 30293770
    [Google Scholar]
  46. Wilson J.M. Nikooienejad A. Robins D.A. The dual glucose‐dependent insulinotropic peptide and glucagon‐like peptide‐1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes. Metab. 2020 22 12 2451 2459 10.1111/dom.14174 33462955
    [Google Scholar]
  47. Gupta K. Raja A. Physiology, Gastric Inhibitory Peptide. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  48. Ansari S. Khoo B. Tan T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024 20 8 447 459 10.1038/s41574‑024‑00979‑9 38632474
    [Google Scholar]
  49. Chrysavgis L.G. Kazanas S. Bafa K. Rozani S. Koloutsou M.E. Cholongitas E. Glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and glucagon receptor agonists in metabolic dysfunction-associated steatotic liver disease: Novel medication in new liver disease nomenclature. Int. J. Mol. Sci. 2024 25 7 3832 10.3390/ijms25073832 38612640
    [Google Scholar]
  50. Thondam S.K. Cuthbertson D.J. Wilding J.P.H. The influence of glucose-dependent insulinotropic polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Peptides 2020 125 170208 10.1016/j.peptides.2019.170208 31759125
    [Google Scholar]
  51. Yamane S. Harada N. Gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide signaling in adipose tissue. J. Diabetes Investig. 2019 10 1 3 5 10.1111/jdi.12942 30248247
    [Google Scholar]
  52. Hammoud R. Drucker D.J. Beyond the pancreas: Contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 2023 19 4 201 216 10.1038/s41574‑022‑00783‑3 36509857
    [Google Scholar]
  53. Mori Y. Matsui T. Hirano T. Yamagishi S. GIP as a potential therapeutic target for atherosclerotic cardiovascular disease–a systematic review. Int. J. Mol. Sci. 2020 21 4 1509 10.3390/ijms21041509 32098413
    [Google Scholar]
  54. Bomholt A.B. Johansen C.D. Christensen J.B. Evaluation of commercially available glucagon receptor antibodies and glucagon receptor expression. Commun. Biol. 2022 5 1 1278 10.1038/s42003‑022‑04242‑7 36418521
    [Google Scholar]
  55. Finan B. Capozzi M.E. Campbell J.E. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 2020 69 4 532 541 10.2337/dbi19‑0004 31178432
    [Google Scholar]
  56. Sanyal A.J. Kaplan L.M. Frias J.P. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: A randomized phase 2a trial. Nat. Med. 2024 30 7 2037 2048 10.1038/s41591‑024‑03018‑2 38858523
    [Google Scholar]
  57. Mathiesen D.S. Lund A. Vilsbøll T. Knop F.K. Bagger J.I. Amylin and calcitonin: Potential therapeutic strategies to reduce body weight and liver fat. Front. Endocrinol. 2021 11 617400 10.3389/fendo.2020.617400 33488526
    [Google Scholar]
  58. Boyle C.N. Zheng Y. Lutz T.A. Mediators of amylin action in metabolic control. J. Clin. Med. 2022 11 8 2207 10.3390/jcm11082207 35456307
    [Google Scholar]
  59. Hay D.L. Chen S. Lutz T.A. Parkes D.G. Roth J.D. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol. Rev. 2015 67 3 564 600 10.1124/pr.115.010629 26071095
    [Google Scholar]
  60. Eržen S. Tonin G. Jurišić Eržen D. Klen J. Amylin, another important neuroendocrine hormone for the treatment of diabesity. Int. J. Mol. Sci. 2024 25 3 1517 10.3390/ijms25031517 38338796
    [Google Scholar]
  61. Silvestre R.A. Rodríguez-Gallardo J. Jodka C. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab. 2001 280 3 E443 E449 10.1152/ajpendo.2001.280.3.E443 11171599
    [Google Scholar]
  62. Samonina G.E. Kopylova G.N. Lukjanzeva G.V. Antiulcer effects of amylin: A review. Pathophysiology 2004 11 1 1 6 10.1016/j.pathophys.2003.10.008 15177509
    [Google Scholar]
  63. Alhabeeb H. AlFaiz A. Kutbi E. Gut hormones in health and obesity: The upcoming role of short chain fatty acids. Nutrients 2021 13 2 481 10.3390/nu13020481 33572661
    [Google Scholar]
  64. Lafferty R.A. Flatt P.R. Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 2018 100 269 274 10.1016/j.peptides.2017.11.005 29412828
    [Google Scholar]
  65. Cooper J.A. Factors affecting circulating levels of peptide YY in humans: A comprehensive review. Nutr. Res. Rev. 2014 27 1 186 197 10.1017/S0954422414000109 24933293
    [Google Scholar]
  66. Karra E. Chandarana K. Batterham R.L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 2009 587 1 19 25 10.1113/jphysiol.2008.164269 19064614
    [Google Scholar]
  67. Borozan S. Vujošević S. Mikhailidis D.P. Muzurović E. Metabolic dysfunction-associated steatohepatitis and cardiovascular disease prevention: Is resmetirom useful? Curr. Vasc. Pharmacol. 2024 23 1 4 7 10.2174/0115701611340703240809044916 39129278
    [Google Scholar]
  68. Bhavsar S. Mudaliar S. Cherrington A. Evolution of exenatide as a diabetes therapeutic. Curr. Diabetes Rev. 2013 9 2 161 193 [PMID: 23256660
    [Google Scholar]
  69. Buse J.B. Klonoff D.C. Nielsen L.L. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: An interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clin. Ther. 2007 29 1 139 153 10.1016/j.clinthera.2007.01.015 17379054
    [Google Scholar]
  70. Klonoff D.C. Buse J.B. Nielsen L.L. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr. Med. Res. Opin. 2008 24 1 275 286 10.1185/030079908X253870 18053320
    [Google Scholar]
  71. Gastaldelli A. Repetto E. Guja C. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes. Metab. 2020 22 3 393 403 10.1111/dom.13907 31692226
    [Google Scholar]
  72. Unsal İ.O. Calapkulu M. Sencar M.E. Cakal B. Ozbek M. Evaluation of NAFLD fibrosis, FIB-4 and APRI score in diabetic patients receiving exenatide treatment for non-alcoholic fatty liver disease. Sci. Rep. 2022 12 1 283 10.1038/s41598‑021‑04361‑x 34997159
    [Google Scholar]
  73. Dutour A. Abdesselam I. Ancel P. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: A prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes. Metab. 2016 18 9 882 891 10.1111/dom.12680 27106272
    [Google Scholar]
  74. Liu L. Yan H. Xia M. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2020 36 5 3292 10.1002/dmrr.3292 31955491
    [Google Scholar]
  75. Bi Y. Zhang B. Xu W. Effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in drug-naive subjects with type 2 diabetes. Acta Diabetol. 2014 51 5 865 873 10.1007/s00592‑014‑0638‑3 25118999
    [Google Scholar]
  76. Cuthbertson D.J. Irwin A. Gardner C.J. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012 7 12 50117 10.1371/journal.pone.0050117 23236362
    [Google Scholar]
  77. Frias J.P. Bonora E. Cox D.A. Glycaemic efficacy of an expanded dose range of dulaglutide according to baseline glycated haemoglobin (HbA1c) subgroup: Post hoc analysis of AWARD ‐11. Diabetes Obes. Metab. 2021 23 12 2819 2824 10.1111/dom.14533 34463420
    [Google Scholar]
  78. Kuchay M.S. Krishan S. Mishra S.K. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: Randomised controlled trial (D-LIFT trial). Diabetologia 2020 63 11 2434 2445 10.1007/s00125‑020‑05265‑7 32865597
    [Google Scholar]
  79. Cusi K. Sattar N. García-Pérez L.E. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern consistent with liver fat reduction: A post hoc analysis of the AWARD programme. Diabet. Med. 2018 35 10 1434 1439 10.1111/dme.13697 29869810
    [Google Scholar]
  80. Nuffer W.A. Trujillo J.M. Liraglutide: A new option for the treatment of obesity. Pharmacotherapy 2015 35 10 926 934 10.1002/phar.1639 26497479
    [Google Scholar]
  81. Pi-Sunyer X. Astrup A. Fujioka K. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 2015 373 1 11 22 10.1056/NEJMoa1411892 26132939
    [Google Scholar]
  82. Eguchi Y. Kitajima Y. Hyogo H. Pilot study of liraglutide effects in non‐alcoholic steatohepatitis and non‐alcoholic fatty liver disease with glucose intolerance in J apanese patients (LEAN‐J). Hepatol. Res. 2015 45 3 269 278 10.1111/hepr.12351 24796231
    [Google Scholar]
  83. Tang A. Rabasa-Lhoret R. Castel H. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: A randomized trial. Diabetes Care 2015 38 7 1339 1346 10.2337/dc14‑2548 25813773
    [Google Scholar]
  84. Tan Y. Zhen Q. Ding X. Association between use of liraglutide and liver fibrosis in patients with type 2 diabetes. Front. Endocrinol. 2022 13 935180 10.3389/fendo.2022.935180 36034438
    [Google Scholar]
  85. Zhang L. Wu X. Li X. Longitudinal changes in serum adropin levels and liver fat content during liraglutide treatment in newly diagnosed patients with type 2 diabetes mellitus and metabolic dysfunction-associated fatty liver disease. Acta Diabetol. 2023 60 7 971 979 10.1007/s00592‑023‑02082‑3 37079136
    [Google Scholar]
  86. Khoo J. Hsiang J.C. Taneja R. Randomized trial comparing effects of weight loss by liraglutide with lifestyle modification in non‐alcoholic fatty liver disease. Liver Int. 2019 39 5 941 949 10.1111/liv.14065 30721572
    [Google Scholar]
  87. Yan J. Yao B. Kuang H. Liraglutide, sitagliptin, and insulin glargine added to metformin: The effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology 2019 69 6 2414 2426 10.1002/hep.30320 30341767
    [Google Scholar]
  88. Li X. Wu X. Jia Y. Liraglutide decreases liver fat content and serum fibroblast growth factor 21 levels in newly diagnosed overweight patients with type 2 diabetes and nonalcoholic fatty liver disease. J. Diabetes Res. 2021 2021 1 8 10.1155/2021/3715026 34660809
    [Google Scholar]
  89. Petit J.M. Cercueil J.P. Loffroy R. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes: The lira-NAFLD Study. J. Clin. Endocrinol. Metab. 2017 102 2 407 415 [PMID: 27732328
    [Google Scholar]
  90. Svane M.S. Johannesen H.H. Hansen A.E. Four weeks treatment with the GLP-1 receptor analogue liraglutide lowers liver fat and concomitantly circulating glucagon in individuals with overweight. Int. J. Obes. 2022 46 11 2058 2062 10.1038/s41366‑022‑01207‑y 35982119
    [Google Scholar]
  91. Feng W. Gao C. Bi Y. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J. Diabetes 2017 9 8 800 809 10.1111/1753‑0407.12555 28332301
    [Google Scholar]
  92. Smits M.M. Tonneijck L. Muskiet M.H.A. Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: A randomised placebo-controlled trial. Diabetologia 2016 59 12 2588 2593 10.1007/s00125‑016‑4100‑7 27627981
    [Google Scholar]
  93. Bizino M.B. Jazet I.M. de Heer P. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: A pre-specified secondary study on ectopic fat accumulation. Diabetologia 2020 63 1 65 74 10.1007/s00125‑019‑05021‑6 31690988
    [Google Scholar]
  94. Kahal H. Abouda G. Rigby A.S. Coady A.M. Kilpatrick E.S. Atkin S.L. Glucagon‐like peptide‐1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and nonalcoholic fatty liver disease. Clin. Endocrinol. (Oxf.) 2014 81 4 523 528 10.1111/cen.12369 24256515
    [Google Scholar]
  95. Vedtofte L. Bahne E. Foghsgaard S. One year’s treatment with the glucagon-like peptide 1 receptor agonist liraglutide decreases hepatic fat content in women with nonalcoholic fatty liver disease and prior gestational diabetes mellitus in a randomized, placebo-controlled trial. J. Clin. Med. 2020 9 10 3213 10.3390/jcm9103213 33036179
    [Google Scholar]
  96. Chao A.M. Tronieri J.S. Amaro A. Wadden T.A. Clinical insight on semaglutide for chronic weight management in adults: Patient selection and special considerations. Drug Des. Devel. Ther. 2022 16 4449 4461 10.2147/DDDT.S365416 36601368
    [Google Scholar]
  97. Hughes S. Neumiller J.J. Oral semaglutide. Clin. Diabetes 2020 38 1 109 111 10.2337/cd19‑0079 31975761
    [Google Scholar]
  98. Aroda V.R. Aberle J. Bardtrum L. Efficacy and safety of once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in adults with type 2 diabetes (PIONEER PLUS): A multicentre, randomised, phase 3b trial. Lancet 2023 402 10403 693 704 10.1016/S0140‑6736(23)01127‑3 37385279
    [Google Scholar]
  99. Knop F.K. Aroda V.R. do Vale R.D. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023 402 10403 705 719 10.1016/S0140‑6736(23)01185‑6 37385278
    [Google Scholar]
  100. Wilding J.P.H. Batterham R.L. Calanna S. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021 384 11 989 1002 10.1056/NEJMoa2032183 33567185
    [Google Scholar]
  101. Lincoff A.M. Brown-Frandsen K. Colhoun H.M. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 2023 389 24 2221 2232 10.1056/NEJMoa2307563 37952131
    [Google Scholar]
  102. Newsome P.N. Buchholtz K. Cusi K. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 2021 384 12 1113 1124 10.1056/NEJMoa2028395 33185364
    [Google Scholar]
  103. Flint A. Andersen G. Hockings P. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non‐alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2021 54 9 1150 1161 10.1111/apt.16608 34570916
    [Google Scholar]
  104. Loomba R. Abdelmalek M.F. Armstrong M.J. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2023 8 6 511 522 10.1016/S2468‑1253(23)00068‑7 36934740
    [Google Scholar]
  105. Kakegawa T. Sugimoto K. Saito K. Favorable liver and skeletal muscle changes in patients with MASLD and T2DM receiving glucagon-like peptide-1 receptor agonist: A prospective cohort study. Medicine (Baltimore) 2024 103 23 38444 10.1097/MD.0000000000038444 38847728
    [Google Scholar]
  106. Nomoto H. Takahashi Y. Takano Y. Effect of switching to once-weekly semaglutide on non-alcoholic fatty liver disease: The SWITCH-SEMA 1 subanalysis. Pharmaceutics 2023 15 8 2163 10.3390/pharmaceutics15082163 37631377
    [Google Scholar]
  107. Volpe S. Lisco G. Fanelli M. Once-weekly subcutaneous semaglutide improves fatty liver disease in patients with type 2 diabetes: A 52-week prospective real-life study. Nutrients 2022 14 21 4673 10.3390/nu14214673 36364937
    [Google Scholar]
  108. Arai T. Atsukawa M. Tsubota A. Efficacy and safety of oral semaglutide in patients with non‐alcoholic fatty liver disease complicated by type 2 diabetes mellitus: A pilot study. JGH Open 2022 6 7 503 511 10.1002/jgh3.12780 35822119
    [Google Scholar]
  109. Nordisk N. Novo Nordisk A/S: Semaglutide 2.4 mg demonstrates superior improvement in both liver fibrosis and MASH resolution in the ESSENCE trial. 2024 Available from [https://www.novonordisk.com/news-and-media/news-and-ir-materials/news-details.html?id=171971]
    [Google Scholar]
  110. Aronne L.J. Sattar N. Horn D.B. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity. JAMA 2024 331 1 38 48 10.1001/jama.2023.24945 38078870
    [Google Scholar]
  111. Jastreboff A.M. Aronne L.J. Ahmad N.N. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022 387 3 205 216 10.1056/NEJMoa2206038 35658024
    [Google Scholar]
  112. Hartman M.L. Sanyal A.J. Loomba R. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care 2020 43 6 1352 1355 10.2337/dc19‑1892 32291277
    [Google Scholar]
  113. Frías J.P. Davies M.J. Rosenstock J. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 2021 385 6 503 515 10.1056/NEJMoa2107519 34170647
    [Google Scholar]
  114. Ludvik B. Giorgino F. Jódar E. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021 398 10300 583 598 10.1016/S0140‑6736(21)01443‑4 34370970
    [Google Scholar]
  115. Gastaldelli A. Cusi K. Fernández Landó L. Bray R. Brouwers B. Rodríguez Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022 10 6 393 406 10.1016/S2213‑8587(22)00070‑5 35468325
    [Google Scholar]
  116. Loomba R. Hartman M.L. Lawitz E.J. Tirzepatide for metabolic dysfunction–associated steatohepatitis with liver fibrosis. N. Engl. J. Med. 2024 391 4 299 310 10.1056/NEJMoa2401943 38856224
    [Google Scholar]
  117. Frias J.P. Hsia S. Eyde S. Efficacy and safety of oral orforglipron in patients with type 2 diabetes: A multicentre, randomised, dose-response, phase 2 study. Lancet 2023 402 10400 472 483 10.1016/S0140‑6736(23)01302‑8 37369232
    [Google Scholar]
  118. Wharton S. Blevins T. Connery L. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 2023 389 10 877 888 10.1056/NEJMoa2302392 37351564
    [Google Scholar]
  119. Lau D.C.W. Erichsen L. Francisco A.M. Once-weekly cagrilintide for weight management in people with overweight and obesity: A multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 2021 398 10317 2160 2172 10.1016/S0140‑6736(21)01751‑7 34798060
    [Google Scholar]
  120. Frias J.P. Deenadayalan S. Erichsen L. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: A multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 2023 402 10403 720 730 10.1016/S0140‑6736(23)01163‑7 37364590
    [Google Scholar]
  121. le Roux C.W. Steen O. Lucas K.J. Startseva E. Unseld A. Hennige A.M. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: A randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol. 2024 12 3 162 173 10.1016/S2213‑8587(23)00356‑X 38330987
    [Google Scholar]
  122. Sanyal A.J. Bedossa P. Fraessdorf M. A phase 2 randomized trial of survodutide in MASH and fibrosis. N. Engl. J. Med. 2024 391 4 311 319 10.1056/NEJMoa2401755 38847460
    [Google Scholar]
  123. Lawitz E.J. Fraessdorf M. Neff G.W. Efficacy, tolerability and pharmacokinetics of survodutide, a glucagon/glucagon-like peptide-1 receptor dual agonist, in cirrhosis. J. Hepatol. 2024 81 5 837 846 10.1016/j.jhep.2024.06.003 38857788
    [Google Scholar]
  124. Wharton S. le Roux C.W. Kosiborod M.N. Survodutide for treatment of obesity: Rationale and design of two randomized phase 3 clinical trials (SYNCHRONIZE™-1 and -2). Obesity 2024 1 11 [PMID: 39495965
    [Google Scholar]
  125. Ingelheim B. Boehringer ingelheim and zealand pharma receive fda fast track designation for investigational treatment for NASH. 2022 Available from: www.boehringer-ingelheim.com/us/press-release/boehringer-ingelheim-and-zealand-pharma-receive-fda-fast-track-designation
    [Google Scholar]
  126. Romero-Gómez M. Lawitz E. Shankar R.R. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J. Hepatol. 2023 79 4 888 897 10.1016/j.jhep.2023.05.013 37355043
    [Google Scholar]
  127. Koh B. Xiao J. Ng C.H. Comparative efficacy of pharmacologic therapies for MASH in reducing liver fat content: Systematic review and network meta-analysis. Hepatology 2024 1 7 10.1097/HEP.0000000000001028 39028914
    [Google Scholar]
  128. Nahra R. Wang T. Gadde K.M. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: A 54-week randomized phase 2B study. Diabetes Care 2021 44 6 1433 1442 10.2337/dc20‑2151 34016612
    [Google Scholar]
  129. Shankar S.S. Daniels S.J. Robertson D. Safety and efficacy of novel incretin co-agonist cotadutide in biopsy-proven noncirrhotic MASH with fibrosis. Clin. Gastroenterol. Hepatol. 2024 22 9 1847 1857.e11 10.1016/j.cgh.2024.04.017 38729399
    [Google Scholar]
  130. FirstWord List FirstWord List:Most read stories of the week. 2023 Available from: https://firstwordpharma.com/story/5727429
    [Google Scholar]
  131. Ji L. Jiang H. Bi Y. Once-weekly mazdutide in Chinese adults with obesity or overweight. N. Engl. J. Med. 2025 392 22 2215 2225 10.1056/nejmoa2411528 40421736
    [Google Scholar]
  132. Ji L. Jiang H. Cheng Z. A phase 2 randomised controlled trial of mazdutide in Chinese overweight adults or adults with obesity. Nat. Commun. 2023 14 1 8289 10.1038/s41467‑023‑44067‑4 38092790
    [Google Scholar]
  133. Ji L. Jiang H. Zhang Y. 1857-LB: Improvement of liver steatosis by mazdutide in chinese participants with overweight or obesity—an exploratory analysis of GLORY-1. Diabetes 2024 73 1857 LB 10.2337/db24‑1857‑LB
    [Google Scholar]
  134. Strategic Mission Driven Science Available from: https://www.innoventbio.com/InvestorsAndMedia/PressReleaseDetail?key=430
  135. Innovent Biologics Innovent announces the NDA of mazdutide for type 2 diabetes has been accepted by the NMPA of China 2024 Available from:https://www.prnewswire.com/news-releases/innovent-announces-the-nda-of-mazdutide-for-type-2-diabeteshas-been-accepted-by-the-nmpa-of-china-302212047.html
    [Google Scholar]
  136. To D. Shin J. Karanth S. Lin Y.H. Sosnovtseva S. Bell A.C. 72-LB: DD01, a novel once-weekly dual glp-1/glucagon receptor agonist, improves metabolic health and achieves rapid, clinically significant reductions in hepatic steatosis following only four weeks of treatment and without the need for significant weight loss in overweight/diabetic subjects with nafld. Diabetes 2023 72 Suppl. 1 72 [-LB. 10.2337/db23‑72‑LB
    [Google Scholar]
  137. Fatty liver disease treatment DD01 receives FDA fast track designation. 2023 Available from: https://liverdiseasenews.com/news/fatty-liver-disease-treatment-dd01-fda-fast-track-designation/
  138. Aronne L. Scott Harris M. Roberts M.S. 262-OR: Pemvidutide, a GLP-1/glucagon dual receptor agonist, in subjects with overweight or obesity—a 48-week, placebo-controlled, phase 2 (MOMENTUM). Trial. Diabetes 2024 73 Suppl. 1 262 [-OR.] 10.2337/db24‑262‑OR
    [Google Scholar]
  139. Harrison S.A. Browne S.K. Suschak J.J. Effect of pemvidutide, a GLP-1/glucagon dual receptor agonist, on MASLD: A randomized, double-blind, placebo-controlled study. J. Hepatol. 2024 82 1 7 17 10.1016/j.jhep.2024.07.006
    [Google Scholar]
  140. Therapeutics C. Carmot therapeutics. 2023 Available from: https://carmot.us/wp-content/uploads/2023/10/Carmot_Obesity Week2023_CT-868_Chakravarthy.pdf
    [Google Scholar]
  141. Jastreboff A.M. Kaplan L.M. Frías J.P. Triple–hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 2023 389 6 514 526 10.1056/NEJMoa2301972 37366315
    [Google Scholar]
  142. Abdelmalek M. Choi J. Kim Y. Seo K. Hompesch M. Baek S. HM15211, a novel GLP-1/GIP/Glucagon triple-receptor co-agonist significantly reduces liver fat and body weight in obese subjects with non-alcoholic fatty liver disease: A Phase 1b/2a, multi-center, randomized, placebo-controlled trial. J. Hepatol. 2020 73 S124 10.1016/S0168‑8278(20)30765‑0
    [Google Scholar]
  143. Abdelmalek M.F. Suzuki A. Sanchez W. A phase 2, adaptive randomized, double-blind, placebo-controlled, multicenter, 52-week study of HM15211 in patients with biopsy-confirmed non-alcoholic steatohepatitis - Study design and rationale of HM-TRIA-201 study. Contemp. Clin. Trials 2023 130 107176 10.1016/j.cct.2023.107176 37028504
    [Google Scholar]
  144. Muzurović E. Peng C.C.H. Belanger M.J. Sanoudou D. Mikhailidis D.P. Mantzoros C.S. Nonalcoholic fatty liver disease and cardiovascular disease: A review of shared cardiometabolic risk factors. Hypertension 2022 79 7 1319 1326 10.1161/HYPERTENSIONAHA.122.17982 35465684
    [Google Scholar]
  145. Ren T.Y. Eslam M. Fan J.G. Incretin-based therapy in the management of metabolic dysfunction-associated steatotic liver disease (MASLD): One piece of the puzzle: Editorial on “Comparison of glucagon-like peptide-1 receptor agonists and thiazolidinediones on treating nonalcoholic fatty liver disease: A network meta-analysis”. Clin. Mol. Hepatol. 2024 30 4 649 652 10.3350/cmh.2024.0558 39038961
    [Google Scholar]
  146. Ratziu V. Charlton M. Rational combination therapy for NASH: Insights from clinical trials and error. J. Hepatol. 2023 78 5 1073 1079 10.1016/j.jhep.2022.12.025 36603662
    [Google Scholar]
  147. Puengel T. Tacke F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: Where are we today? Expert Opin. Pharmacother. 2024 25 9 1249 1263 10.1080/14656566.2024.2374463 38954663
    [Google Scholar]
  148. Tacke F. Horn P. Wong V.W-S. EASL–EASD–EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD): Executive summary. Diabetologia 2024 67 11 2375 2392 10.1007/s00125‑024‑06196‑3 38869512
    [Google Scholar]
  149. ElSayed N.A. McCoy R.G. Aleppo G. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2025. Diabetes Care 2025 48 Suppl. 1 S181 S206 10.2337/dc25‑S009 39651989
    [Google Scholar]
  150. Paklar N. Mijic M. Filipec-Kanizaj T. The outcomes of liver transplantation in severe metabolic dysfunction-associated steatotic liver disease patients. Biomedicines 2023 11 11 3096 10.3390/biomedicines11113096 38002096
    [Google Scholar]
  151. Alkhouri N. Herring R. Kabler H. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol. 2022 77 3 607 618 10.1016/j.jhep.2022.04.003 35439567
    [Google Scholar]
  152. Harrison S.A. Frias J.P. Lucas K.J. Safety and efficacy of efruxifermin in combination with a GLP-1 receptor agonist in patients with nash/mash and type 2 diabetes in a randomized phase 2 study. Clin. Gastroenterol. Hepatol. 2024 23 1 103 113 10.1016/j.cgh.2024.02.022
    [Google Scholar]
  153. Stefan N. Yki-Järvinen H. Neuschwander-Tetri B.A. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 2025 13 2 134 148 10.1016/S2213‑8587(24)00318‑8 39681121
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128378484250619080753
Loading
/content/journals/cpd/10.2174/0113816128378484250619080753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test