Skip to content
2000
image of Neuroprotective Effects of Eugenol in Alzheimer's Disease: Mitigating Oxidative Stress, Inflammation and Amyloid Plaques

Abstract

Eugenol, a phenolic phytochemical found in many medicinal plants, exhibits various pharmacological properties, including analgesic, antipyretic, antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, and anaesthetic effects. It has shown potential in addressing neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease, and motor neuron disease, which are primarily caused by mechanisms such as apoptosis, protein accumulation, aging, and oxidative stress within the central nervous system (CNS). This review explores the mechanisms through which eugenol may influence AD. Eugenol appears to counter oxidative stress, reduce inflammation, and prevent amyloid beta (Aβ) plaque accumulation, suggesting it could delay the onset or progression of AD. However, more research is required to establish its safety and effectiveness in treating or preventing this disease.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128373290250620054118
2025-07-08
2025-09-05
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Kim D.H. Epidemiology of dementia in korea. Taehan Uihak Hyophoe Chi 2002 45 4 356 360 10.5124/jkma.2002.45.4.356
    [Google Scholar]
  3. Mucke L. Alzheimer’s disease. Nature 2009 461 7266 895 897 10.1038/461895a 19829367
    [Google Scholar]
  4. Janson J. Laedtke T. Parisi J.E. O’Brien P. Petersen R.C. Butler P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004 53 2 474 481 10.2337/diabetes.53.2.474 14747300
    [Google Scholar]
  5. Biessels G.J. Strachan M.W.J. Visseren F.L.J. Kappelle L.J. Whitmer R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol. 2014 2 3 246 255 10.1016/S2213‑8587(13)70088‑3 24622755
    [Google Scholar]
  6. de la Monte S.M. Wands J.R. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J. Diabetes Sci. Technol. 2008 2 6 1101 1113 10.1177/193229680800200619 19885299
    [Google Scholar]
  7. Pany S. Pal A. Sahu P.K. Neuroprotective effect of quercetin in neurotoxicity induced rats: Role of neuroinflammation in neurodegeneration. Asian J. Pharm. Clin. Res. 2014 7 4 152 156
    [Google Scholar]
  8. Sarkar A. Gogia N. Glenn N. A soy protein lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in drosophila eye. Sci. Rep. 2018 8 1 13545 10.1038/s41598‑018‑31787‑7 30202077
    [Google Scholar]
  9. Williams P. Sorribas A. Howes M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 2011 28 1 48 77 10.1039/C0NP00027B 21072430
    [Google Scholar]
  10. Zhang H.Y. Zheng C.Y. Yan H. Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Chem. Biol. Interact. 2008 175 1-3 396 402 10.1016/j.cbi.2008.04.049 18565502
    [Google Scholar]
  11. Pisano M. Pagnan G. Loi M. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. Cancer 2007 6 1 8 10.1186/1476‑4598‑6‑8 17233906
    [Google Scholar]
  12. Kar Mahapatra S. Chakraborty S.P. Majumdar S. Bag B.G. Roy S. Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro. Eur. J. Pharmacol. 2009 623 1-3 132 140 10.1016/j.ejphar.2009.09.019 19769960
    [Google Scholar]
  13. Yogalakshmi B. Viswanathan P. Anuradha C.V. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology 2010 268 3 204 212 10.1016/j.tox.2009.12.018 20036707
    [Google Scholar]
  14. Tao G. Irie Y. Li D.J. Keung W.M. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg. Med. Chem. 2005 13 15 4777 4788 10.1016/j.bmc.2005.04.081 15936201
    [Google Scholar]
  15. Irie Y. Itokazu N. Anjiki N. Ishige A. Watanabe K. Keung W.M. Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus. Brain Res. 2004 1011 2 243 246 10.1016/j.brainres.2004.03.040 15157811
    [Google Scholar]
  16. Ahrens C.H. Brunner E. Basler K. Quantitative proteomics: A central technology for systems biology. J. Proteomics 2010 73 4 820 827 10.1016/j.jprot.2009.12.007 20026292
    [Google Scholar]
  17. Christen Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 2000 71 2 621S 629S 10.1093/ajcn/71.2.621s 10681270
    [Google Scholar]
  18. Kozlowski H. Janicka-Klos A. Brasun J. Gaggelli E. Valensin D. Valensin G. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord. Chem. Rev. 2009 253 21-22 2665 2685 10.1016/j.ccr.2009.05.011
    [Google Scholar]
  19. Barnham K.J. McKinstry W.J. Multhaup G. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 2003 278 19 17401 17407 10.1074/jbc.M300629200 12611883
    [Google Scholar]
  20. Miura T. Suzuki K. Kohata N. Takeuchi H. Metal binding modes of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 2000 39 23 7024 7031 10.1021/bi0002479 10841784
    [Google Scholar]
  21. Strozyk D. Launer L.J. Adlard P.A. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol. Aging 2009 30 7 1069 1077 10.1016/j.neurobiolaging.2007.10.012 18068270
    [Google Scholar]
  22. Valko M. Morris H. Cronin M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005 12 10 1161 1208 10.2174/0929867053764635 15892631
    [Google Scholar]
  23. Allan Butterfield D. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 2002 36 12 1307 1313 10.1080/1071576021000049890 12607822
    [Google Scholar]
  24. Chowdhury S. Kumar S. Inhibition of BACE1, MAO-B, cholinesterase enzymes, and anti-amyloidogenic potential of selected natural phytoconstituents: Multi-target-directed ligand approach. J. Food Biochem. 2021 45 1 e13571 10.1111/jfbc.13571 33249607
    [Google Scholar]
  25. Adefegha S.A. Okeke B.M. Oboh G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases—in vitro. J. Food Biochem. 2021 45 3 e13276 10.1111/jfbc.13276 32458455
    [Google Scholar]
  26. Kumar A. Siddiqi N.J. Alrashood S.T. Khan H.A. Dubey A. Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed. Pharmacother. 2021 139 111588 10.1016/j.biopha.2021.111588 33862491
    [Google Scholar]
  27. Mesole S.B. Alfred O.O. Yusuf U.A. Lukubi L. Ndhlovu D. Apoptotic inducement of neuronal cells by aluminium chloride and the neuroprotective effect of eugenol in wistar rats. Oxid. Med. Cell. Longev. 2020 2020 1 7 10.1155/2020/8425643 32089784
    [Google Scholar]
  28. Huang X. Moir R.D. Tanzi R. Bush A. Rogers J.T. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann. N. Y. Acad. Sci. 2004 1012 1 153 163 10.1196/annals.1306.012 15105262
    [Google Scholar]
  29. Cuajungco M.P. Fagét K.Y. Zinc takes the center stage: Its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev. 2003 41 1 44 56 10.1016/S0165‑0173(02)00219‑9 12505647
    [Google Scholar]
  30. Pal A. Badyal R.K. Vasishta R.K. Attri S.V. Thapa B.R. Prasad R. Biochemical, histological, and memory impairment effects of chronic copper toxicity: A model for non-Wilsonian brain copper toxicosis in Wistar rat. Biol. Trace Elem. Res. 2013 153 1-3 257 268 10.1007/s12011‑013‑9665‑0 23613148
    [Google Scholar]
  31. Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 1997 23 1 134 147 10.1016/S0891‑5849(96)00629‑6 9165306
    [Google Scholar]
  32. Tsaluchidu S. Cocchi M. Tonello L. Puri B.K. Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 2008 8 S1 S5 10.1186/1471‑244X‑8‑S1‑S5 18433515
    [Google Scholar]
  33. Butterfield D.A. Hensley K. Cole P. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: Relevance to Alzheimer’s disease. J. Neurochem. 1997 68 6 2451 2457 10.1046/j.1471‑4159.1997.68062451.x 9166739
    [Google Scholar]
  34. Moreira P. Honda K. Liu Q. Alzheimer’s disease and oxidative stress: The old problem remains unsolved. Curr. Med. Chem. Cent. Nerv. Syst. Agents 2005 5 1 51 62 10.2174/1568015053202714
    [Google Scholar]
  35. Koo E.H. Lansbury P.T. Kelly J.W. Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 1999 96 18 9989 9990 10.1073/pnas.96.18.9989 10468546
    [Google Scholar]
  36. Markesbery W.R. The role of oxidative stress in Alzheimer disease. Arch. Neurol. 1999 56 12 1449 1452 10.1001/archneur.56.12.1449 10593298
    [Google Scholar]
  37. Anne B. Dawnayand S.J. Millar D.J. Glycation and advanced glycation end-product formation with icodextrin and dextrose. Perit. Dial. Int. 1997 17 1 52 58 10.1177/089686089701700112 9068023
    [Google Scholar]
  38. Cooke M.S. Evans M.D. Dizdaroglu M. Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003 17 10 1195 1214 10.1096/fj.02‑0752rev 12832285
    [Google Scholar]
  39. Wojsiat J. Laskowska-Kaszub K. Mietelska-Porowska A. Wojda U. Search for Alzheimer’s disease biomarkers in blood cells: Hypotheses-driven approach. Biomarkers Med. 2017 11 10 917 931 10.2217/bmm‑2017‑0041 28976776
    [Google Scholar]
  40. Angiulli F. Conti E. Zoia C.P. Blood-based biomarkers of neuroinflammation in Alzheimer’s disease: A central role for periphery? Diagnostics (Basel) 2021 11 9 1525 10.3390/diagnostics11091525 34573867
    [Google Scholar]
  41. Khan T.K. Alkon D.L. Peripheral biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2015 44 3 729 744 10.3233/JAD‑142262 25374110
    [Google Scholar]
  42. Wojda U. Alzheimer’s disease lymphocytes: Potential for biomarkers? Biomarkers Med. 2016 10 1 1 4 10.2217/bmm.15.79 26640978
    [Google Scholar]
  43. Wojsiat J. Prandelli C. Laskowska-Kaszub K. Martín-Requero A. Wojda U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: Diagnostic prospects. J. Alzheimers Dis. 2015 46 2 329 350 10.3233/JAD‑141977 25737047
    [Google Scholar]
  44. Leutner S. Schindowski K. Frölich L. Enhanced ROS-generation in lymphocytes from Alzheimer’s patients. Pharmacopsychiatry 2005 38 6 312 315 10.1055/s‑2005‑916186 16342003
    [Google Scholar]
  45. Calabrese V. Sultana R. Scapagnini G. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid. Redox Signal. 2006 8 11-12 1975 1986 10.1089/ars.2006.8.1975 17034343
    [Google Scholar]
  46. Skoumalová A. Ivica J. Šantorová P. Topinková E. Wilhelm J. The lipid peroxidation products as possible markers of Alzheimer’s disease in blood. Exp. Gerontol. 2011 46 1 38 42 10.1016/j.exger.2010.09.015 20920571
    [Google Scholar]
  47. Buizza L. Cenini G. Lanni C. Conformational altered p53 as an early marker of oxidative stress in Alzheimer’s disease. PLoS One 2012 7 1 e29789 10.1371/journal.pone.0029789 22242180
    [Google Scholar]
  48. Nunomura A. Perry G. Aliev G. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2001 60 8 759 767 10.1093/jnen/60.8.759 11487050
    [Google Scholar]
  49. Nunomura A. Castellani R.J. Zhu X. Moreira P.I. Perry G. Smith M.A. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2006 65 7 631 641 10.1097/01.jnen.0000228136.58062.bf 16825950
    [Google Scholar]
  50. Kadioglu E. Sardas S. Aslan S. Isik E. Karakaya A.E. Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer’s disease. Biomarkers 2004 9 2 203 209 10.1080/13547500410001728390 15370876
    [Google Scholar]
  51. Mórocz M. Kálmán J. Juhász A. Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer’s disease. Neurobiol. Aging 2002 23 1 47 53 [PMID: 11755018
    [Google Scholar]
  52. Gulec Peker E.G. Kaltalioglu K. Cinnamaldehyde and eugenol protect against LPS-stimulated oxidative stress and inflammation in Raw 264.7 cells. J. Food Biochem. 2021 45 12 e13980 10.1111/jfbc.13980 34676584
    [Google Scholar]
  53. Kabuto H. Tada M. Kohno M. Eugenol [2-methoxy-4-(2-propenyl)phenol] prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol. Pharm. Bull. 2007 30 3 423 427 10.1248/bpb.30.423 17329831
    [Google Scholar]
  54. Khalil A.A. Rahman U. Khan M.R. Sahar A. Mehmood T. Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017 7 52 32669 32681 10.1039/C7RA04803C
    [Google Scholar]
  55. Tammannavar P.CP. Jain S. Sv S. An unexpected positive hypersensitive reaction to eugenol. BMJ Case Rep. 2013 2013 bcr2013009464 10.1136/bcr‑2013‑009464 24049087
    [Google Scholar]
  56. Tavvabi-Kashani N. Hasanpour M. Baradaran Rahimi V. Vahdati-Mashhadian N. Askari V.R. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol’s potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024 238 107607 10.1016/j.toxicon.2024.107607 38191032
    [Google Scholar]
  57. Gülçin İ. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food 2011 14 9 975 985 10.1089/jmf.2010.0197 21554120
    [Google Scholar]
  58. Pérez-Rosés R. Risco E. Vila R. Peñalver P. Cañigueral S. Biological and nonbiological antioxidant activity of some essential oils. J. Agric. Food Chem. 2016 64 23 4716 4724 10.1021/acs.jafc.6b00986 27214068
    [Google Scholar]
  59. Charan Raja M.R. Versatile and synergistic potential of eugenol: A review. Pharm. Anal. Acta 2015 6 5 1 6 10.4172/2153‑2435.1000367
    [Google Scholar]
  60. Fathy M. Fawzy M.A. Hintzsche H. Nikaido T. Dandekar T. Othman E.M. Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation. Molecules 2019 24 21 3979 10.3390/molecules24213979 31684176
    [Google Scholar]
  61. Mohammadi Nejad S. Özgüneş H. Başaran N. Pharmacological and toxicological properties of eugenol. Turk J Pharm Sci 2017 14 2 201 206 10.4274/tjps.62207 32454614
    [Google Scholar]
  62. Kuhla B. Lüth H.J. Haferburg D. Boeck K. Arendt T. Münch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2005 1043 1 211 216 10.1196/annals.1333.026 16037241
    [Google Scholar]
  63. Lüth H.J. Münch G. Arendt T. Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res. 2002 953 1-2 135 143 10.1016/S0006‑8993(02)03280‑8 12384247
    [Google Scholar]
  64. Lüth H.J. Ogunlade V. Kuhla B. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex 2004 15 2 211 220 10.1093/cercor/bhh123 15238435
    [Google Scholar]
  65. Münch G. Schinzel R. Loske C. Alzheimer’s disease - synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J. Neural Transm 1998 105 4 439 461 10.1007/s007020050069 9720973
    [Google Scholar]
  66. Retz W. Gsell W. Münch G. Rösler M. Riederer P. Free radicals in Alzheimer’s disease. In: Gertz HJ, Arendt Th, EdsAlzheimer’s disease — From basic research to clinical applications. Gertz H.J. Arendt Th. Vienna Springer 1998 221 236 10.1007/978‑3‑7091‑7508‑8_22
    [Google Scholar]
  67. Revi N. Rengan A.K. Eugenol-encapsulated nanocarriers for microglial polarisation: A promising therapeutic application for neuroprotection. Bionanoscience 2020 10 4 1010 1017 10.1007/s12668‑020‑00789‑z
    [Google Scholar]
  68. Venegas C. Heneka M.T. Danger-associated molecular patterns in Alzheimer’s disease. J. Leukoc. Biol. 2017 101 1 87 98 10.1189/jlb.3MR0416‑204R 28049142
    [Google Scholar]
  69. Lee J. Hong S. Ahn M. Eugenol alleviates the symptoms of experimental autoimmune encephalomyelitis in mice by suppressing inflammatory responses. Int. Immunopharmacol. 2024 128 111479 10.1016/j.intimp.2023.111479 38215654
    [Google Scholar]
  70. Cagnin A. Gerhard A. Banati R.B. The concept of in vivo imaging of neuroinflammation with [11C](R)-PK11195 PET. Ernst Schering Res 2002 2002 39 179 191 10.1007/978‑3‑662‑05073‑6_10 12066412
    [Google Scholar]
  71. Versijpt J.J. Dumont F. van Laere K.J. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur. Neurol. 2003 50 1 39 47 10.1159/000070857 12824711
    [Google Scholar]
  72. Bettens K. Sleegers K. Van Broeckhoven C. Genetic insights in Alzheimer’s disease. Lancet Neurol. 2013 12 1 92 104 10.1016/S1474‑4422(12)70259‑4 23237904
    [Google Scholar]
  73. Breitner J.C. Baker L.D. Montine T.J. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011 7 4 402 411 10.1016/j.jalz.2010.12.014 21784351
    [Google Scholar]
  74. Block M.L. Zecca L. Hong J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007 8 1 57 69 10.1038/nrn2038 17180163
    [Google Scholar]
  75. Fujisawa S. Murakami Y. Eugenol and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 929 45 66 10.1007/978‑3‑319‑41342‑6_3 27771920
    [Google Scholar]
  76. Jaganathan S.K. Supriyanto E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 2012 17 6 6290 6304 10.3390/molecules17066290 22634840
    [Google Scholar]
  77. Pezzani R. Salehi B. Vitalini S. Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective. Medicina (Kaunas) 2019 55 4 110 10.3390/medicina55040110 30999703
    [Google Scholar]
  78. Zhang Y. Liang X. Bao X. Xiao W. Chen G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur. J. Med. Chem. 2022 235 114291 10.1016/j.ejmech.2022.114291 35307617
    [Google Scholar]
  79. Zhu J. Park S. Kim C.H. Jeong K.H. Kim W.J. Eugenol alleviates neuronal damage via inhibiting inflammatory process against pilocarpine-induced status epilepticus. Exp. Biol. Med. (Maywood) 2023 248 8 722 731 10.1177/15353702231151976 36802956
    [Google Scholar]
  80. Huang J.J. Feng Y.M. Zheng S.M. Eugenol possesses colitis protective effects: Impacts on the TLR4/MyD88/NF-κB pathway, intestinal epithelial barrier, and macrophage polarization. Am. J. Chin. Med. 2024 52 2 493 512 10.1142/S0192415X24500216 38480500
    [Google Scholar]
  81. Ma Q. Kinneer K. Chemoprotection by phenolic antioxidants. Inhibition of tumor necrosis factor α induction in macrophages. J. Biol. Chem. 2002 277 4 2477 2484 10.1074/jbc.M106685200 11694529
    [Google Scholar]
  82. Murakami Y. Shoji M. Hanazawa S. Tanaka S. Fujisawa S. Preventive effect of bis -eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem. Pharmacol. 2003 66 6 1061 1066 10.1016/S0006‑2952(03)00419‑2 12963494
    [Google Scholar]
  83. Murakami Y. Shoji M. Hirata A. Tanaka S. Yokoe I. Fujisawa S. Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Arch. Biochem. Biophys. 2005 434 2 326 332 10.1016/j.abb.2004.11.013 15639233
    [Google Scholar]
  84. Huang X. Liu Y. Lu Y. Ma C. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int. Immunopharmacol. 2015 26 1 265 271 10.1016/j.intimp.2015.03.026 25863235
    [Google Scholar]
  85. Orban J.C. Walrave Y. Mongardon N. Causes and characteristics of death in intensive care units: A prospective multicenter study. Anesthesiology 2017 126 5 882 889 10.1097/ALN.0000000000001612 28296682
    [Google Scholar]
  86. Magalhães C.B. Casquilho N.V. Machado M.N. The anti-inflammatory and anti-oxidative actions of eugenol improve lipopolysaccharide-induced lung injury. Respir. Physiol. Neurobiol. 2019 259 30 36 10.1016/j.resp.2018.07.001 29997055
    [Google Scholar]
  87. Grespan R. Paludo M. Lemos H.P. Anti-arthritic effect of eugenol on collagen-induced arthritis experimental model. Biol. Pharm. Bull. 2012 35 10 1818 1820 10.1248/bpb.b12‑00128 23037170
    [Google Scholar]
  88. Barboza J.N. da Silva Maia Bezerra Filho C. Silva R.O. Medeiros J.V.R. de Sousa D.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid. Med. Cell. Longev. 2018 2018 1 3957262 10.1155/2018/3957262 30425782
    [Google Scholar]
  89. Esmaeili F. Rajabnejhad S. Partoazar A.R. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm. Dev. Technol. 2016 21 7 887 893 10.3109/10837450.2015.1078353 26365132
    [Google Scholar]
  90. Balkrishna A. Solleti S.K. Singh H. Tomer M. Sharma N. Varshney A. Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomed. Pharmacother. 2020 126 110063 10.1016/j.biopha.2020.110063 32145582
    [Google Scholar]
  91. Cilberti M.G. Santillo A. Polito A.N. Cytokine pattern of peripheral blood mononuclear cells isolated from children affected by generalized epilepsy treated with different protein fractions of meat sources. Nutrients 2022 14 11 2243 10.3390/nu14112243 35684043
    [Google Scholar]
  92. Hobani Y.H. Mohan S. Shaheen E. Gastroprotective effect of low dose Eugenol in experimental rats against ethanol induced toxicity: Involvement of antiinflammatory and antioxidant mechanism. J. Ethnopharmacol. 2022 289 115055 10.1016/j.jep.2022.115055 35101571
    [Google Scholar]
  93. Reuter S. Gupta S.C. Chaturvedi M.M. Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010 49 11 1603 1616 10.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  94. Cui Z. Liu Z. Zeng J. Eugenol inhibits non-small cell lung cancer by repressing expression of NF-κB-regulated TRIM59. Phytother. Res. 2019 33 5 1562 1569 10.1002/ptr.6352 30932261
    [Google Scholar]
  95. Damasceno R.O.S. Pinheiro J.L.S. Rodrigues L.H.M. Anti-inflammatory and antioxidant activities of eugenol: An update. Pharmaceuticals 2024 17 11 1505 10.3390/ph17111505 39598416
    [Google Scholar]
  96. Padhy I. Paul P. Sharma T. Banerjee S. Mondal A. Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement. Life 2022 12 11 1795 10.3390/life12111795 36362950
    [Google Scholar]
  97. Hui Q. Ammeter E. Liu S. Eugenol attenuates inflammatory response and enhances barrier function during lipopolysaccharide-induced inflammation in the porcine intestinal epithelial cells. J. Anim. Sci. 2020 98 8 skaa245 10.1093/jas/skaa245 32735667
    [Google Scholar]
  98. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008 454 7203 428 435 10.1038/nature07201 18650913
    [Google Scholar]
  99. Ferrero-Miliani L. Nielsen O.H. Andersen P.S. Girardin S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol. 2007 147 2 227 235 10.1111/j.1365‑2249.2006.03261.x 17223962
    [Google Scholar]
  100. Saraiva R.A. Araruna M.K.A. Oliveira R.C. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. J. Ethnopharmacol. 2011 136 3 504 510 10.1016/j.jep.2010.07.002 20621180
    [Google Scholar]
  101. Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014 2014 1 1 31 10.1155/2014/360438 24999379
    [Google Scholar]
  102. Kaur G. Athar M. Alam M.S. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol. Carcinog. 2010 49 3 290 301 10.1002/mc.20601 20043298
    [Google Scholar]
  103. Magalhães C.B. Riva D.R. DePaula L.J. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury. J. Appl. Physiol. 2010 108 4 845 851 10.1152/japplphysiol.00560.2009 20075264
    [Google Scholar]
  104. Patlevič P. Vašková J. Švorc P. Vaško L. Švorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 2016 5 4 250 258 10.1016/j.imr.2016.07.004 28462126
    [Google Scholar]
  105. Haass C. Hung A.Y. Selkoe D.J. Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J. Neurosci. 1991 11 12 3783 3793 10.1523/JNEUROSCI.11‑12‑03783.1991 1744690
    [Google Scholar]
  106. Kang J. Lemaire H.G. Unterbeck A. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987 325 6106 733 736 10.1038/325733a0 2881207
    [Google Scholar]
  107. Vassar R. Bennett B.D. Babu-Khan S. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999 286 5440 735 741 10.1126/science.286.5440.735 10531052
    [Google Scholar]
  108. Iben L.G. Kopcho L. Marcinkeviciene J. [3H]BMS-599240 - A novel tritiated ligand for the characterization of BACE1 inhibitors. Eur. J. Pharmacol. 2008 593 1-3 10 15 10.1016/j.ejphar.2008.06.112 18655784
    [Google Scholar]
  109. Moghekar A. Rao S. Li M. Large quantities of Abeta peptide are constitutively released during amyloid precursor protein metabolism in vivo and in vitro. J. Biol. Chem. 2011 286 18 15989 15997 10.1074/jbc.M110.191262 21454701
    [Google Scholar]
  110. Busciglio J. Gabuzda D.H. Matsudaira P. Yankner B.A. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 1993 90 5 2092 2096 10.1073/pnas.90.5.2092 8446635
    [Google Scholar]
  111. Chen M. Inestrosa N.C. Ross G.S. Fernandez H.L. Platelets are the primary source of amyloid β-peptide in human blood. Biochem. Biophys. Res. Commun. 1995 213 1 96 103 10.1006/bbrc.1995.2103 7639768
    [Google Scholar]
  112. Awasthi M. Singh S. Pandey V.P. Dwivedi U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci. 2016 361 256 271 10.1016/j.jns.2016.01.008 26810552
    [Google Scholar]
  113. Rajasekhar K. Chakrabarti M. Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem. Commun. (Camb.) 2015 51 70 13434 13450 10.1039/C5CC05264E 26247608
    [Google Scholar]
  114. Pagano K. Tomaselli S. Molinari H. Ragona L. Natural compounds as inhibitors of Aβ peptide aggregation: Chemical requirements and molecular mechanisms. Front. Neurosci. 2020 14 619667 10.3389/fnins.2020.619667 33414705
    [Google Scholar]
  115. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  116. Culibrk R.A. Hahn M.S. The role of chronic inflammatory bone and joint disorders in the pathogenesis and progression of Alzheimer’s disease. Front. Aging Neurosci. 2020 12 583884 10.3389/fnagi.2020.583884 33364931
    [Google Scholar]
  117. Taheri P. Yaghmaei P. Tehrani H.S. Ebrahim-Habibi A. Effects of eugenol on Alzheimer’s disease-like manifestations in insulin-and Aβ-induced rat models. Neurophysiology 2019 51 2 114 119 10.1007/s11062‑019‑09801‑z
    [Google Scholar]
  118. Goyal A. Solanki A. Verma A. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders. Curr. Mol. Med. 2023 23 5 390 400 10.2174/1566524022666220525145521 35619280
    [Google Scholar]
  119. Anuj G. Sanjay S. Eugenol: A potential phytochemical with multifaceted therapeutic activities. Pharmacologyonline 2010 2 108 120
    [Google Scholar]
  120. Moreira Vasconcelos C.F. da Cunha Ferreira N.M. Hardy Lima Pontes N. Eugenol and its association with levodopa in 6-hydroxydopamine-induced hemiparkinsonian rats: Behavioural and neurochemical alterations. Basic Clin. Pharmacol. Toxicol. 2020 127 4 287 302 10.1111/bcpt.13425 32353201
    [Google Scholar]
  121. Prasad S.N. Muralidhara. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: Behavioral and biochemical evidence. Neurochem. Res. 2013 38 2 330 345 10.1007/s11064‑012‑0924‑9 23161090
    [Google Scholar]
  122. Prasad S.N. Muralidhara. Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - Its amelioration with spice active enrichment: Relevance to neuropathy. Neurotoxicology 2012 33 5 1254 1264 10.1016/j.neuro.2012.07.006 22841601
    [Google Scholar]
  123. Garabadu D. Shah A. Ahmad A. Eugenol as an anti-stress agent: Modulation of hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in a rat model of stress. Stress 2011 14 2 145 155 10.3109/10253890.2010.521602 21034296
    [Google Scholar]
  124. Irie Y. Effects of eugenol on the central nervous system: Its possible application to treatment of Alzheimer’s disease, depression, and parkinson’s disease. Curr. Bioact. Compd. 2006 2 1 57 66 10.2174/1573407210602010057
    [Google Scholar]
  125. Irie Y. Keung W.M. Rhizoma acori gramineiand its active principles protect PC-12 cells from the toxic effect of amyloid-β peptide. Brain Res. 2003 963 1-2 282 289 10.1016/S0006‑8993(02)04050‑7 12560134
    [Google Scholar]
  126. Müller M. Pape H.C. Speckmann E.J. Gorji A. Effect of eugenol on spreading depression and epileptiform discharges in rat neocortical and hippocampal tissues. Neuroscience 2006 140 2 743 751 10.1016/j.neuroscience.2006.02.036 16563641
    [Google Scholar]
  127. Yazaki K. Study of behavioral pharmacology on rats. Tranquilizing effects induced by endogenous or exogenous bradykinin. Shikwa Gakuho 1989 89 10 1529 1548 [PMID: 2488972
    [Google Scholar]
  128. Garabadu D. Shah A. Singh S. Krishnamurthy S. Protective effect of eugenol against restraint stress-induced gastrointestinal dysfunction: Potential use in irritable bowel syndrome. Pharm. Biol. 2015 53 7 968 974 10.3109/13880209.2014.950674 25473818
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128373290250620054118
Loading
/content/journals/cpd/10.2174/0113816128373290250620054118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test