Skip to content
2000
Volume 31, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Shape memory polymers and stimuli-sensitive materials are utilised in 4D printing to develop tissue structures that are dynamic and flexible. The capability of these polymers to react to numerous stimuli like pH, light, and temperature increases the adaptability and usefulness of tissue engineering applications. The article aims at the application of smart SMPs in 4D printing for tissue engineering, emphasising their response to diverse physical and chemical stimuli. The current review article compiled data from previously reported studies by searching in commonly used electronic databases such as Scopus, Google Scholar, PubMed, Science Direct, . The authors have preferably considered the data from the last 10 years for inclusion. The study addresses developments in smart shape memory polymers and their transformational influence on biological applications. The integrated approach of 4D printing and shape memory biomaterials can potentially improve tissue engineering applications. Researchers can enhance tissue regeneration by utilising the responsive properties of these materials to physiological signals. This allows for the design of dynamic scaffolds that closely imitate the behaviour of real tissue, resulting in more efficient tissue regeneration. 4D-printed shape memory biomaterials have the potential to enhance tissue engineering the use of dynamic and adaptable scaffolds. However, some obstacles must be overcome, such as material limitations and the capacity to scale up production, to achieve successful clinical implementation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128374450250502051929
2025-05-21
2025-09-10
Loading full text...

Full text loading...

References

  1. ZhuW. MaX. GouM. MeiD. ZhangK. ChenS. 3D printing of functional biomaterials for tissue engineering.Curr. Opin. Biotechnol.20164010311210.1016/j.copbio.2016.03.014 27043763
    [Google Scholar]
  2. ThomaC.R. ZimmermannM. AgarkovaI. KelmJ.M. KrekW. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.Adv. Drug Deliv. Rev.201469-70294110.1016/j.addr.2014.03.001 24636868
    [Google Scholar]
  3. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.2958
    [Google Scholar]
  4. MaX. QuX. ZhuW. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.Proc. Natl. Acad. Sci. USA201611382206221110.1073/pnas.1524510113 26858399
    [Google Scholar]
  5. AmannA. ZwierzinaM. GamerithG. Development of an innovative 3D cell culture system to study tumour - Stroma interactions in non-small cell lung cancer cells.PLoS One201493e9251110.1371/journal.pone.0092511 24663399
    [Google Scholar]
  6. PorwalS. SridharS.B. TalathS. WaliA.F. WarsiM.H. MalviyaR. 3D printable sustainable hydrogel formulations for tissue engineering applications.J. Drug Deliv. Sci. Technol.202410110630810.1016/j.jddst.2024.106308
    [Google Scholar]
  7. CostaP.D.C. CostaD.C.S. CorreiaT.R. GasparV.M. ManoJ.F. Natural origin biomaterials for 4D bioprinting tissue‐like constructs.Adv. Mater. Technol.2021610210016810.1002/admt.202100168
    [Google Scholar]
  8. TamayD.G. UsalT.D. AlagozA.S. YucelD. HasirciN. HasirciV. 3D and 4D printing of polymers for tissue engineering applications.Front. Bioeng. Biotechnol.2019716410.3389/fbioe.2019.00164 31338366
    [Google Scholar]
  9. PeltolaS.M. MelchelsF.P.W. GrijpmaD.W. KellomäkiM. A review of rapid prototyping techniques for tissue engineering purposes.Ann. Med.200840426828010.1080/07853890701881788
    [Google Scholar]
  10. ZhangJ. XuM. ZhangN. WangT. ZhangY. YangZ. Advances and applications of 4D-printed high-strength shape memory polymers.Addit Manuf Front20243120011510.1016/j.amf.2024.200115
    [Google Scholar]
  11. ChenX. HanS. WuW. WuZ. YuanY. WuJ. Harnessing 4D printing bioscaffolds for advanced orthopedics.Small20221836210682410.1002/smll.202106824
    [Google Scholar]
  12. TibbitsS. 4D printing: Multi-material shape change.Archit. Des.201484111612110.1002/ad.1710
    [Google Scholar]
  13. AlshahraniH.A. Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges.J. Sci. Adv. Mater. Devices20216216718510.1016/j.jsamd.2021.03.006
    [Google Scholar]
  14. HuaM. WuD. WuS. MaY. AlsaidY. HeX. 4D printable tough and thermoresponsive hydrogels.ACS Appl. Mater. Interfaces20211311126891269710.1021/acsami.0c17532
    [Google Scholar]
  15. PandiniS. InverardiN. ScaletG. Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures.Mech. Res. Commun.202010310346310.1016/j.mechrescom.2019.103463
    [Google Scholar]
  16. DingZ. YuanC. PengX. WangT. QiH.J. DunnM.L. Direct 4D printing via active composite materials.Sci. Adv.201734e160289010.1126/sciadv.1602890 28439560
    [Google Scholar]
  17. GladmanA.S. MatsumotoE.A. NuzzoR.G. MahadevanL. LewisJ.A. Biomimetic 4D printing.Nat. Mater.201615441341810.1038/nmat4544 26808461
    [Google Scholar]
  18. Díaz-PaynoP.J. KalogeropoulouM. MuntzI. Swelling‐dependent shape‐based transformation of a human mesenchymal stromal cells‐laden 4D bioprinted construct for cartilage tissue engineering.Adv. Healthc. Mater.2023122220189110.1002/adhm.202201891 36308047
    [Google Scholar]
  19. MiaoS. CuiH. NowickiM. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering.Adv. Biosyst.201829180010110.1002/adbi.201800101 30906853
    [Google Scholar]
  20. WangC. YueH. LiuJ. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes.Biofabrication202012404502510.1088/1758‑5090/abab5b 32736373
    [Google Scholar]
  21. TayY.W.D. LimJ.H. LiM. TanM.J. Creating functionally graded concrete materials with varying 3D printing parameters.Virtual Phys. Prototyp.202217366268110.1080/17452759.2022.2048521
    [Google Scholar]
  22. RastogiP. KandasubramanianB. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing.Chem. Eng. J.201936626430410.1016/j.cej.2019.02.085
    [Google Scholar]
  23. ChenJ. VirruetaC. ZhangS. MaoC. WangJ. 4D printing: The spotlight for 3D printed smart materials.Mater. Today202477669110.1016/j.mattod.2024.06.004
    [Google Scholar]
  24. Alizadeh-OsgoueiM. LiY. WenC. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications.Bioact. Mater.20194223610.1016/j.bioactmat.2018.11.003 30533554
    [Google Scholar]
  25. RahimnejadM. JahangiriS. KiadehS.Z.H. Stimuli-responsive biomaterials: Smart avenue toward 4D bioprinting.Crit. Rev. Biotechnol.202444586089110.1080/07388551.2023.2213398 37442771
    [Google Scholar]
  26. AgarwalT. HannS.Y. ChiesaI. 4D printing in biomedical applications: Emerging trends and technologies.J. Mater. Chem. B Mater. Biol. Med.20219377608763210.1039/D1TB01335A 34586145
    [Google Scholar]
  27. AhmedA. AryaS. GuptaV. FurukawaH. KhoslaA. 4D printing: Fundamentals, materials, applications and challenges.Polymer (Guildf.)202122812392610.1016/j.polymer.2021.123926
    [Google Scholar]
  28. JayakrishnaM. VijayM. KhanB. An overview of extensive analysis of 3D printing applications in the manufacturing sector.J. Eng.202320231912310.1155/2023/7465737
    [Google Scholar]
  29. BasakS. Investigating entanglement-driven shape memory property: Insights and structure-property relationships from recent developments.Smart Mater Meth202411488410.1080/29963176.2024.2374342
    [Google Scholar]
  30. KantarosA. GanetsosT. From static to dynamic: Smart materials pioneering additive manufacturing in regenerative medicine.Int. J. Mol. Sci.202324211574810.3390/ijms242115748 37958733
    [Google Scholar]
  31. KumarP. SuryavanshiP. DwivedyS.K. BanerjeeS. Stimuli-responsive materials for 4D Printing: Mechanical, manufacturing, and biomedical applications.J. Mol. Liq.202441012555310.1016/j.molliq.2024.125553
    [Google Scholar]
  32. BedellM.L. NavaraA.M. DuY. ZhangS. MikosA.G. Polymeric systems for bioprinting.Chem. Rev.202012019107441079210.1021/acs.chemrev.9b00834
    [Google Scholar]
  33. UnagollaJ.M. JayasuriyaA.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives.Appl. Mater. Today20201810047910.1016/j.apmt.2019.100479 32775607
    [Google Scholar]
  34. ZhouW. QiaoZ. ZareE.N. 4D-printed dynamic materials in biomedical applications: Chemistry, challenges, and their future perspectives in the clinical sector.J. Med. Chem.202063158003802410.1021/acs.jmedchem.9b02115
    [Google Scholar]
  35. MaS. JiangZ. WangM. 4D printing of PLA/PCL shape memory composites with controllable sequential deformation.Biodes. Manuf.20214486787810.1007/s42242‑021‑00151‑6
    [Google Scholar]
  36. FatimiA. OkoroO.V. PodstawczykD. Siminska-StannyJ. ShavandiA. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review.Gels20228317910.3390/gels8030179 35323292
    [Google Scholar]
  37. SajjadR. ChauhdaryS.T. AnwarM.T. ZahidA. KhosaA.A. ImranM. A review of 4D printing–technologies, shape shifting, smart polymer based materials, and biomedical applications.Adv Ind Eng Polym Res202471203610.1016/j.aiepr.2023.08.002
    [Google Scholar]
  38. RenZ. ZhangY. LiY. XuB. LiuW. Hydrogen bonded and ionically crosslinked high strength hydrogels exhibiting Ca2+-triggered shape memory properties and volume shrinkage for cell detachment.J. Mater. Chem. B Mater. Biol. Med.20153306347635410.1039/C5TB00781J 32262753
    [Google Scholar]
  39. WanZ. ZhangP. LiuY. LvL. ZhouY. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.Acta Biomater.2020101264210.1016/j.actbio.2019.10.038
    [Google Scholar]
  40. RenL. LiB. HeY. Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing.ACS Appl. Mater. Interfaces20201213155621557210.1021/acsami.0c00027 32157863
    [Google Scholar]
  41. YangG.H. KimW. KimJ. KimG. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.Theranostics2021111486310.7150/thno.50794 33391460
    [Google Scholar]
  42. SighM. MahtoS.K. DascS. Chemical modification of poly (vinyl chloride) for blood and cellular biocompatibility.RSC Adv20155452314523810.1039/C5RA03362D
    [Google Scholar]
  43. MathurA.B. CollierT.O. KaoW.J. In vivo biocompatibility and biostability of modified polyurethanes.J. Biomed. Mater. Res.199736224625710.1002/(SICI)1097‑4636(199708)36:2<246::AID‑JBM14>3.0.CO;2‑E 9261687
    [Google Scholar]
  44. KumarS. MalviyaR. Bioprinting of hepatic tissue using 3D technology: Transitioning beyond laboratory models to real-world applications in medical treatments.Appl. Mater. Today20243910230710.1016/j.apmt.2024.102307
    [Google Scholar]
  45. CuiX. LiJ. HartantoY. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel‐based bioinks.Adv. Healthc. Mater.2020915190164810.1002/adhm.201901648
    [Google Scholar]
  46. MiaoS. CuiH. NowickiM. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation.Biofabrication201810303500710.1088/1758‑5090/aabe0b 29651999
    [Google Scholar]
  47. MiaoS. ZhuW. CastroN.J. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.Sci. Rep.2016612722610.1038/srep27226 27251982
    [Google Scholar]
  48. LeuchtA. VolzA.C. RogalJ. BorchersK. KlugerP.J. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents.Sci. Rep.2020101533010.1038/s41598‑020‑62166‑w 32210309
    [Google Scholar]
  49. LuoY. LinX. ChenB. WeiX. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.Biofabrication201911404501910.1088/1758‑5090/ab39c5 31394520
    [Google Scholar]
  50. KestiM. MüllerM. BecherJ. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.Acta Biomater.201511116217210.1016/j.actbio.2014.09.033 25260606
    [Google Scholar]
  51. MonteroF.E. RezendeR.A. da SilvaJ.V.L. SabinoM.A. Development of a smart bioink for bioprinting applications.Front. Mech. Eng.2019510.3389/fmech.2019.00056
    [Google Scholar]
  52. El-HusseinyH.M. MadyE.A. HamabeL. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.100186 34917924
    [Google Scholar]
  53. AshammakhiN. HasanA. KaarelaO. Advancing frontiers in bone bioprinting.Adv. Healthc. Mater.201987180104810.1002/adhm.201801048 30734530
    [Google Scholar]
  54. NarupaiB. SmithP.T. NelsonA. 4D printing of multi‐stimuli responsive protein‐based hydrogels for autonomous shape transformations.Adv. Funct. Mater.20213123201101210.1002/adfm.202011012
    [Google Scholar]
  55. KirillovaA. IonovL. Shape-changing polymers for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20197101597162410.1039/C8TB02579G 32254904
    [Google Scholar]
  56. ArifZ.U. KhalidM.Y. ZolfagharianA. BodaghiM. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives.React. Funct. Polym.202217910537410.1016/j.reactfunctpolym.2022.105374
    [Google Scholar]
  57. LavradorP. EstevesM.R. GasparV.M. ManoJ.F. Stimuli‐responsive nanocomposite hydrogels for biomedical applications.Adv. Funct. Mater.2021318200594110.1002/adfm.202005941
    [Google Scholar]
  58. RavanbakhshH. KaramzadehV. BaoG. MongeauL. JunckerD. ZhangY.S. Emerging technologies in multi‐material bioprinting.Adv. Mater.20213349210473010.1002/adma.202104730 34596923
    [Google Scholar]
  59. LiuY.Y. BlazquezJ.P.F. YinG.Z. WangD.Y. LlorcaJ. Echeverry-RendónM. A strategy to tailor the mechanical and degradation properties of PCL-PEG-PCL based copolymers for biomedical application.Eur. Polym. J.202319811238810.1016/j.eurpolymj.2023.112388
    [Google Scholar]
  60. PolitakosN. Block copolymers in 3D/4D printing: Advances and applications as biomaterials.Polymers202315232210.3390/polym15020322
    [Google Scholar]
  61. HaleemA. JavaidM. SinghR.P. SumanR. Significant roles of 4D printing using smart materials in the field of manufacturing.Adv Ind Eng Polym Res20214430131110.1016/j.aiepr.2021.05.001
    [Google Scholar]
  62. OmarA.M. Artificial Stimuli-responsive constructs through 4D fabrication. PhD Thesis, Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester2024
    [Google Scholar]
  63. PingaleP. DawreS. Dhapte-PawarV. DhasN. RajputA. Advances in 4D printing: From stimulation to simulation.Drug Deliv. Transl. Res.202313116418810.1007/s13346‑022‑01200‑y 35751000
    [Google Scholar]
  64. BiswasM.C. ChakrabortyS. BhattacharjeeA. MohammedZ. 4D printing of shape memory materials for textiles: Mechanism, mathematical modeling, and challenges.Adv. Funct. Mater.20213119210025710.1002/adfm.202100257
    [Google Scholar]
  65. VidoM. de Oliveira NetoG.C. LourençoS.R. AmorimM. RodriguesM.J.F. Computer-aided design and additive manufacturing for automotive prototypes: A review.Appl. Sci.20241416715510.3390/app14167155
    [Google Scholar]
  66. KyratsisP. TzotzisA. DavimJ.P. CAD-based Programming for Design and Manufacturing.ChamSpringer202510.1007/978‑3‑031‑78747‑8
    [Google Scholar]
  67. CañasH. MulaJ. Díaz-MadroñeroM. Campuzano-BolarínF. Implementing industry 4.0 principles.Comput. Ind. Eng.202115810737910.1016/j.cie.2021.107379
    [Google Scholar]
  68. YaraliE. MirzaaliM.J. GhalayaniesfahaniA. AccardoA. Diaz-PaynoP.J. ZadpoorA.A. 4D printing for biomedical applications.Adv. Mater.20243631240230110.1002/adma.202402301 38580291
    [Google Scholar]
  69. MegdichA. HabibiM. LaperrièreL. A review on 4D printing: Material structures, stimuli and additive manufacturing techniques.Mater. Lett.202333713397710.1016/j.matlet.2023.133977
    [Google Scholar]
  70. LiY.C. ZhangY.S. AkpekA. ShinS.R. KhademhosseiniA. 4D bioprinting: The next-generation technology for biofabrication enabled by stimuli-responsive materials.Biofabrication20179101200110.1088/1758‑5090/9/1/012001
    [Google Scholar]
  71. ZhangM. VoraA. HanW. Dual-responsive hydrogels for direct-write 3D printing.Macromolecules201548186482648810.1021/acs.macromol.5b01550
    [Google Scholar]
  72. LaiJ. LiuY. LuG. 4D bioprinting of programmed dynamic tissues.Bioact. Mater.20243734837710.1016/j.bioactmat.2024.03.033 38694766
    [Google Scholar]
  73. ChoiJ. KwonO.C. JoW. LeeH.J. MoonM.W. 4D printing technology: A review. 3D Print.Addit. Manuf.20152415916710.1089/3dp.2015.0039
    [Google Scholar]
  74. ZimmermannL. ChenT. SheaK. A 3D, performance-driven generative design framework: Automating the link from a 3D spatial grammar interpreter to structural finite element analysis and stochastic optimization.Artif. Intell. Eng. Des. Anal. Manuf.201832218919910.1017/S0890060417000324
    [Google Scholar]
  75. ZhouY. HuangW.M. KangS.F. From 3D to 4D printing: Approaches and typical applications.J. Mech. Sci. Technol.201529104281428810.1007/s12206‑015‑0925‑0
    [Google Scholar]
  76. LoewnerS. HeeneS. BarothT. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.Front. Bioeng. Biotechnol.20221089671910.3389/fbioe.2022.896719 36061443
    [Google Scholar]
  77. ShaikhS. History and evolution of 3D printing. In: 3D Printing in Prosthetics and Orthotics.SingaporeSpringer202411210.1007/978‑981‑97‑4913‑3_1
    [Google Scholar]
  78. WuG.H. HsuS. Review: Polymeric-based 3D printing for tissue engineering.J. Med. Biol. Eng.201535328529210.1007/s40846‑015‑0038‑3 26167139
    [Google Scholar]
  79. HendriksonW.J. RouwkemaJ. ClementiF. van BlitterswijkC.A. FarèS. MoroniL. Towards 4D printed scaffolds for tissue engineering: Exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.Biofabrication20179303100110.1088/1758‑5090/aa8114 28726680
    [Google Scholar]
  80. MiaoS. ZhuW. CastroN.J. LengJ. ZhangL.G. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications.Tissue Eng. Part C Methods2016221095296310.1089/ten.tec.2015.0542 28195832
    [Google Scholar]
  81. SenatovF.S. ZadorozhnyyM.Y. NiazaK.V. Shape memory effect in 3D-printed scaffolds for self-fitting implants.Eur. Polym. J.20179322223110.1016/j.eurpolymj.2017.06.011
    [Google Scholar]
  82. SenatovF.S. NiazaK.V. ZadorozhnyyM.Y. MaksimkinA.V. KaloshkinS.D. EstrinY.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.J. Mech. Behav. Biomed. Mater.20165713914810.1016/j.jmbbm.2015.11.036 26710259
    [Google Scholar]
  83. KalogeropoulouM. Díaz-PaynoP.J. MirzaaliM.J. van OschG.J.V.M. Fratila-ApachiteiL.E. ZadpoorA.A. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.Biofabrication202416202200210.1088/1758‑5090/ad1e6f 38224616
    [Google Scholar]
  84. AdamkiewiczM. RubinskyB. Cryogenic 3D printing for tissue engineering.Cryobiology201571351852110.1016/j.cryobiol.2015.10.152 26548335
    [Google Scholar]
  85. TanZ. ParisiC. Di SilvioL. DiniD. ForteA.E. Cryogenic 3D printing of super soft hydrogels.Sci. Rep.2017711629310.1038/s41598‑017‑16668‑9 29176756
    [Google Scholar]
  86. ZhangX. YangY. YangZ. MaR. AimaijiangM. XuJ. Four-dimensional printing and shape memory materials in bone tissue engineering.Int. J. Mol. Sci.202324181410.3390/ijms24010814
    [Google Scholar]
  87. BaniasadiH. AbidnejadR. FazeliM. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications.Adv. Colloid Interface Sci.202432410309510.1016/j.cis.2024.103095 38301316
    [Google Scholar]
  88. KimH. KimJ. RyuK.H. Embedded direct ink writing 3D printing of UV curable resin/sepiolite composites with nano orientation.ACS Omega2023826235542356510.1021/acsomega.3c01165 37426231
    [Google Scholar]
  89. WangY. MiaoY. ZhangJ. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.Mater. Sci. Eng. C201884445110.1016/j.msec.2017.11.025 29519442
    [Google Scholar]
  90. KuangX. ChenK. DunnC.K. WuJ. LiV.C.F. QiH.J. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing.ACS Appl. Mater. Interfaces20181087381738810.1021/acsami.7b18265 29400445
    [Google Scholar]
  91. KnowltonS. AnandS. ShahT. TasogluS. Bioprinting for neural tissue engineering.Trends Neurosci.2018411314610.1016/j.tins.2017.11.001
    [Google Scholar]
  92. ParkJ.Y. ChoiJ.C. ShimJ.H. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.Biofabrication20146303500410.1088/1758‑5082/6/3/035004 24758832
    [Google Scholar]
  93. MandryckyC. WangZ. KimK. KimD.H. 3D bioprinting for engineering complex tissues.Biotechnol. Adv.201634442243410.1016/j.biotechadv.2015.12.011 26724184
    [Google Scholar]
  94. KhalilS. SunW. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs.Mater. Sci. Eng. C200727346947810.1016/j.msec.2006.05.023
    [Google Scholar]
  95. SchwabA. LevatoR. D’EsteM. PilusoS. EglinD. MaldaJ. Printability and shape fidelity of bioinks in 3D bioprinting.Chem. Rev.202012019110281105510.1021/acs.chemrev.0c00084 32856892
    [Google Scholar]
  96. PaxtonN. SmolanW. BöckT. MelchelsF. GrollJ. JungstT. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.Biofabrication20179404410710.1088/1758‑5090/aa8dd8 28930091
    [Google Scholar]
  97. KirillovaA. MaxsonR. StoychevG. GomillionC.T. IonovL. 4D biofabrication using shape‐morphing hydrogels.Adv. Mater.20172946170344310.1002/adma.201703443 29024044
    [Google Scholar]
  98. KäpyläE. Direct laser writing of polymer-ceramic and hydrogel microstructures by two-photon polymerization.PhD Thesis, Tampere University of Technology2014
    [Google Scholar]
  99. MiaoS. NowickiM. CuiH. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy.Biofabrication201911303503010.1088/1758‑5090/ab1d07 31026857
    [Google Scholar]
  100. StansburyJ.W. IdacavageM.J. 3D printing with polymers: Challenges among expanding options and opportunities.Dent. Mater.2016321546410.1016/j.dental.2015.09.018
    [Google Scholar]
  101. WeemsA.C. ArnoM.C. YuW. HucksteppR.T.R. DoveA.P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair.Nat. Commun.2021121377110.1038/s41467‑021‑23956‑6 34226548
    [Google Scholar]
  102. KimS.H. SeoY.B. YeonY.K. 4D-bioprinted silk hydrogels for tissue engineering.Biomaterials202026012028110.1016/j.biomaterials.2020.120281 32858503
    [Google Scholar]
  103. ConstanteG. ApsiteI. AlkhamisH. 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers.ACS Appl. Mater. Interfaces20211311127671277610.1021/acsami.0c18608 33389997
    [Google Scholar]
  104. ApsiteI. ConstanteG. DulleM. 4D Biofabrication of fibrous artificial nerve graft for neuron regeneration.Biofabrication202012303502710.1088/1758‑5090/ab94cf 32434153
    [Google Scholar]
  105. WuY. ZhangY. YanM. HuG. LiZ. HeW. Research progress on the application of inkjet printing technology combined with hydrogels.Appl. Mater. Today20243610203610.1016/j.apmt.2023.102036
    [Google Scholar]
  106. ShiraziS.F.S. GharehkhaniS. MehraliM. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing.Sci. Technol. Adv. Mater.201516303350210.1088/1468‑6996/16/3/033502 27877783
    [Google Scholar]
  107. CuiC. KimD.O. PackM.Y. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications.Biofabrication202012404501810.1088/1758‑5090/aba502 32650325
    [Google Scholar]
  108. ChaudhuriA. SandhaK.K. AgrawalA.K. GuptaP.N. Introduction to smart polymers and their application.In: Smart polymeric nano-constructs in drug delivery. Vyas SP, Agrawal U, Sharma R, Eds. Academic Press202214610.1016/B978‑0‑323‑91248‑8.00002‑7
    [Google Scholar]
  109. SongK. YeomE. SeoS.J. Journey of water in pine cones.Sci. Rep.201551996310.1038/srep09963 25944117
    [Google Scholar]
  110. LeeA.Y. AnJ. ChuaC.K. Two-way 4D printing: A review on the reversibility of 3D-printed shape memory.Mater. Des.20173566367410.1016/J.ENG.2017.05.014
    [Google Scholar]
  111. HoogenboomR. Temperature-Responsive Polymers: Properties, Synthesis, and Applications. In: Smart Polymers and their Applications. Aguilar MR, Julio, Eds. (Second Edition). Woodhead Publishing20191344
    [Google Scholar]
  112. SunL. HuangW.M. DingZ. Stimulus-responsive shape memory materials: A review.Mater. Des.20123357764010.1016/j.matdes.2011.04.065
    [Google Scholar]
  113. NeussS. BlomenkampI. StainforthR. The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold.Biomaterials20093091697170510.1016/j.biomaterials.2008.12.027 19121539
    [Google Scholar]
  114. Fattah-alhosseiniA. ChaharmahaliR. AlizadS. KaseemM. DikiciB. A review of smart polymeric materials: Recent developments and prospects for medicine applications.Hybrid Advances2024510017810.1016/j.hybadv.2024.100178
    [Google Scholar]
  115. TuncaboyluD.C. WischkeC. Opportunities and challenges of switchable materials for pharmaceutical use.Pharmaceutics20221411233110.3390/pharmaceutics14112331 36365149
    [Google Scholar]
  116. AbolhassaniS. FattahiR. SafshekanF. SaremiJ. HasanzadehE. Advances in 4D bioprinting: The next frontier in regenerative medicine and tissue engineering applications.Adv. Healthc. Mater.2025144240306510.1002/adhm.202403065 39918399
    [Google Scholar]
  117. MonteroA. ValenciaL. CorralesR. JorcanoJ.L. VelascoD. Chapter 9-Smart Polymer Gels: Properties, Synthesis, and Applications. In: Smart Polymers and their Applications (Second Edition). Aguilar MR, Julio , Eds. Woodhead Publishing201927932110.1016/B978‑0‑08‑102416‑4.00009‑0
    [Google Scholar]
  118. AdedoyinA.A. EkenseairA.K. Biomedical applications of magneto-responsive scaffolds.Nano Res.201811105049506410.1007/s12274‑018‑2198‑2
    [Google Scholar]
  119. ZhangJ. ZhaoS. ZhuM. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia.J. Mater. Chem. B Mater. Biol. Med.20142437583759510.1039/C4TB01063A 32261896
    [Google Scholar]
  120. DaiS. RaviP. TamK.C. pH-Responsive polymers: Synthesis, properties and applications.Soft Matter20084343544910.1039/b714741d 32907201
    [Google Scholar]
  121. DuttaS. CohnD. Temperature and pH responsive 3D printed scaffolds.J. Mater. Chem. B Mater. Biol. Med.20175489514952110.1039/C7TB02368E 32264566
    [Google Scholar]
  122. LvC. SunX.C. XiaH. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing.Sens. Actuators B Chem.201825973674410.1016/j.snb.2017.12.053
    [Google Scholar]
  123. ZeenatL. ZolfagharianA. SriyaY. SasikumarS. BodaghiM. PatiF. 4D printing for vascular tissue engineering: Progress and challenges.Adv. Mater. Technol.2023823230020010.1002/admt.202300200
    [Google Scholar]
  124. QasimM. ChaeD.S. LeeN.Y. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering.Int. J. Nanomedicine2019144333435110.2147/IJN.S209431 31354264
    [Google Scholar]
  125. YuX. ZhangT. LiY. 3D printing and bioprinting nerve conduits for neural tissue engineering.Polymers2020128163710.3390/polym12081637
    [Google Scholar]
  126. NainA. ChakrabortyS. JainN. 4D hydrogels: Fabrication strategies, stimulation mechanisms, and biomedical applications.Biomater. Sci.202412133249327210.1039/D3BM02044D 38742277
    [Google Scholar]
  127. YangQ. GaoB. XuF. Recent advances in 4D bioprinting.Biotechnol. J.2020151190008610.1002/biot.201900086
    [Google Scholar]
  128. SunZ. ZhaoJ. LeungE. Three-dimensional bioprinting in cardiovascular disease: Current status and future directions.Biomolecules2023138118010.3390/biom13081180
    [Google Scholar]
  129. DavoodiE. SarikhaniE. MontazerianH. Extrusion and microfluidic‐based bioprinting to fabricate biomimetic tissues and organs.Adv. Mater. Technol.202058190104410.1002/admt.201901044 33072855
    [Google Scholar]
  130. WenH. LiJ. PayneG.F. Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels.Biofabrication202012303500710.1088/1758‑5090/ab7e74 32155609
    [Google Scholar]
  131. PercivalK.M. PaulV. HusseiniG.A. Recent advancements in bone tissue engineering: Integrating smart scaffold technologies and bio-responsive systems for enhanced regeneration.Int. J. Mol. Sci.20242511601210.3390/ijms25116012
    [Google Scholar]
  132. PrakashA. MalviyaR. SridharS.B. ShareefJ. 4D printing in dynamic and adaptive bone implants: Progress in bone tissue engineering.Bioprinting202444e0037310.1016/j.bprint.2024.e00373
    [Google Scholar]
  133. DevillardC.D. MandonC.A. LambertS.A. BlumL.J. MarquetteC.A. Bioinspired multi‐activities 4D printing objects: A new approach toward complex tissue engineering.Biotechnol. J.20181312180009810.1002/biot.201800098 30192055
    [Google Scholar]
  134. BetschM. CristianC. LinY.Y. Incorporating 4D into bioprinting: Real‐time magnetically directed collagen fiber alignment for generating complex multilayered tissues.Adv. Healthc. Mater.2018721180089410.1002/adhm.201800894 30221829
    [Google Scholar]
  135. GuX. DingF. WilliamsD.F. Neural tissue engineering options for peripheral nerve regeneration.Biomaterials201435246143615610.1016/j.biomaterials.2014.04.064 24818883
    [Google Scholar]
  136. TognatoR. ArmientoA.R. BonfrateV. A stimuli-responsive nanocomposite for 3D anisotropic cell‐guidance and magnetic soft robotics.Adv. Funct. Mater.2019299180464710.1002/adfm.201804647
    [Google Scholar]
  137. JangJ. ParkH.J. KimS.W. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.Biomaterials201711226427410.1016/j.biomaterials.2016.10.026 27770630
    [Google Scholar]
  138. HannS.Y. CuiH. NowickiM. ZhangL.G. 4D printing soft robotics for biomedical applications.Addit. Manuf.20203610156710.1016/j.addma.2020.101567
    [Google Scholar]
  139. WangY. CuiH. WangY. XuC. EsworthyT.J. HannS.Y. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration.ACS Appl. Mater. Interfaces20211311127461275810.1021/acsami.0c17610
    [Google Scholar]
  140. FalahatiM. AhmadvandP. SafaeeS. Smart polymers and nanocomposites for 3D and 4D printing.Mater. Today20204021524510.1016/j.mattod.2020.06.001
    [Google Scholar]
  141. ZhaoW. ZhangF. LengJ. LiuY. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites.Compos. Sci. Technol.201918410786610.1016/j.compscitech.2019.107866
    [Google Scholar]
  142. JoshiS. RawatK.C.K. RajamohanV. MathewA.T. KoziolK. 4D printing of materials for the future: Opportunities and challenges.Appl. Mater. Today20201810049010.1016/j.apmt.2019.100490
    [Google Scholar]
  143. WangZ. JiangH. WuG. Shape-programmable three-dimensional microfluidic structures.ACS Appl. Mater. Interfaces20221413155991560710.1021/acsami.1c24799 35319180
    [Google Scholar]
  144. WangJ. SotoF. MaP. Acoustic fabrication of living cardiomyocyte-based hybrid biorobots.ACS Nano2022167102191023010.1021/acsnano.2c01908 35671037
    [Google Scholar]
  145. CuiC. AnL. ZhangZ. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks.Adv. Funct. Mater.20223229220372010.1002/adfm.202203720
    [Google Scholar]
  146. DemolyF. DunnM.L. WoodK.L. QiH.J. AndréJ.C. The status, barriers, challenges, and future in design for 4D printing.Mater. Des.202121211019310.1016/j.matdes.2021.110193
    [Google Scholar]
  147. CabreraM.S. SandersB. GoorO.J.G.M. Driessen-MolA. OomensC.W.J. BaaijensF.P.T. Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: A proof-of-concept study. 3D Print.Addit. Manuf.20174110.1089/3dp.2016.0052
    [Google Scholar]
  148. JinD. ChenQ. HuangT.Y. HuangJ. ZhangL. DuanH. Four-dimensional direct laser writing of reconfigurable compound micromachines.Mater. Today202032192510.1016/j.mattod.2019.06.002
    [Google Scholar]
  149. ShafranekR.T. MillikS.C. SmithP.T. LeeC.U. BoydstonA.J. NelsonA. Stimuli-responsive materials in additive manufacturing.Prog. Polym. Sci.201993366710.1016/j.progpolymsci.2019.03.002
    [Google Scholar]
  150. MorrisonR.J. HollisterS.J. NiednerM.F. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients.Sci. Transl. Med.20157285285ra6410.1126/scitranslmed.3010825 25925683
    [Google Scholar]
  151. ZarekM. MansourN. ShapiraS. CohnD. 4D printing of shape memory‐based personalized endoluminal medical devices.Macromol. Rapid Commun.2017382160062810.1002/marc.201600628 27918636
    [Google Scholar]
  152. ZhangF. WenN. WangL. BaiY. LengJ. Design of 4D printed shape-changing tracheal stent and remote controlling actuation.Int. J. Smart Nano Mater.202112437538910.1080/19475411.2021.1974972
    [Google Scholar]
  153. KuhntT. Camarero-EspinosaS. GhahfarokhiM.T. 4D printed shape morphing biocompatible materials based on anisotropic ferromagnetic nanoparticles.Adv. Funct. Mater.20223250220253910.1002/adfm.202202539
    [Google Scholar]
  154. ZhaoW. YueC. LiuL. LiuY. LengJ. Research progress of shape memory polymer and 4D printing in biomedical application.Adv. Healthc. Mater.20231216220197510.1002/adhm.202201975
    [Google Scholar]
  155. RamezaniM. RipinZ.D. 4D printing in biomedical engineering: Advancements, challenges, and future directions.J. Funct. Biomater.202314734710.3390/jfb14070347 37504842
    [Google Scholar]
  156. Technical considerations for additive manufactured medical devices. Guidance for Industry and Food and Drug Adminitration Staff. 2017. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices
  157. WadmanM. FDA no longer has to require animal testing for new drugs.Science2023379662812712810.1126/science.adg6276 36634170
    [Google Scholar]
  158. ShufordS. LipinskiL. AbadA. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay.Neurooncol. Adv.202131vdab06510.1093/noajnl/vdab065 34142085
    [Google Scholar]
  159. TaylorS. MuellerE. JonesL.R. MakelaA.V. AshammakhiN. Translational aspects of 3D and 4D printing and bioprinting.Adv. Healthc. Mater.20241327240046310.1002/adhm.202400463 38979857
    [Google Scholar]
  160. GohG.D. SingS.L. YeongW.Y. A review on machine learning in 3D printing: Applications, potential, and challenges.Artif. Intell. Rev.2021541639410.1007/s10462‑020‑09876‑9
    [Google Scholar]
  161. RiveraF.J.M. ArciniegasA.J.R. Additive manufacturing methods: Techniques, materials, and closed-loop control applications.Int. J. Adv. Manuf. Technol.20201091-2173110.1007/s00170‑020‑05663‑6
    [Google Scholar]
  162. PuglieseR. RegondiS. Artificial intelligence-empowered 3D and 4D printing technologies toward smarter biomedical materials and approaches.Polymers20221414279410.3390/polym14142794 35890571
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128374450250502051929
Loading
/content/journals/cpd/10.2174/0113816128374450250502051929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test