Skip to content
2000
Volume 31, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Cardiovascular disorders (CVDs) are the primary cause of mortality globally, and the community is significantly affected when young people suffer from CVDs. Coronary artery disease, myocardial infarction, fibrosis, atherosclerosis, pulmonary arterial hypertension, thrombosis, and ischemic diseases are different types of CVDs, which encompass a wide range of conditions that interfere with the functioning of the cardiovascular system. The relevance of nanotechnology in the treatment of CVDs has emerged progressively in previous decades.

Objective

This review offers concise insights into the physiochemical characteristics of poly (lactic-co-glycolic acid) (PLGA) imperative for drug delivery. This article highlights the application of PLGA-NPs in myocardial ischemia, atherosclerosis, myocardial infarction, pulmonary artery hypertension, valvular heart disease, tumour thrombus, cardiac myocyte, restenosis, cardiovascular theranostics, vascular disorders, and angiogenesis. Further, this review gives updates about published patents pertaining to the current state-of-art about PLGA-NPs in CVDs.

Methods

An extensive review was undertaken employing the Google Scholar, PubMed, and ScienceDirect databases using scientific papers published in peer-reviewed journals from 2000 to 2024.

Results

Owing to their minuscule size and increased surface area accessible for surface functionalization, the PLGA-NPs offer a cutting-edge technology to provide an efficient platform for controlled and targeted drug delivery, therefore, imparting tremendous relevance in reducing the occurrence of CVDs.

Conclusion

This has been concluded that PLGA is the highly effective biodegradable copolymer, also known as “Smart polymers,” because of their biodegradability, biocompatibility, controlled drug release profile, and potential for surface modification with targeting molecules.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128361869250409171305
2025-04-30
2025-10-27
Loading full text...

Full text loading...

References

  1. GuptaP.D. What your blood tells? A review.JCTR.202020268976913
    [Google Scholar]
  2. PittmanR.N. The circulatory system and oxygen transport.Regulation of Tissue Oxygenation.2011
    [Google Scholar]
  3. WoodruffR.C. TongX. KhanS.S. ShahN.S. JacksonS.L. LoustalotF. VaughanA.S. Trends in cardiovascular disease mortality rates and excess deaths, 2010–2022.Am. J. Prev. Med.202466458258910.1016/j.amepre.2023.11.00937972797
    [Google Scholar]
  4. GonuguntlaK ChobufoMD ShaikA RomaN PenmetsaM ThyagaturuH PatelN TahaA AlruwailiW BansalR KhanMZ Temporal trends in race and sex differences in cardiac arrest mortality in the USA, 1999-2020J. Cardiol.2024
    [Google Scholar]
  5. JosephP. LeongD. McKeeM. AnandS.S. SchwalmJ.D. TeoK. MenteA. YusufS. Reducing the global burden of cardiovascular disease, part 1: The epidemiology and risk factors.Circ. Res.2017121667769410.1161/CIRCRESAHA.117.30890328860318
    [Google Scholar]
  6. SamuelP.O. EdoG.I. EmakporO.L. OloniG.O. EzekielG.O. EssaghahA.E.A. AgohE. AgboJ.J. Lifestyle modifications for preventing and managing cardiovascular diseases.Sport Sci. Health2024201233610.1007/s11332‑023‑01118‑z
    [Google Scholar]
  7. TsoukalasD SarandiE ThanasoulaM Non-communicable diseases in the era of precision medicine: An overview of the causing factors and prospectsBio Futures: Foreseeing and Exploring the Bioeconomy2021275299
    [Google Scholar]
  8. KoppW. Pathogenesis of (smoking-related) non-communicable diseases—Evidence for a common underlying pathophysiological pattern.Front. Physiol.202213103775010.3389/fphys.2022.103775036589440
    [Google Scholar]
  9. BlasiP. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview.J. Pharm. Investig.201949433734610.1007/s40005‑019‑00453‑z
    [Google Scholar]
  10. ElmowafyE.M. TiboniM. SolimanM.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J. Pharm. Investig.201949434738010.1007/s40005‑019‑00439‑x
    [Google Scholar]
  11. HivertM.F. ArenaR. FormanD.E. Kris-EthertonP.M. McBrideP.E. PateR.R. SpringB. TrilkJ. Van HornL.V. KrausW.E. Medical training to achieve competency in lifestyle counseling: An essential foundation for prevention and treatment of cardiovascular diseases and other chronic medical conditions: A scientific statement from the American Heart Association.Circulation201613415e308e32710.1161/CIR.000000000000044227601568
    [Google Scholar]
  12. HuQ. FangZ. GeJ. LiH. Nanotechnology for cardiovascular diseases.Innovation20223210021410.1016/j.xinn.2022.10021435243468
    [Google Scholar]
  13. LiT. LiangW. XiaoX. QianY. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases.Int. J. Nanomedicine2018137349736210.2147/IJN.S17967830519019
    [Google Scholar]
  14. PanditaD. KumarS. LatherV. Hybrid poly(lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives.Drug Discov. Today20152019510410.1016/j.drudis.2014.09.01825277320
    [Google Scholar]
  15. PerinelliD.R. CespiM. BonacucinaG. PalmieriG.F. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems.J. Pharm. Investig.201949444345810.1007/s40005‑019‑00442‑2
    [Google Scholar]
  16. CasaliniT. RossiF. CastrovinciA. PeraleG. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications.Front. Bioeng. Biotechnol.2019725910.3389/fbioe.2019.0025931681741
    [Google Scholar]
  17. GentileP. ChionoV. CarmagnolaI. HattonP. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.Int. J. Mol. Sci.20141533640365910.3390/ijms1503364024590126
    [Google Scholar]
  18. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715915921723110.1016/j.colsurfb.2017.07.03828797972
    [Google Scholar]
  19. GhitmanJ. BiruE.I. StanR. IovuH. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine.Mater. Des.202019310880510.1016/j.matdes.2020.108805
    [Google Scholar]
  20. ColeJ.T. HollandN.B. Multifunctional nanoparticles for use in theranostic applications.Drug Deliv. Transl. Res.20155329530910.1007/s13346‑015‑0218‑225787729
    [Google Scholar]
  21. AnandB. WuQ. Nakhaei-NejadM. KarthivashanG. DoroshL. AmidianS. DahalA. LiX. StepanovaM. WilleH. GiulianiF. KarS. Significance of native PLGA nanoparticles in the treatment of Alzheimer’s disease pathology.Bioact. Mater.20221750652510.1016/j.bioactmat.2022.05.03036330076
    [Google Scholar]
  22. CunhaA. GaubertA. LatxagueL. DehayB. PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases.Pharmaceutics2021137104210.3390/pharmaceutics1307104234371733
    [Google Scholar]
  23. HeY. de Araújo JúniorR.F. CavalcanteR.S. YuZ. SchomannT. GuZ. EichC. CruzL.J. Effective breast cancer therapy based on palmitic acid-loaded PLGA nanoparticles.Biomaterials Advances202314521327010.1016/j.bioadv.2022.21327036603405
    [Google Scholar]
  24. PatelC.M. PatelM.A. PatelN.P. PrajapatiP.H. PatelC.N. Poly lactic glycolic acid (PLGA) as biodegradable polymer.RJPT.201032353360
    [Google Scholar]
  25. RoointanA. KianpourS. MemariF. GandomaniM. Gheibi HayatS.M. Mohammadi-SamaniS. Poly(lactic- co -glycolic acid): The most ardent and flexible candidate in biomedicine!Int. J. Polym. Mater.201867171028104910.1080/00914037.2017.1405350
    [Google Scholar]
  26. DoratiR. ColonnaC. GentaI. ModenaT. ContiB. Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds.Polym. Degrad. Stabil.201095469470110.1016/j.polymdegradstab.2009.11.039
    [Google Scholar]
  27. HouchinM.L. ToppE.M. Physical properties of PLGA films during polymer degradation.J. Appl. Polym. Sci.200911452848285410.1002/app.30813
    [Google Scholar]
  28. Rodrigues de AzevedoC. von StoschM. CostaM.S. RamosA.M. CardosoM.M. DanhierF. PréatV. OliveiraR. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics.Int. J. Pharm.2017532122924010.1016/j.ijpharm.2017.08.11828867450
    [Google Scholar]
  29. MartinsC. SousaF. AraújoF. SarmentoB. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.20170103529171928
    [Google Scholar]
  30. GalvinP. ThompsonD. RyanK.B. McCarthyA. MooreA.C. BurkeC.S. DysonM. MacCraithB.D. Gun’koY.K. ByrneM.T. VolkovY. KeelyC. KeehanE. HoweM. DuffyC. MacLoughlinR. Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications.Cell. Mol. Life Sci.201269338940410.1007/s00018‑011‑0856‑622015612
    [Google Scholar]
  31. EsmaeiliF. GhahremaniM.H. EsmaeiliB. KhoshayandM.R. AtyabiF. DinarvandR. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution.Int. J. Pharm.20083491-224925510.1016/j.ijpharm.2007.07.03817875373
    [Google Scholar]
  32. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  33. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
  34. LocatelliE. Comes FranchiniM. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system.J. Nanopart. Res.20121412131610.1007/s11051‑012‑1316‑4
    [Google Scholar]
  35. PavotV. BerthetM. RességuierJ. LegazS. HandkéN. GilbertS.C. PaulS. VerrierB. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery.Nanomedicine20149172703271810.2217/nnm.14.15625529572
    [Google Scholar]
  36. Igwe IdumahC. Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications.Cleaner Materials2022510010210.1016/j.clema.2022.100102
    [Google Scholar]
  37. SilvaA.T.C.R. CardosoB.C.O. SilvaM.E.S.R. FreitasR.F.S. SousaR.G. Synthesis, characterization, and study of PLGA copolymer in vitro degradation.J. Biomater. Nanobiotechnol.20156181910.4236/jbnb.2015.61002
    [Google Scholar]
  38. SarkarC KommineniN ButreddyA KumarR BunekarN GugulothuK PLGA nanoparticles in drug delivery.Nanoengineering of Biomaterials202221726010.1002/9783527832095.ch8
    [Google Scholar]
  39. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. YamchiM.R. MilaniM. ZarghamiN. ZeighamianV. RahimzadehA. AlimohammadiS. HanifehpourY. JooS.W. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.51724568455
    [Google Scholar]
  40. AlexisF. VenkatramanS.S. RathS.K. BoeyF. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices.J. Control. Release2004981677410.1016/j.jconrel.2004.04.01115245890
    [Google Scholar]
  41. GoraltchoukA. ScangaV. MorsheadC.M. ShoichetM.S. Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release.J. Control. Release2006110240040710.1016/j.jconrel.2005.10.01916325953
    [Google Scholar]
  42. SevimK. PanJ. A model for hydrolytic degradation and erosion of biodegradable polymers.Acta Biomater.20186619219910.1016/j.actbio.2017.11.02329128536
    [Google Scholar]
  43. FredenbergS. WahlgrenM. ReslowM. AxelssonA. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review.Int. J. Pharm.20114151-2345210.1016/j.ijpharm.2011.05.04921640806
    [Google Scholar]
  44. SharmaS. ParmarA. KoriS. SandhirR. PLGA-based nanoparticles: A new paradigm in biomedical applications.Trends Analyt. Chem.201680304010.1016/j.trac.2015.06.014
    [Google Scholar]
  45. FalkE. Pathogenesis of Atherosclerosis.J. Am. Coll. Cardiol.2006478 SupplC7C1210.1016/j.jacc.2005.09.06816631513
    [Google Scholar]
  46. VasirJ. LabhasetwarV. Biodegradable nanoparticles for cytosolic delivery of therapeutics.Adv. Drug Deliv. Rev.200759871872810.1016/j.addr.2007.06.00317683826
    [Google Scholar]
  47. YanB. HuaY. WangJ. ShaoT. WangS. GaoX. GaoJ. Surface modification progress for PLGA-based cell Scaffolds.Polymers202416116510.3390/polym1601016538201830
    [Google Scholar]
  48. KhanI GothwalA SharmaAK KesharwaniP GuptaL IyerAK GuptaU PLGA nanoparticles and their versatile role in anticancer drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201633215919310.1615/CritRevTherDrugCarrierSyst.2016015273
    [Google Scholar]
  49. WangY.J. LarssonM. HuangW.T. ChiouS.H. NichollsS.J. ChaoJ.I. LiuD.M. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs.Prog. Polym. Sci.20165715317810.1016/j.progpolymsci.2016.01.002
    [Google Scholar]
  50. DahlöfB. Cardiovascular disease risk factors: Epidemiology and risk assessment.Am. J. Cardiol.20101051 Suppl3A9A10.1016/j.amjcard.2009.10.00720102968
    [Google Scholar]
  51. ÇakmakH.A. DemirM. MicroRNA and cardiovascular diseases.Balkan Med. J.2020372607132018347
    [Google Scholar]
  52. CordesK.R. SheehyN.T. WhiteM.P. BerryE.C. MortonS.U. MuthA.N. LeeT.H. MianoJ.M. IveyK.N. SrivastavaD. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.Nature2009460725670571010.1038/nature0819519578358
    [Google Scholar]
  53. TsimikasS. A test in context: Lipoprotein (a) diagnosis, prognosis, controversies, and emerging therapies.J. Am. Coll. Cardiol.201769669271110.1016/j.jacc.2016.11.04228183512
    [Google Scholar]
  54. CesaroA. SchiavoA. MoscarellaE. ColettaS. ConteM. GragnanoF. FimianiF. MondaE. CaiazzaM. LimongelliG. D’ErasmoL. RiccioC. ArcaM. CalabròP. Lipoprotein(a): A genetic marker for cardiovascular disease and target for emerging therapies.J. Cardiovasc. Med.202122315116110.2459/JCM.000000000000107732858625
    [Google Scholar]
  55. SzarekM. BittnerV.A. AylwardP. Baccara-DinetM. BhattD.L. DiazR. FrasZ. GoodmanS.G. HalvorsenS. HarringtonR.A. JukemaJ.W. MoriartyP.M. PordyR. RayK.K. SinnaeveP. TsimikasS. VogelR. WhiteH.D. ZahgerD. ZeiherA.M. StegP.G. SchwartzG.G. Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: Odyssey outcomes trial.Eur. Heart J.202041444245425510.1093/eurheartj/ehaa64933051646
    [Google Scholar]
  56. KesslerT. VilneB. SchunkertH. The impact of genome‐wide association studies on the pathophysiology and therapy of cardiovascular disease.EMBO Mol. Med.20168768870110.15252/emmm.20150617427189168
    [Google Scholar]
  57. VrablikM. DlouhaD. TodorovovaV. SteflerD. HubacekJ.A. Genetics of cardiovascular disease: How far are we from personalized CVD risk prediction and management?Int. J. Mol. Sci.2021228418210.3390/ijms2208418233920733
    [Google Scholar]
  58. AlonsoR. MataN. CastilloS. FuentesF. SaenzP. MuñizO. GalianaJ. FiguerasR. DiazJ.L. Gomez-EnterríaP. MauriM. PiedecausaM. IrigoyenL. AguadoR. MataP. Cardiovascular disease in familial hypercholesterolaemia: Influence of low-density lipoprotein receptor mutation type and classic risk factors.Atherosclerosis2008200231532110.1016/j.atherosclerosis.2007.12.02418243212
    [Google Scholar]
  59. LeritzE.C. McGlincheyR.E. KellisonI. RudolphJ.L. MilbergW.P. cardiovascular disease risk factors and cognition in the elderly.Curr. Cardiovasc. Risk Rep.20115540741210.1007/s12170‑011‑0189‑x22199992
    [Google Scholar]
  60. LevinM.G. KlarinD. AssimesT.L. FreibergM.S. IngelssonE. LynchJ. NatarajanP. O’DonnellC. RaderD.J. TsaoP.S. ChangK.M. VoightB.F. DamrauerS.M. Genetics of smoking and risk of atherosclerotic cardiovascular diseases: A Mendelian randomization study.JAMA Netw. Open202141e203446110.1001/jamanetworkopen.2020.3446133464320
    [Google Scholar]
  61. AlmasT. HaiderR. MalikJ. MehmoodA. AlviA. NazH. SattiD.I. ZaidiS.M.J. AlSubaiA.K. AlNajdiS. AlsufyaniR. RamtohulR.K. AlmesriA. AlsufyaniM. H Al-BunniaA. AlghamdiH.A.S. SattarY. AlraiesM.C. RainaS. Nanotechnology in interventional cardiology: A state-of-the-art review.Int. J. Cardiol. Heart Vasc.20224310114910.1016/j.ijcha.2022.10114936425567
    [Google Scholar]
  62. YangF. XueJ. WangG. DiaoQ. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases.Front. Pharmacol.20221399940410.3389/fphar.2022.99940436172197
    [Google Scholar]
  63. CrowtherM.A. Pathogenesis of Atherosclerosis.Hematology Am. Soc. Hematol. Educ. Program20052005143644110.1182/asheducation‑2005.1.43616304416
    [Google Scholar]
  64. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.1320235076127
    [Google Scholar]
  65. HopkinsP.N. Molecular biology of atherosclerosis.Physiol. Rev.20139331317154210.1152/physrev.00004.201223899566
    [Google Scholar]
  66. LusisA.J. Genetics of atherosclerosis.Trends Genet.201228626727510.1016/j.tig.2012.03.00122480919
    [Google Scholar]
  67. Jebari-BenslaimanS. Galicia-GarcíaU. Larrea-SebalA. OlaetxeaJ.R. AllozaI. VandenbroeckK. Benito-VicenteA. MartínC. Pathophysiology of Atherosclerosis.Int. J. Mol. Sci.2022236334610.3390/ijms2306334635328769
    [Google Scholar]
  68. HanssonG.K. Inflammatory mechanisms in atherosclerosis.J. Thromb. Haemost.20097Suppl. 132833110.1111/j.1538‑7836.2009.03416.x19630827
    [Google Scholar]
  69. LibbyP. RidkerP.M. HanssonG.K. Progress and challenges in translating the biology of atherosclerosis.Nature2011473734731732510.1038/nature1014621593864
    [Google Scholar]
  70. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑833883728
    [Google Scholar]
  71. BjörkegrenJ.L.M. LusisA.J. Atherosclerosis: Recent developments.Cell2022185101630164510.1016/j.cell.2022.04.00435504280
    [Google Scholar]
  72. NennaA. NappiF. LarobinaD. VerghiE. ChelloM. AmbrosioL. Polymers and nanoparticles for statin delivery: Current use and future perspectives in cardiovascular disease.Polymers202113571110.3390/polym1305071133652927
    [Google Scholar]
  73. Katsuki S, Matoba T, Nakashiro S, Sato K, Koga JI, Nakano K, Nakano Y, Egusa S, Sunagawa K, Egashira K. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes.Circulation2014129889690610.1161/CIRCULATIONAHA.113.002870
    [Google Scholar]
  74. LibbyP. Inflammation in Atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.17970522895665
    [Google Scholar]
  75. LibbyP. BornfeldtK.E. TallA.R. Atherosclerosis: Successes, surprises, and future challenges.Circ. Res.2016118453153410.1161/CIRCRESAHA.116.30833426892955
    [Google Scholar]
  76. Rafieian-KopaeiM. SetorkiM. DoudiM. BaradaranA. NasriH. Atherosclerosis: Process, indicators, risk factors and new hopes.Int. J. Prev. Med.20145892794625489440
    [Google Scholar]
  77. DouglasG. ChannonK.M. The pathogenesis of atherosclerosis.Medicine201442948048410.1016/j.mpmed.2014.06.011
    [Google Scholar]
  78. GiannouliM. KaragkiozakiV. PappaF. MoutsiosI. GravalidisC. LogothetidisS. Fabrication of quercetin-loaded PLGA nanoparticles via electrohydrodynamic atomization for cardiovascular disease.Mater. Today Proc.201858159981600510.1016/j.matpr.2018.05.044
    [Google Scholar]
  79. Esfandyari-ManeshM. AbdiM. TalasazA.H. EbrahimiS.M. AtyabiF. DinarvandR. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques.Daru202028113113810.1007/s40199‑019‑00324‑w31919789
    [Google Scholar]
  80. Sanchez-GaytanB.L. FayF. LobattoM.E. TangJ. OuimetM. KimY. van der StaayS.E.M. van RijsS.M. PriemB. ZhangL. FisherE.A. MooreK.J. LangerR. FayadZ.A. MulderW.J.M. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.Bioconjug. Chem.201526344345110.1021/bc500517k25650634
    [Google Scholar]
  81. ShafiqN. AroraA. BhandariR.K. PandeyA.K. Gani RatherI.I. MalhotraS. BhatiaA. Effect of atorvastatin nanoparticles compared to free atrovastatin on plaque properties in rabbit model of atherosclerosis.Int. J. Noncommun. Dis.20194412713110.4103/jncd.jncd_27_19
    [Google Scholar]
  82. ZhangM. HeJ. ZhangW. LiuJ. Fabrication of TPGS-stabilized liposome-PLGA hybrid nanoparticle via a new modified nanoprecipitation approach: In vitro and in vivo evaluation.Pharm. Res.2018351119910.1007/s11095‑018‑2485‑330167890
    [Google Scholar]
  83. PillaiS.C. BorahA. LeM.N.T. KawanoH. HasegawaK. KumarD.S. Co-delivery of curcumin and bioperine via PLGA nanoparticles to prevent atherosclerotic foam cell formation.Pharmaceutics2021139142010.3390/pharmaceutics1309142034575496
    [Google Scholar]
  84. DashR. YadavM. BiswalJ. ChandraA. GoelV.K. SharmaT. PrustyS.K. MohapatraS. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis.Int. J. Pharm.202364012300910.1016/j.ijpharm.2023.12300937142139
    [Google Scholar]
  85. ZhangX.Q. Even-OrO. XuX. van RosmalenM. LimL. GaddeS. FarokhzadO.C. FisherE.A. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.Adv. Healthc. Mater.20154222823610.1002/adhm.20140033725156796
    [Google Scholar]
  86. De Negri AtanasioG. FerrariP.F. BaiãoA. PeregoP. SarmentoB. PalomboD. CampardelliR. Bevacizumab encapsulation into PLGA nanoparticles functionalized with immunouteroglobin-1 as an innovative delivery system for atherosclerosis.Int. J. Biol. Macromol.20222211618163010.1016/j.ijbiomac.2022.08.06335970371
    [Google Scholar]
  87. NakashiroS. MatobaT. UmezuR. KogaJ. TokutomeM. KatsukiS. NakanoK. SunagawaK. EgashiraK. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice.Arterioscler. Thromb. Vasc. Biol.201636349150010.1161/ATVBAHA.115.30705726821947
    [Google Scholar]
  88. TangJ. LiT. XiongX. YangQ. SuZ. ZhengM. ChenQ. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells.J. Nanobiotechnology202321146010.1186/s12951‑023‑02228‑z38037046
    [Google Scholar]
  89. MontaniD. GüntherS. DorfmüllerP. PerrosF. GirerdB. GarciaG. JaïsX. SavaleL. Artaud-MacariE. PriceL.C. HumbertM. SimonneauG. SitbonO. Pulmonary arterial hypertension.Orphanet J. Rare Dis.2013819710.1186/1750‑1172‑8‑9723829793
    [Google Scholar]
  90. SchermulyR.T. GhofraniH.A. WilkinsM.R. GrimmingerF. Mechanisms of disease: Pulmonary arterial hypertension.Nat. Rev. Cardiol.20118844345510.1038/nrcardio.2011.8721691314
    [Google Scholar]
  91. ShahS.J. Pulmonary hypertension.JAMA2012308131366137410.1001/jama.2012.1234723032553
    [Google Scholar]
  92. RuoppN.F. CockrillB.A. Diagnosis and treatment of pulmonary arterial hypertension: A review.JAMA2022327141379139110.1001/jama.2022.440235412560
    [Google Scholar]
  93. ThenappanT. OrmistonM.L. RyanJ.J. ArcherS.L. Pulmonary arterial hypertension: Pathogenesis and clinical management.BMJ2018360j549210.1136/bmj.j549229540357
    [Google Scholar]
  94. LanN.S.H. MassamB.D. KulkarniS.S. LangC.C. Pulmonary arterial hypertension: Pathophysiology and treatment.Diseases2018623810.3390/diseases602003829772649
    [Google Scholar]
  95. McLaughlinV.V. ShahS.J. SouzaR. HumbertM. Management of pulmonary arterial hypertension.J. Am. Coll. Cardiol.201565181976199710.1016/j.jacc.2015.03.54025953750
    [Google Scholar]
  96. LaiY.C. PotokaK.C. ChampionH.C. MoraA.L. GladwinM.T. Pulmonary arterial hypertension: The clinical syndrome.Circ. Res.2014115111513010.1161/CIRCRESAHA.115.30114624951762
    [Google Scholar]
  97. SiS. LiH. HanX. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension.J. Drug Deliv. Sci. Technol.20205510142210.1016/j.jddst.2019.101422
    [Google Scholar]
  98. ÖztürkA.A. Martin-BanderasL. Cayero-OteroM.D. YenilmezE. YazanY. New approach to hypertension treatment: Carvediol-loaded PLGA nanoparticles, preparation, in vitro characterization and gastrointestinal stability.Lat. Am. J. Pharm.201837917301741
    [Google Scholar]
  99. ShahU. JoshiG. SawantK. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design.Mater. Sci. Eng. C20143515316310.1016/j.msec.2013.10.03824411363
    [Google Scholar]
  100. AroraA. ShafiqN. JainS. KhullerG.K. SharmaS. MalhotraS. Development of sustained release “nanofdc (fixed dose combination)” for hypertension–an experimental study.PLoS One2015106e012820810.1371/journal.pone.012820826047011
    [Google Scholar]
  101. GuptaV. DavisM. Hope-WeeksL.J. AhsanF. PLGA microparticles encapsulating prostaglandin E1-hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) complex for the treatment of pulmonary arterial hypertension (PAH).Pharm. Res.20112871733174910.1007/s11095‑011‑0409‑621626061
    [Google Scholar]
  102. YuT. ZhaoS. LiZ. WangY. XuB. FangD. WangF. ZhangZ. HeL. SongX. YangJ. Enhanced and extended anti-hypertensive effect of VP5 nanoparticles.Int. J. Mol. Sci.20161712197710.3390/ijms1712197727898022
    [Google Scholar]
  103. Kecel-GündüzS. Budama-KilincY. Cakir KocR. KökcüY. BicakB. AslanB. ÖzelA.E. Computational design of Phe-Tyr dipeptide and preparation, characterization, cytotoxicity studies of Phe-Tyr dipeptide loaded PLGA nanoparticles for the treatment of hypertension.J. Biomol. Struct. Dyn.201836112893290710.1080/07391102.2017.137164428835169
    [Google Scholar]
  104. DiwanR. KhanS. RaviP.R. Comparative study of cilnidipine loaded PLGA nanoparticles: Process optimization by DoE, physico-chemical characterization and in vivo evaluation.Drug Deliv. Transl. Res.20201051442145810.1007/s13346‑020‑00732‑532329025
    [Google Scholar]
  105. MishraR. MirS.R. AminS. Polymeric nanoparticles for improved bioavailability of cilnidipine.Int. J. Pharm. Pharm. Sci.20179412913910.22159/ijpps.2017v9i4.15786
    [Google Scholar]
  106. RyuS. ParkS. LeeH.Y. LeeH. ChoC.W. BaekJ.S. Biodegradable nanoparticles-loaded plga microcapsule for the enhanced encapsulation efficiency and controlled release of hydrophilic drug.Int. J. Mol. Sci.2021226279210.3390/ijms2206279233801871
    [Google Scholar]
  107. LiJ. ChenB. YuT. GuoM. ZhaoS. ZhangY. JinC. PengX. ZengJ. YangJ. SongX. An efficient controlled release strategy for hypertension therapy: Folate-mediated lipid nanoparticles for oral peptide delivery.Pharmacol. Res.202015710479610.1016/j.phrs.2020.10479632278048
    [Google Scholar]
  108. LindseyM.L. BolliR. CantyJ.M.Jr DuX.J. FrangogiannisN.G. FrantzS. GourdieR.G. HolmesJ.W. JonesS.P. KlonerR.A. LeferD.J. LiaoR. MurphyE. PingP. PrzyklenkK. RecchiaF.A. Schwartz LongacreL. RipplingerC.M. Van EykJ.E. HeuschG. Guidelines for experimental models of myocardial ischemia and infarction.Am. J. Physiol. Heart Circ. Physiol.20183144H812H83810.1152/ajpheart.00335.201729351451
    [Google Scholar]
  109. GuttermanD.D. Silent myocardial ischemia.Circ. J.200973578579710.1253/circj.CJ‑08‑120919282605
    [Google Scholar]
  110. ShimokawaH. YasudaS. Myocardial ischemia: Current concepts and future perspectives.J. Cardiol.2008522677810.1016/j.jjcc.2008.07.01618922380
    [Google Scholar]
  111. SmitM. CoetzeeA.R. LochnerA. The pathophysiology of myocardial ischemia and perioperative myocardial infarction.J. Cardiothorac. Vasc. Anesth.20203492501251210.1053/j.jvca.2019.10.00531685419
    [Google Scholar]
  112. HashmiS. Al-SalamS. Acute myocardial infarction and myocardial ischemia-reperfusion injury: A comparison.Int. J. Clin. Exp. Pathol.2015888786879626464621
    [Google Scholar]
  113. HausenloyD.J. YellonD.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target.J. Clin. Invest.201312319210010.1172/JCI6287423281415
    [Google Scholar]
  114. IbáñezB. HeuschG. OvizeM. Van de WerfF. Evolving therapies for myocardial ischemia/reperfusion injury.J. Am. Coll. Cardiol.201565141454147110.1016/j.jacc.2015.02.03225857912
    [Google Scholar]
  115. JenningsR.B. Historical perspective on the pathology of myocardial ischemia/reperfusion injury.Circ. Res.2013113442843810.1161/CIRCRESAHA.113.30098723908330
    [Google Scholar]
  116. TaglieriN. BrunoA.G. Bacchi ReggianiM.L. D’AngeloE.C. GhettiG. BrunoM. PalmeriniT. RapezziC. GalièN. SaiaF. Impact of coronary bypass or stenting on mortality and myocardial infarction in stable coronary artery disease.Int. J. Cardiol.2020309636910.1016/j.ijcard.2020.01.05432037130
    [Google Scholar]
  117. KandalaJ. OommenC. KernK.B. Sudden cardiac death.Br. Med. Bull.2017122151510.1093/bmb/ldx01128444125
    [Google Scholar]
  118. IkedaG. MatobaT. NakanoY. NagaokaK. IshikitaA. NakanoK. FunamotoD. SunagawaK. EgashiraK. Nanoparticle-mediated targeting of cyclosporine A enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening.Sci. Rep.2016612046710.1038/srep2046726861678
    [Google Scholar]
  119. DongZ. GuoJ. XingX. ZhangX. DuY. LuQ. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model.Biomed. Pharmacother.20178929730410.1016/j.biopha.2017.02.02928236703
    [Google Scholar]
  120. LeeP.C. ZanB.S. ChenL.T. ChungT.W. Multifunctional PLGA-based nanoparticles as a controlled release drug delivery system for antioxidant and anticoagulant therapy.Int. J. Nanomedicine2019141533154910.2147/IJN.S17496230880963
    [Google Scholar]
  121. QiY. LiJ. NieQ. GaoM. YangQ. LiZ. LiQ. HanS. DingJ. LiY. ZhangJ. Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases.Biomaterials202127512095210.1016/j.biomaterials.2021.12095234147720
    [Google Scholar]
  122. YangC. YangS. FangS. LiL. JingJ. LiuW. WangC. LiR. LuY. PLGA nanoparticles enhanced cardio-protection of scutellarin and paeoniflorin against isoproterenol-induced myocardial ischemia in rats.Int. J. Pharm.202364812356710.1016/j.ijpharm.2023.12356737918495
    [Google Scholar]
  123. OdukY. ZhuW. KannappanR. ZhaoM. BorovjaginA.V. OparilS. ZhangJ.J. VEGF nanoparticles repair the heart after myocardial infarction.Am. J. Physiol. Heart Circ. Physiol.20183142H278H28410.1152/ajpheart.00471.201729101176
    [Google Scholar]
  124. ZhaoY.J. Preparation and characterization of baicalin PEG-PLGA nanomicelles and tissue distribution in rats with acute myocardial ischemia.Chin. Tradit. Herbal Drugs2018491842694276
    [Google Scholar]
  125. ReedG.W. RossiJ.E. CannonC.P. Acute myocardial infarction.Lancet20173891006519721010.1016/S0140‑6736(16)30677‑827502078
    [Google Scholar]
  126. FathimaSN An Update on Myocardial Infarction.Current Research and Trends in Medical Science and Technology2021
    [Google Scholar]
  127. WhiteH.D. ChewD.P. Acute myocardial infarction.Lancet2008372963857058410.1016/S0140‑6736(08)61237‑418707987
    [Google Scholar]
  128. SalehM. AmbroseJ.A. Understanding myocardial infarction.F1000 Res.20187137810.12688/f1000research.15096.130228871
    [Google Scholar]
  129. BoersmaE. MercadoN. PoldermansD. GardienM. VosJ. SimoonsM.L. Acute myocardial infarction.Lancet2003361936084785810.1016/S0140‑6736(03)12712‑212642064
    [Google Scholar]
  130. OjhaN. DhamoonA.S. Myocardial infarction.StatPearls202330725761
    [Google Scholar]
  131. ChenY. ShiJ. ZhangY. MiaoJ. ZhaoZ. JinX. LiuL. YuL. ShenC. DingJ. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction.J. Mater. Chem. B Mater. Biol. Med.20208598099210.1039/C9TB02523E31930242
    [Google Scholar]
  132. SunL. HuY. MishraA. SreeharshaN. MoktanJ.B. KumarP. WangL. Protective role of poly(lactic‐co‐glycolic) acid nanoparticle loaded with resveratrol against isoproterenol‐induced myocardial infarction.Biofactors202046342143110.1002/biof.161131926035
    [Google Scholar]
  133. IchimuraK. MatobaT. NakanoK. TokutomeM. HondaK. KogaJ. EgashiraK. A translational study of a new therapeutic approach for acute myocardial infarction: Nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model.PLoS One2016119e016242510.1371/journal.pone.016242527603665
    [Google Scholar]
  134. ZhangS. LiJ. HuS. WuF. ZhangX. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction.Int. J. Nanomedicine2018134045405710.2147/IJN.S16559030022826
    [Google Scholar]
  135. BeiW. JingL. ChenN. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation.Colloids Surf. B Biointerfaces202018511063510.1016/j.colsurfb.2019.11063531744760
    [Google Scholar]
  136. ZamaniM. PrabhakaranM.P. ThianE.S. RamakrishnaS. Controlled delivery of stromal derived factor-1α from poly lactic-co-glycolic acid core–shell particles to recruit mesenchymal stem cells for cardiac regeneration.J. Colloid Interface Sci.201545114415210.1016/j.jcis.2015.04.00525897850
    [Google Scholar]
  137. Al KindiH. PaulA. YouZ. NepotchatykhO. SchwertaniA. PrakashS. Shum-TimD. Sustained release of milrinone delivered via microparticles in a rodent model of myocardial infarction.J. Thorac. Cardiovasc. Surg.201414852316232410.1016/j.jtcvs.2014.07.03325175952
    [Google Scholar]
  138. QiQ. LuL. LiH. YuanZ. ChenG. LinM. RuanZ. YeX. XiaoZ. ZhaoQ. Spatiotemporal delivery of nanoformulated liraglutide for cardiac regeneration after myocardial infarction.Int. J. Nanomedicine2017124835484810.2147/IJN.S13206428744119
    [Google Scholar]
  139. WangK. ZhuK. ZhuZ. ShaoF. QianR. WangC. DongH. LiY. GaoZ. ZhaoJ. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel.J. Nanobiotechnology202321122710.1186/s12951‑023‑01980‑637461079
    [Google Scholar]
  140. ZhuK. YaoY. WangK. ShaoF. ZhuZ. SongY. ZhouZ. JiangD. LanX. QinC. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation.J. Nanobiotechnology20232113310.1186/s12951‑023‑01790‑w36709291
    [Google Scholar]
  141. BradyA.J. Mechanical properties of isolated cardiac myocytes.Physiol. Rev.199171241342810.1152/physrev.1991.71.2.4132006219
    [Google Scholar]
  142. BersD.M. Calcium cycling and signaling in cardiac myocytes.Annu. Rev. Physiol.2008701234910.1146/annurev.physiol.70.113006.10045517988210
    [Google Scholar]
  143. BeltramiA.P. UrbanekK. KajsturaJ. YanS.M. FinatoN. BussaniR. Nadal-GinardB. SilvestriF. LeriA. BeltramiC.A. AnversaP. Evidence that human cardiac myocytes divide after myocardial infarction.N. Engl. J. Med.2001344231750175710.1056/NEJM20010607344230311396441
    [Google Scholar]
  144. LammerdingJ. KammR.D. LeeR.T. Mechanotransduction in cardiac myocytes.Ann. N. Y. Acad. Sci.200410151537010.1196/annals.1302.00515201149
    [Google Scholar]
  145. QuencerK.B. FriedmanT. ShethR. OkluR. Tumor thrombus: Incidence, imaging, prognosis and treatment.Cardiovasc. Diagn. Ther.20177S3S165S17710.21037/cdt.2017.09.1629399520
    [Google Scholar]
  146. PatelM. WeiX. WeigelK. GertzZ.M. KronJ. RobinsonA.A. TrankleC.R. Diagnosis and treatment of intracardiac thrombus.J. Cardiovasc. Pharmacol.202178336137110.1097/FJC.000000000000106434074905
    [Google Scholar]
  147. ShiJ. LaiE.C.H. LiN. GuoW.X. XueJ. LauW.Y. WuM.C. ChengS.Q. Surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus.Ann. Surg. Oncol.20101782073208010.1245/s10434‑010‑0940‑420131013
    [Google Scholar]
  148. LvJ. ZhangL. DuW. LingG. ZhangP. Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus.J. Control. Release202234557258510.1016/j.jconrel.2022.03.04435346766
    [Google Scholar]
  149. MagantiK. RigolinV.H. SaranoM.E. BonowR.O. Valvular heart disease: Diagnosis and management.Mayo Clin. Proc.201085548350010.4065/mcp.2009.070620435842
    [Google Scholar]
  150. CoffeyS. Roberts-ThomsonR. BrownA. CarapetisJ. ChenM. Enriquez-SaranoM. ZühlkeL. PrendergastB.D. Global epidemiology of valvular heart disease.Nat. Rev. Cardiol.2021181285386410.1038/s41569‑021‑00570‑z34172950
    [Google Scholar]
  151. IungB. VahanianA. Epidemiology of valvular heart disease in the adult.Nat. Rev. Cardiol.20118316217210.1038/nrcardio.2010.20221263455
    [Google Scholar]
  152. WuY. Vazquez-PradaK.X. LiuY. WhittakerA.K. ZhangR. TaH.T. Recent advances in the development of theranostic nanoparticles for cardiovascular diseases.Nanotheranostics20215449951410.7150/ntno.6273034367883
    [Google Scholar]
  153. TangJ. LobattoM.E. ReadJ.C. MieszawskaA.J. FayadZ.A. MulderW.J.M. Nanomedical theranostics in cardiovascular disease.Curr. Cardiovasc. Imaging Rep.201251192510.1007/s12410‑011‑9120‑622308199
    [Google Scholar]
  154. PalaR. PattnaikS. BusiS. NauliS.M. Nanomaterials as novel cardiovascular theranostics.Pharmaceutics202113334810.3390/pharmaceutics1303034833799932
    [Google Scholar]
  155. Rodríguez-RoisinR. KrowkaM.J. Hepatopulmonary syndrome - A liver-induced lung vascular disorder.N. Engl. J. Med.2008358222378238710.1056/NEJMra070718518509123
    [Google Scholar]
  156. LynchD.A. Lung disease related to collagen vascular disease.J. Thorac. Imaging200924429930910.1097/RTI.0b013e3181c1acec19935226
    [Google Scholar]
  157. DenesL. EntzL. JancsikV. Restenosis and therapy.Int. J. Vasc. Med.20122012140623622489270
    [Google Scholar]
  158. WeintraubW.S. The pathophysiology and burden of restenosis.Am. J. Cardiol.20071005S3S910.1016/j.amjcard.2007.06.00217719351
    [Google Scholar]
  159. KimM.S. DeanL.S. In-Stent Restenosis.Cardiovasc. Ther.201129319019810.1111/j.1755‑5922.2010.00155.x20406239
    [Google Scholar]
  160. FolkmanJ. Angiogenesis.Annu. Rev. Med.200657111810.1146/annurev.med.57.121304.13130616409133
    [Google Scholar]
  161. KaramyshevaA.F. Mechanisms of angiogenesis.Biochemistry200873775176210.1134/S000629790807003118707583
    [Google Scholar]
  162. SengerD.R. DavisG.E. Angiogenesis.Cold Spring Harb. Perspect. Biol.201138a00509010.1101/cshperspect.a00509021807843
    [Google Scholar]
  163. JonderianA. MaaloufR. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes.Front. Pharmacol.2016745810.3389/fphar.2016.0045827999542
    [Google Scholar]
  164. JohnsonB. TolandB. ChokshiR. MochalinV. KoutzakiS. PolyakB. Magnetically responsive paclitaxel-loaded biodegradable nanoparticles for treatment of vascular disease: Preparation, characterization and in vitro evaluation of anti-proliferative potential.Curr. Drug Deliv.20107426327310.2174/15672011079336062120695837
    [Google Scholar]
  165. WangS. WangR. MengN. GuoH. WuS. WangX. LiJ. WangH. JiangK. XieC. LiuY. WangH. LuW. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy.J. Control. Release2020328788610.1016/j.jconrel.2020.08.03032853731
    [Google Scholar]
  166. HuC. LuoR. WangY. Heart valves cross-linked with erythrocyte membrane drug-loaded nanoparticles as a biomimetic strategy for anti-coagulation, anti-inflammation, anti-calcification, and endothelialization.ACS Appl. Mater. Interfaces20201237411134112610.1021/acsami.0c1268832833422
    [Google Scholar]
  167. KuriakoseA.E. PandeyN. ShanD. BanerjeeS. YangJ. NguyenK.T. Characterization of photoluminescent polylactone-based nanoparticles for their applications in cardiovascular diseases.Front. Bioeng. Biotechnol.2019735310.3389/fbioe.2019.0035331824940
    [Google Scholar]
  168. WangF. DengY. WangJ. YuL. DingF. LianW. LiuQ. LinX. The PLGA nanoparticles for sustainable release of CGRP to ameliorate the inflammatory and vascular disorders in the lung of CGRP-deficient rats.Drug Deliv.202128186587210.1080/10717544.2021.190202133960246
    [Google Scholar]
  169. Cohen-SelaE. TeitlboimS. ChornyM. KoroukhovN. DanenbergH.D. GaoJ. GolombG. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: Formulations of mithramycin and bioactivity.J. Pharm. Sci.20099841452146210.1002/jps.2152718704956
    [Google Scholar]
  170. LomisN. GaudreaultF. MalhotraM. WestfallS. Shum-TimD. PrakashS. Novel milrinone nanoformulation for use in cardiovascular diseases: Preparation and in vitro characterization.Mol. Pharm.20181572489250210.1021/acs.molpharmaceut.7b0036028837343
    [Google Scholar]
  171. ShaatF. PavaloiuR.D. SalceanuD.C. HlevcaC. NechiforG. Evaluation of AML-VAL nanoparticles as combined therapy in cardiovascular disease.Mater. Plast.201855329930210.37358/MP.18.3.5017
    [Google Scholar]
  172. MarwahM.K. ShehzadS. ShokrH. SacharczukJ. WangK. AhmadS. Sanchez-ArangurenL. Novel controlled-release polylactic-co-glycolic acid (PLGA) nanoparticles for sodium thiosulphate, a hydrogen sulphide donor, retains pro-angiogenic potential of hydrogen sulphide.J. Exp. Nanosci.202217119721310.1080/17458080.2022.2060963
    [Google Scholar]
  173. WangY DuJ LiY YuJ. Fusion cell membrane modified bionic targeted drug-loaded nanoparticles for heart failure treatment as well as preparation method and application of fusion cell membrane modified bionic targeted drug-loaded nanoparticles.Patent CN1113749502023
  174. SunGe J Application of macrophage membrane coated PCOD585-containing nanoparticles in myocardial ischemia reperfusion injury.Patent CN1162705332023
  175. FanC WuX YangJ Application of PLGA nanoparticles of CHIR99021 and FGF1 in preparation of medicine for treating ischemic heart disease.Patent CN1112494482020
  176. PeregoP PalomboD FerrariPF CampardelliR PratesiG Polymeric immuno-nanoparticles for targeted therapy and diagnosis of atherosclerosis.Patent WO20230674882023
  177. GuX ChenJ TanJ Beta-galactosidase fluorescent probe nanoparticles as well as preparation method and application thereof.Patent CN1117733942020
  178. LiuX ShenY FangF NiY YuH. Rapamycin-loaded CTSK responsive nanoparticles, preparation method, application and pharmaceutical composition.Patent CN1131012792021
  179. WangG WangY WuW Erythrocyte membrane-encapsulated rapamycin nanoparticle and preparation method and application thereof.Patent CN1111847002020
  180. Dalla-BonaA GesslerT RajkumarS SavaiPS SchermulyR SeegerW Invention relating to nanoparticles containing taxanes for administration by inhalation.Patent WO20190484242019
  181. GaoM WangY LianX YuY LiH HaoC LiuR LiQ SongW ChenY. PLGA-PEG nano-particles applied to transplanted veins and preparation method of PLGA-PEG nano-particles.Patent CN1172819602023
  182. LiuY XuL LiuX YangX LiZ Nano-preparation capable of being locally delivered and used for inhibiting radiofrequency ablation cardiac tissue inflammation and preparation method and application of nano-preparation.Patent CN1116170342020
  183. PeiJ ZhuC FanY ZhangJ LiX Blood vessel modified by receptor erythrocyte membrane coated drug-loaded nanoparticles and preparation method thereof.Patent CN1162121162023
  184. ZhangH PeiY ZhuL HouL ZhangH ZhangZ Preparation method and application of shear-responsive nano drug delivery system.Patent CN1118405272020
  185. YanS. ZhaoP. YuT. GuN. Current applications and future prospects of nanotechnology in cancer immunotherapy.Cancer Biol. Med.201916348749710.20892/j.issn.2095‑3941.2018.049331565479
    [Google Scholar]
  186. SharmaS SinghA Nanotechnology based targeted drug delivery: Current status and future prospects for drug development.Drug Discovery and Development - Present and Future201142746310.5772/28902
    [Google Scholar]
  187. TonbulH. ÇapanY. Hybrid PLGA nanoparticles as advanced drug delivery and theranostic applications.Nanoparticles for Drug Delivery20231417431
    [Google Scholar]
  188. SathyamoorthyN DhanarajuMD Shielding therapeutic drug carriers from the mononuclear phagocyte system: A review.Crit. Rev. Ther. Drug Carrier Syst.201633648956710.1615/CritRevTherDrugCarrierSyst.2016012303
    [Google Scholar]
  189. KimD.H. MartinD.C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery.Biomaterials200627153031303710.1016/j.biomaterials.2005.12.02116443270
    [Google Scholar]
  190. NicoleteR. SantosD.F. FaccioliL.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response.Int. Immunopharmacol.201111101557156310.1016/j.intimp.2011.05.01421621649
    [Google Scholar]
  191. LimY.W. TanW.S. HoK.L. MariatulqabtiahA.R. Abu KasimN.H. Abd RahmanN. WongT.W. CheeC.F. Challenges and complications of poly (lactic-co-glycolic acid)-based long-acting drug product development.Pharmaceutics202214361410.3390/pharmaceutics1403061435335988
    [Google Scholar]
  192. WangY. QinB. XiaG. ChoiS.H. FDA’s poly (lactic-co-glycolic acid) research program and regulatory outcomes.AAPS J.20212349210.1208/s12248‑021‑00611‑y34189655
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128361869250409171305
Loading
/content/journals/cpd/10.2174/0113816128361869250409171305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test