Skip to content
2000
Volume 31, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

. , a well-established traditional Chinese medicine with potent pharmacological effects against cancer, lacks clarity regarding its mechanism of action.

Objective

To elucidate the bioactive components in . and to elucidate their potential anticancer mechanisms.

Methods

Firstly, the chemical composition of was characterized using UPLC-Q-Exactive Orbitrap-MS/MS technique. Subsequently, bioinformatics-related techniques were employed to elucidate the bioactive components and potential mechanisms of anti-tumor based on the identified chemical constituents. Finally, molecular dynamics simulation was conducted to validate the obtained results.

Results

Our findings revealed the characterization of 226 constituents from . including 30 flavonoids, 27 carbohydrates and glycosides, 26 amino acids, peptides and their derivatives, 18 phenylpropanoids, 13terpenes, 12 phenols, 6 organic acids and its derivatives, 4 alkaloids, . Subsequently, 195 key tumor-related active compounds were identified and established in the Drug-Compound-Target-Disease network. The PPI network screened out 85 key targets (TP53, STAT3, EGFR, GAPDH, BCL2, AKT1, CASP3, mTOR, JUN, and TNF) in tumors. Furthermore, functional enrichment analyses using GO and KEGG pathways highlighted the involvement of PI3K-Akt signaling pathways in . 's anti-tumor effects. Finally, the top ten significant bioactive constituents were selected as key targets for molecular docking studies which revealed Alpinetin, Galangin, and 4',5-Dihydroxyflavone as potential core compounds targeting mTOR, EGFR, and AKT1 respectively; these complexes were further assessed for stability through MD simulations.

Conclusion

This study provides insights into the potential active compounds, target proteins, and signaling pathways underlying the clinical application of . in treating tumors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365808250413155927
2025-05-05
2025-09-27
Loading full text...

Full text loading...

References

  1. YangS. WuS. DaiW. Tetramethylpyrazine: A review of its antitumor potential and mechanisms.Front. Pharmacol.20211276433110.3389/fphar.2021.764331 34975475
    [Google Scholar]
  2. LiuY. WuW. CaiC. ZhangH. ShenH. HanY. Patient-derived xenograft models in cancer therapy: Technologies and applications.Signal Transduct. Target. Ther.20238116010.1038/s41392‑023‑01419‑2 37045827
    [Google Scholar]
  3. YangJ. ShiX. KuangY. Cell-nanocarrier drug delivery system: A promising strategy for cancer therapy.Drug Deliv. Transl. Res.202414358159610.1007/s13346‑023‑01429‑1 37721694
    [Google Scholar]
  4. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.4661 30570109
    [Google Scholar]
  5. MoradaliM.F. MostafaviH. GhodsS. HedjaroudeG.A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi).Int. Immunopharmacol.20077670172410.1016/j.intimp.2007.01.008 17466905
    [Google Scholar]
  6. PacheR.A. CéolA. AloyP. NetAligner--a network alignment server to compare complexes, pathways and whole interactomes.Nucl Aci Res201240W157-6110.1093/nar/gks446 22618871
    [Google Scholar]
  7. MencherS.K. WangL.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue).BMC Clin. Pharmacol.200551310.1186/1472‑6904‑5‑3 15854222
    [Google Scholar]
  8. NiB. XueK. WangJ. Integrating Chinese medicine into mainstream cancer therapies: A promising future.Front. Oncol.202414141237010.3389/fonc.2024.1412370 38957318
    [Google Scholar]
  9. WangK. ChenQ. ShaoY. Anticancer activities of TCM and their active components against tumor metastasis.Biomed. Pharmacother.202113311104410.1016/j.biopha.2020.111044 33378952
    [Google Scholar]
  10. ChenH. TianT. MiaoH. ZhaoY.Y. Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: A review.Fitoterapia201611362610.1016/j.fitote.2016.06.009 27343366
    [Google Scholar]
  11. ZhouL.W. Ghobad-NejhadM. TianX-M. WangY-F. WuF. Current status of ‘Sanghuang’ as a group of medicinal mushrooms and their perspective in industry development.Food Rev. Int.202238458960710.1080/87559129.2020.1740245
    [Google Scholar]
  12. LuJ. SuM. ZhouX. LiD. NiuX. WangY. Research progress of bioactive components in Sanghuangporus spp.Molecules2024296119510.3390/molecules29061195 38542832
    [Google Scholar]
  13. ZhuX. GuoR. SuX. Immune-enhancing activity of polysaccharides and flavonoids derived from Phellinus igniarius YASH1.Front. Pharmacol.202314112460710.3389/fphar.2023.1124607 37180713
    [Google Scholar]
  14. SuabjakyongP. NishimuraK. ToidaT. Van GriensvenL.J.L.D. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7).Food Funct.2015682834284410.1039/C5FO00491H 26190688
    [Google Scholar]
  15. ZhengN. MingY. ChuJ. Optimization of extraction process and the antioxidant activity of phenolics from Sanghuangporus baumii.Molecules20212613385010.3390/molecules26133850 34202632
    [Google Scholar]
  16. ZuoK. TangK. LiangY. Purification and antioxidant and anti‐Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola.J. Sci. Food Agric.202110131009102010.1002/jsfa.10709 32767366
    [Google Scholar]
  17. LinW.C. DengJ-S. HuangS-S. WuS-H. LinH-Y. HuangG-J. Evaluation of antioxidant, anti-inflammatory and anti-proliferative activities of ethanol extracts from different varieties of Sanghuang species.RSC Advances20177137780778810.1039/C6RA27198G
    [Google Scholar]
  18. ChengJ. SongJ. WeiH. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia.Int. J. Biol. Macromol.20201643305331410.1016/j.ijbiomac.2020.08.202 32871118
    [Google Scholar]
  19. HuX. GanesanK. KhanH. XuB. Critical reviews on anti-cancer effects of edible and medicinal mushroom Phellinus linteus and its molecular mechanisms.Food Rev. Int.20244041118113710.1080/87559129.2023.2212036
    [Google Scholar]
  20. ZhuT. GuoJ. CollinsL. Phellinus linteus activates different pathways to induce apoptosis in prostate cancer cells.Br. J. Cancer200796458359010.1038/sj.bjc.6603595 17262078
    [Google Scholar]
  21. WangF.F. ShiC. YangY. FangY. ShengL. LiN. Medicinal mushroom Phellinus igniarius induced cell apoptosis in gastric cancer SGC-7901 through a mitochondria-dependent pathway.Biomed. Pharmacother.2018102182510.1016/j.biopha.2018.03.038 29549725
    [Google Scholar]
  22. ChenF. GongM. WengD. Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma.Cancer Immunol. Immunother.20247311810.1007/s00262‑023‑03592‑3 38240856
    [Google Scholar]
  23. LiY. WangS. WangH. DaiL. ZhangJ. An extended strategy of “Recursive Tree” for characterization of drug metabolites in vivo and in vitro and actional mechanism study based on network Pharmacology: Formononetin as a study case.Arab. J. Chem.202417510576110.1016/j.arabjc.2024.105761
    [Google Scholar]
  24. XiongP. QinS. LiK. Identification of the tannins in traditional chinese medicine paeoniae Radix alba by UHPLC-Q-exactive orbitrap MS.Arab. J. Chem.2021141110339810.1016/j.arabjc.2021.103398
    [Google Scholar]
  25. YinZ. HuaX. LuM. Integrated network pharmacology and metabolomics to dissect the mechanisms of naringin for treating cervical cancer.Comb. Chem. High Throughput Screen.202427575476410.2174/1386207326666230504124030 37143280
    [Google Scholar]
  26. WangZ.Y. ChuF.H. GuN.N. Integrated strategy of LC-MS and network pharmacology for predicting active constituents and pharmacological mechanisms of Ranunculus japonicus Thunb. for treating rheumatoid arthritis.J. Ethnopharmacol.202127111381810.1016/j.jep.2021.113818 33465444
    [Google Scholar]
  27. PoornimaP. KumarJ.D. ZhaoQ. BlunderM. EfferthT. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.Pharmacol. Res.201611129030210.1016/j.phrs.2016.06.018 27329331
    [Google Scholar]
  28. GuA. LiJ. WuJ-A. LiM-Y. LiuY. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation.Curr. Res. Biotechnol.2024710022810.1016/j.crbiot.2024.100228
    [Google Scholar]
  29. WangY. XuT. ChenX. Network pharmacology and molecular docking approach to investigate the mechanism of a Chinese herbal formulation Yougui pills against steroid-related osteonecrosis of the femoral head.Arab. J. Chem.202417310560910.1016/j.arabjc.2024.105609
    [Google Scholar]
  30. WangY. YuanY. WangW. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.105454 35367781
    [Google Scholar]
  31. LiuJ. RongQ. ZhangC. The mechanism of mori folium and eucommiae cortex against cyclophosphamide-induced immunosuppression integrating network pharmacology, molecular docking, molecular dynamics simulations, and experimental validation.Metabolites20231311115110.3390/metabo13111151 37999247
    [Google Scholar]
  32. Cerón-CarrascoJ.P. When virtual screening yields inactive drugs: Dealing with false theoretical friends.ChemMedChem20221716e20220027810.1002/cmdc.202200278 35726731
    [Google Scholar]
  33. PállS. ZhmurovA. BauerP. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS.J. Chem. Phys.20201531313411010.1063/5.0018516 33032406
    [Google Scholar]
  34. YangC. LiJ. LuoM. ZhouW. XingJ. YangY. Unveiling the molecular mechanisms of Dendrobium officinale polysaccharides on intestinal immunity: An integrated study of network molecular and in vivo experiments.Int. J. Biol. Macromol.2024276Pt 213385910.1016/j.ijbiomac.2024.133859 39009260
    [Google Scholar]
  35. SunF. LiuJ. XuJ. TariqA. WuY. LiL. Molecular mechanism of Yi-Qi-Yang-Yin-Ye against obesity in rats using network pharmacology, molecular docking, and molecular dynamics simulations.Arab. J. Chem.202417110539010.1016/j.arabjc.2023.105390
    [Google Scholar]
  36. LiX. MiaoF. XinR. Combining network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification to examine the efficacy and immunoregulation mechanism of FHB granules on vitiligo.Front. Immunol.202314119482310.3389/fimmu.2023.1194823 37575231
    [Google Scholar]
  37. TedasenA. ChiabchalardA. TencomnaoT. Anti-melanogenic activity of ethanolic extract from Garcinia atroviridis fruits using in vitro experiments, network pharmacology, molecular docking, and molecular dynamics simulation.Antioxidants202413671310.3390/antiox13060713 38929152
    [Google Scholar]
  38. LiuJ SunT LiuS Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation.Comput Biol Med.2022151Pt A10629810.1016/j.compbiomed.2022.10629836403355
    [Google Scholar]
  39. LiJ. WangD. HaoX. Exploring the high-quality ingredients and mechanisms of Da Chuanxiong Formula in the treatment of neuropathic pain based on network pharmacology, molecular docking, and molecular dynamics simulation.Biomed. Pharmacother.202417811719510.1016/j.biopha.2024.117195 39068852
    [Google Scholar]
  40. KimS. ChenJ. ChengT. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  41. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  42. KnoxC. WilsonM. KlingerC.M. DrugBank 6.0: The drugbank knowledgebase for 2024.Nucleic Acids Res.202352D1D1265D127510.1093/nar/gkad976 37953279
    [Google Scholar]
  43. DainaA. MichielinO. ZoeteV. Swiss Target Prediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz382 31106366
    [Google Scholar]
  44. AyoubP.G. GensheimerJ. LathropL. Lentiviral vectors for precise expression to treat X-linked lymphoproliferative disease.Mol. Ther. Methods Clin. Dev.202432410132310.1016/j.omtm.2024.101323 39309261
    [Google Scholar]
  45. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  46. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  47. ShermanB.T. HaoM. QiuJ. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216-2110.1093/nar/gkac194 35325185
    [Google Scholar]
  48. LuC. WuC. GhoreishiD. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  49. ZengY. XiaoS. YangL. Systematic analysis of the mechanism of Xiaochaihu decoction in hepatitis B treatment via network pharmacology and molecular docking.Comput. Biol. Med.202113810489410.1016/j.compbiomed.2021.104894 34607274
    [Google Scholar]
  50. JohnK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking and Computing. Tampa, FL, USA, November 11-1720061610.1145/1188455.1188544
    [Google Scholar]
  51. WilliamL. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  52. NagyK. RedeuilK. WilliamsonG. First identification of dimethoxycinnamic acids in human plasma after coffee intake by liquid chromatography–mass spectrometry.J. Chromatogr. A20111218349149710.1016/j.chroma.2010.11.076 21167490
    [Google Scholar]
  53. Domínguez-LópezI. Lozano-CastellónJ. Vallverdú-QueraltA. Urinary metabolomics of phenolic compounds reveals biomarkers of type-2 diabetes within the PREDIMED trial.Biomed. Pharmacother.202316211470310.1016/j.biopha.2023.114703 37062219
    [Google Scholar]
  54. dos SantosG.S. de Almeida VeigaA. CarlottoJ. MelloR.G. SerratoR.V. de SouzaL.M. Identification and fingerprint analysis of novel multi-isomeric Lycibarbarspermidines and Lycibarbarspermines from Lycium barbarum L. by liquid chromatography with high-resolution mass spectrometry (UHPLC-Orbitrap).J. Food Compos. Anal.202210510419410.1016/j.jfca.2021.104194
    [Google Scholar]
  55. ZhengX. DengL. BakerE.S. IbrahimY.M. PetyukV.A. SmithR.D. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.Chem. Commun. (Camb.)201753567913791610.1039/C7CC03321D 28654112
    [Google Scholar]
  56. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  57. LuZ. ShenL. ZhangH. Effect of TP53 mutation on antitumor immunity and responsiveness to immunotherapy in colorectal cancer.J. Clin. Oncol.20203815Suppl.e1601410.1200/JCO.2020.38.15_suppl.e16014
    [Google Scholar]
  58. WuS. ZhangQ. ZhangF. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity.Nat. Cell Biol.20192181027104010.1038/s41556‑019‑0352‑z 31332347
    [Google Scholar]
  59. ZhangG. ZengX. ZhangR. Dioscin suppresses hepatocellular carcinoma tumor growth by inducing apoptosis and regulation of TP53, BAX, BCL2 and cleaved CASP3.Phytomedicine201623121329133610.1016/j.phymed.2016.07.003 27765352
    [Google Scholar]
  60. TangH. DilimulatiD. YangZ. Chemically engineered mTOR-nanoparticle blockers enhance antitumour efficacy.EBioMedicine202410310509910.1016/j.ebiom.2024.105099 38604089
    [Google Scholar]
  61. HusseinM.S. LiQ. MaoR. PengY. HeY. TCR T cells overexpressing c-Jun have better functionality with improved tumor infiltration and persistence in hepatocellular carcinoma.Front. Immunol.202314111477010.3389/fimmu.2023.1114770 37215108
    [Google Scholar]
  62. JiangY. ChenJ. BiE. TNF-α enhances Th9 cell differentiation and antitumor immunity via TNFR2-dependent pathways.J. Immunother. Cancer2019712810.1186/s40425‑018‑0494‑8 30717817
    [Google Scholar]
  63. JiaD. WangF. LuY. Fusion of an EGFR-antagonistic affibody enhances the anti-tumor effect of TRAIL to EGFR positive tumors.Int. J. Pharm.202262012174610.1016/j.ijpharm.2022.121746 35427745
    [Google Scholar]
  64. RongH. SharmaK. CsibiF. Mechanisms of the anti-tumor activity of STAT3 degraders in lymphoma.Blood2020136Suppl. 14210.1182/blood‑2020‑137778
    [Google Scholar]
  65. WangX. FuS.Q. YuanX. A GAPDH serotonylation system couples CD8+ T cell glycolytic metabolism to antitumor immunity.Mol. Cell2024844760775.e710.1016/j.molcel.2023.12.015 38215751
    [Google Scholar]
  66. Selective inhibition of BCL2 shows antitumor effects in lung cancer.Cancer Discov.201557OF2110.1158/2159‑8290.CD‑RW2015‑102 26045015
    [Google Scholar]
  67. BraybrookeJ. BradleyR. GrayR. Anthracycline-containing and taxane-containing chemotherapy for early-stage operable breast cancer: A patient-level meta-analysis of 100 000 women from 86 randomised trials.Lancet2023401103841277129210.1016/S0140‑6736(23)00285‑4 37061269
    [Google Scholar]
  68. LiuM.M. ZengP. LiX.T. ShiL.G. Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii.Int. J. Biol. Macromol.2016911199120510.1016/j.ijbiomac.2016.06.086 27370747
    [Google Scholar]
  69. FanY. MaZ. ZhaoL. Anti-tumor activities and mechanisms of traditional chinese medicines formulas: A review.Biomed. Pharmacother.202013211082010.1016/j.biopha.2020.110820 33035836
    [Google Scholar]
  70. WangS. LongS. DengZ. WuW. Positive role of chinese herbal medicine in cancer immune regulation.Am. J. Chin. Med.20204871577159210.1142/S0192415X20500780 33202152
    [Google Scholar]
  71. KhanI. HuangG. LiX. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in Apc mice.Pharmacol. Res.201914810444810.1016/j.phrs.2019.104448 31499195
    [Google Scholar]
  72. ZhongL. ZhouZ. ZhangC. FeiH. BaiY. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway.Pharmacogn. Mag.2015114469069710.4103/0973‑1296.165548 26600712
    [Google Scholar]
  73. IkekawaT. NakanishiM. UeharaN. ChiharaG. FukuokaF. Antitumor action of some Basidiomycetes, especially Phllinus linteus.Gann1968592155157 5723060
    [Google Scholar]
  74. KimB.C. ChoiJ.W. HongH.Y. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages.J. Ethnopharmacol.2006106336437110.1016/j.jep.2006.01.009 16488096
    [Google Scholar]
  75. MeiY. ZhuH. HuQ. A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis.Carbohydr. Polym.2015124909710.1016/j.carbpol.2015.02.009 25839798
    [Google Scholar]
  76. WangZ. WangC. QuanY. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro.Carbohydr. Polym.20149911011510.1016/j.carbpol.2013.08.073 24274486
    [Google Scholar]
  77. MaJ.X. CaiC.S. LiuJ.J. GaoS. ZhaoG.Z. HeX.W. In vitro antibacterial and antitumor activity of total triterpenoids from a medicinal mushroom sanghuangporus sanghuang (Agaricomycetes) in liquid fermentation culture.Int. J. Med. Mushrooms2021237273910.1615/IntJMedMushrooms.2021038916 34375516
    [Google Scholar]
  78. QiuP. LiuJ. ZhaoL. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway.Phytomedicine20229615385210.1016/j.phymed.2021.153852 35026508
    [Google Scholar]
  79. DongY. HeY. YuZ. Metabolomic investigation of rat serum following oral administration of the willow bracket medicinal mushroom, Phellinus igniarius (agaricomycetes), by UPLC-HDMS.Int. J. Med. Mushrooms201618869971110.1615/IntJMedMushrooms.v18.i8.60 27910788
    [Google Scholar]
  80. DongY. QiuP. ZhuR. A combined phytochemistry and network pharmacology approach to reveal the potential antitumor effective substances and mechanism of Phellinus igniarius.Front. Pharmacol.20191026610.3389/fphar.2019.00266 30941044
    [Google Scholar]
  81. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  82. QianB. CheL. DuZ.B. Protein phosphatase 2A-B55β mediated mitochondrial p-GPX4 dephosphorylation promoted sorafenib-induced ferroptosis in hepatocellular carcinoma via regulating p53 retrograde signaling.Theranostics202313124288430210.7150/thno.82132 37554285
    [Google Scholar]
  83. TangY. FangG. GuoF. Selective inhibition of STRN3-containing PP2A phosphatase restores hippo tumor-suppressor activity in gastric cancer.Cancer Cell2020381115128.e910.1016/j.ccell.2020.05.019 32589942
    [Google Scholar]
  84. ZhouB. SunC. LiN. Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways.Int. J. Oncol.20164852087209710.3892/ijo.2016.3442 26983899
    [Google Scholar]
  85. LuoX. DongJ. HeX. MiR-155-5p exerts tumor-suppressing functions in Wilms tumor by targeting IGF2 via the PI3K signaling pathway.Biomed. Pharmacother.202012510988010.1016/j.biopha.2020.109880 32004974
    [Google Scholar]
  86. XuZ. HanX. OuD. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy.Appl. Microbiol. Biotechnol.2020104257558710.1007/s00253‑019‑10257‑8 31832711
    [Google Scholar]
  87. GuoY. JiangL. LuoS. Network analysis and basic experiments on the inhibition of renal cancer proliferation and migration by alpinetin through PI3K/AKT/mTOR pathway.Curr. Mol. Med.202424113414410.2174/1566524023666230522145226 37221689
    [Google Scholar]
  88. ZhaoX. ZhangS. LiuD. YangM. WeiJ. Analysis of flavonoids in Dalbergia odorifera by ultra-performance liquid chromatography with tandem mass spectrometry.Molecules202025238910.3390/molecules25020389 31963485
    [Google Scholar]
  89. HouS. YuanQ. ChengC. ZhangZ. GuoB. YuanX. Alpinetin delays high‐fat diet‐aggravated lung carcinogenesis.Basic Clin. Pharmacol. Toxicol.2021128341041810.1111/bcpt.13540 33259132
    [Google Scholar]
  90. CaoZ. MaJ. ShenX. Alpinetin suppresses cell proliferation and metastasis in osteosarcoma by inhibiting PI3K/AKT and ERK pathways.Qual. Assur. Saf. Crops Foods202214211211810.15586/qas.v14i2.1084
    [Google Scholar]
  91. OhS.B. HwangC.J. SongS.Y. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3.Cancer Lett.201435319510310.1016/j.canlet.2014.07.007 25083589
    [Google Scholar]
  92. EkowatiJ. TejoB.A. MaulanaS. Potential utilization of phenolic acid compounds as anti-inflammatory agents through TNF-α convertase inhibition mechanisms: A network pharmacology, docking, and molecular dynamics approach.ACS Omega2023849468514686810.1021/acsomega.3c06450 38107968
    [Google Scholar]
  93. Hernández BorreroL.J. El-DeiryW.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting.Biochim. Biophys. Acta Rev. Cancer20211876118855610.1016/j.bbcan.2021.188556 33932560
    [Google Scholar]
  94. BiegingK.T. MelloS.S. AttardiL.D. Unravelling mechanisms of p53-mediated tumour suppression.Nat. Rev. Cancer201414535937010.1038/nrc3711 24739573
    [Google Scholar]
  95. HernandezJ. GoycooleaF. QuinteroJ. Sonoran propolis: Chemical composition and antiproliferative activity on cancer cell lines.Planta Med.200773141469147410.1055/s‑2007‑990244 17948188
    [Google Scholar]
  96. ShiH. YangH. ZhangX. YuL.L. Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis.J. Agric. Food Chem.20126050124031241010.1021/jf3042775 23176258
    [Google Scholar]
  97. XuZ. JiR. ZhaX. ZhaoH. ZhouS. The aqueous extracts of Ageratum conyzoides inhibit inflammation by suppressing NLRP3 inflammasome activation.J. Ethnopharmacol.202330911635310.1016/j.jep.2023.116353 36907476
    [Google Scholar]
  98. RunkleK.B. KharbandaA. StypulkowskiE. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling.Mol. Cell201662338539610.1016/j.molcel.2016.04.003 27153536
    [Google Scholar]
  99. ParkM.H. HongJ.E. HwangC.J. Synergistic inhibitory effect of cetuximab and tectochrysin on human colon cancer cell growth via inhibition of EGFR signal.Arch. Pharm. Res.201639572172910.1007/s12272‑016‑0735‑7 27025376
    [Google Scholar]
  100. WangY. LinB. LiH. Galangin suppresses hepatocellular carcinoma cell proliferation by reversing the Warburg effect.Biomed. Pharmacother.2017951295130010.1016/j.biopha.2017.09.056 28938520
    [Google Scholar]
  101. XuY.X. WangB. ZhaoX.H. In vitro effects and the related molecular mechanism of galangin and quercetin on human gastric cancer cell line (SGC-7901).Pak. J. Pharm. Sci.201730412791287 29039326
    [Google Scholar]
  102. CatchpoleO. MitchellK. BloorS. DavisP. SuddesA. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.Fitoterapia201510616717410.1016/j.fitote.2015.09.004 26347954
    [Google Scholar]
  103. DevadossD. RamarM. ChinnasamyA. Galangin, a dietary flavonol inhibits tumor initiation during experimental pulmonary tumorigenesis by modulating xenobiotic enzymes and antioxidant status.Arch. Pharm. Res.201841326527510.1007/s12272‑014‑0330‑8 24497035
    [Google Scholar]
  104. ShuY.S. TaoW. MiaoQ.B. LuS.C. ZhuY.B. Galangin dampens mice lipopolysaccharide-induced acute lung injury.Inflammation20143751661166810.1007/s10753‑014‑9894‑1 24743919
    [Google Scholar]
  105. LuoW. DengJ. HeJ. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes.J. Cell. Mol. Med.202327141959197410.1111/jcmm.17787 37257051
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365808250413155927
Loading
/content/journals/cpd/10.2174/0113816128365808250413155927
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test