Skip to content
2000
Volume 31, Issue 19
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Patients with hepatic encephalopathy (HE) have many triggers and a high mortality rate. The protective effect of existing therapeutic drugs on the liver is weak. We found that Danggui Shaoyao Powder can improve the symptoms of HE and may have a better liver protection effect. And the mechanism of it is unclear.

Objective

The research explores the mechanism of Danggui Shaoyao Powder for the treatment of HE through network pharmacology, molecular docking and molecular dynamics.

Methods

Targets of Danggui Shaoyao Powder were screened from Traditional Chinese Medicine System Pharmacology Platform (TCMSP), SwissTargetPrediction, and Uniport. GeneCards was used to gain targets of HE. Further, core targets and ingredients were screened by protein-protein interaction network (PPI) and herbs-compounds-targets network. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were completed to screen relative sites and signaling pathways. Molecular docking and dynamics were used to show the stability of ligand-receptor complexes.

Results

IL6, SRC and kaempferol, beta-sitosterol were screened as the top two core targets and ingredients. Dendrites, dendritic trees, and membrane sides were defined as the main sites of action. Core signaling pathways were screened such as: PI3K-Akt and MAPK. Molecular docking shows well-defined binding sites and the stability of the binding is demonstrated by molecular dynamics.

Conclusion

Through this study, Danggui Shaoyao Powder may act on IL6, SRC, and other targets through ingredients such as kaempferol and beat-sitosterol and regulate signaling pathways such as PI3K-Akt, MAPK and NF-κB to the treatment of HE.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128363445241218062155
2025-01-20
2025-12-07
Loading full text...

Full text loading...

References

  1. HuangD.Q. TerraultN.A. TackeF. GluudL.L. ArreseM. BugianesiE. LoombaR. Global epidemiology of cirrhosis: Aetiology, trends and predictions.Nat. Rev. Gastroenterol. Hepatol.202320638839810.1038/s41575‑023‑00759‑236977794
    [Google Scholar]
  2. TasnimS HazamR DaveD Reversible decerebrate posture in hepatic encephalopathy: Case report and literature review.Cureus2022142e2196010.7759/cureus.219602
    [Google Scholar]
  3. MansourS.Z. El-MarakbyS.M. MoawedF.S.M. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation.J. Photochem. Photobiol. B2017172202710.1016/j.jphotobiol.2017.05.00528505498
    [Google Scholar]
  4. VaqueroJ. PolsonJ. ChungC. HelenowskiI. SchiodtF.V. ReischJ. LeeW.M. BleiA.T. Infection and the progression of hepatic encephalopathy in acute liver failure.Gastroenterology2003125375576410.1016/S0016‑5085(03)01051‑512949721
    [Google Scholar]
  5. KlintmanD. LiX. SantenS. SchrammR. JeppssonB. ThorlaciusH. p38 mitogen-activated protein kinase-dependent chemokine production, leukocyte recruitment, and hepatocellular apoptosis in endotoxemic liver injury.Ann. Surg.2005242683083910.1097/01.sla.0000189132.86878.f716327493
    [Google Scholar]
  6. CorbalánR. Hernández-ViadelM. LlansolaM. MontoliuC. FelipoV. Chronic hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal transduction in brain.Neurochem. Int.2002412-310310810.1016/S0197‑0186(02)00030‑X12020610
    [Google Scholar]
  7. ChenL. ZhangL. HuaH. LiuL. MaoY. WangR. Interactions between toll‐like receptors signaling pathway and gut microbiota in host homeostasis.Immun. Inflamm. Dis.2024127e135610.1002/iid3.135639073297
    [Google Scholar]
  8. American Association for the Study of Liver Diseases European Association for the Study of the Liver Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European association for the study of the liver and the American association for the study of liver diseases.J. Hepatol.201461364265910.1016/j.jhep.2014.05.04225015420
    [Google Scholar]
  9. VilstrupH. AmodioP. BajajJ. CordobaJ. FerenciP. MullenK.D. WeissenbornK. WongP. Hepatic encephalopathy in chronic liver disease: 2014 Practice guideline by the American Association for the study of liver diseases and the European Association for the study of the liver.Hepatology201460271573510.1002/hep.2721025042402
    [Google Scholar]
  10. RahimiR.S. BrownK.A. FlammS.L. BrownR.S.Jr Overt hepatic encephalopathy: Current pharmacologic treatments and improving clinical outcomes.Am. J. Med.2021134111330133810.1016/j.amjmed.2021.06.00734242619
    [Google Scholar]
  11. KurtzC.B. MilletY.A. PuurunenM.K. PerreaultM. CharbonneauM.R. IsabellaV.M. KotulaJ.W. AntipovE. DagonY. DenneyW.S. WagnerD.A. WestK.A. DegarA.J. BrennanA.M. MillerP.F. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans.Sci. Transl. Med.201911475eaau797510.1126/scitranslmed.aau797530651324
    [Google Scholar]
  12. YupeiL. TingshuaiW. XiaopingL. Research progress of TCM improving neuroinflammation and prevent hepatic encephalopathy by regulating NF-κB signaling pathway.China J. Chin. Med.2023380816061613
    [Google Scholar]
  13. WanL. JiangJ.G. Protective effects of plant-derived flavonoids on hepatic injury.J. Funct. Foods20184428329110.1016/j.jff.2018.03.015
    [Google Scholar]
  14. XuG.B. XiaoY.H. ZhangQ.Y. ZhouM. LiaoS.G. Hepatoprotective natural triterpenoids.Eur. J. Med. Chem.201814569171610.1016/j.ejmech.2018.01.01129353722
    [Google Scholar]
  15. LiN. YuY. CuiX. LiuQ. XiongH. High‐throughput UPLC‐Q‐TOF‐MS/MS coupled with multivariable data processing approach for the rapid screening and characterization of chemical constituents and potential bioactive compounds from Danggui Shaoyao San.Biomed. Chromatogr.2022369e542010.1002/bmc.542035638160
    [Google Scholar]
  16. WuQ. ChenY. GuY. FangS. LiW. WangQ. FangJ. CaiC. Systems pharmacology-based approach to investigate the mechanisms of Danggui-Shaoyao-san prescription for treatment of Alzheimer’s disease.BMC Complement. Med. Ther.202020128210.1186/s12906‑020‑03066‑432948180
    [Google Scholar]
  17. LiuT. ZhangL. JooD. SunS-C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.20172119
    [Google Scholar]
  18. YinJ. LuJ. LeiP. HeM. HuangS. LvJ. ZhuY. LiuZ. JiangM. Danggui-Shaoyao-San improves gut microbia dysbiosis and hepatic lipid homeostasis in fructose-fed rats.Front. Pharmacol.20211267170810.3389/fphar.2021.67170834326769
    [Google Scholar]
  19. ZhaoY. ZhaoM. WangZ. ZhaoC. ZhangY. WangM. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl4-induced hepatic fibrosis.J. Ethnopharmacol.202431811687010.1016/j.jep.2023.116870
    [Google Scholar]
  20. WangC-Y. XuF. WangM-Y. XuanZ.H. HuS.Y. ZhouY. LuJ. Study on intervention effect of Danggui Shaoyao San on rats with cirrhotic ascites.J. Chin materia medica.201338687187423717970
    [Google Scholar]
  21. NoorF. AsifM. AshfaqU.A. QasimM. Tahir ul QamarM. Machine learning for synergistic network pharmacology: A comprehensive overview.Brief. Bioinform.2023243bbad12010.1093/bib/bbad12037031957
    [Google Scholar]
  22. LiuY. LiX. ChenC. DingN. MaS. YangM. Exploration of compatibility rules and discovery of active ingredients in TCM formulas by network pharmacology.Chin. Herb. Med.202416457258810.1016/j.chmed.2023.09.008
    [Google Scholar]
  23. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  24. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. Swiss target prediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku29324792161
    [Google Scholar]
  25. SafranM. Chalifa-CaspiV. ShmueliO. OlenderT. LapidotM. RosenN. ShmoishM. PeterY. GlusmanG. FeldmesserE. AdatoA. PeterI. KhenM. AtarotT. GronerY. LancetD. Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE.Nucleic Acids Res.200331114214610.1093/nar/gkg05012519968
    [Google Scholar]
  26. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database (Oxford)20102010baq02010.1093/database/baq02020689021
    [Google Scholar]
  27. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  28. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape string app: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b0070230450911
    [Google Scholar]
  29. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  30. YuanS. ChanH.C.S. HuZ. Using PyMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e129810.1002/wcms.1298
    [Google Scholar]
  31. FangC. LuoJ. FuS. The active mechanism of Caryophylliti Flos- Kaki Calyx on esophageal cancer based on network pharmacology and molecular docking.J. Tradit. Chin. Med. Sci.2020313315323
    [Google Scholar]
  32. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  33. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  34. LindahlE. HessB. van der SpoelD. GROMACS 3.0: A package for molecular simulation and trajectory analysis.J. Mol. Model.20017830631710.1007/s008940100045
    [Google Scholar]
  35. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  36. PronkS. PállS. SchulzR. LarssonP. BjelkmarP. ApostolovR. ShirtsM.R. SmithJ.C. KassonP.M. van der SpoelD. HessB. LindahlE. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics201329784585410.1093/bioinformatics/btt05523407358
    [Google Scholar]
  37. PallS AbrahamMJ KutznerC HessB LindahlE Tackling exascale software challenges in molecular dynamics simulations with GROMACS.Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014Stockholm, Sweden, 2015, pp. 3-210.1007/978‑3‑319‑15976‑8_1
    [Google Scholar]
  38. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  39. KimS. LeeJ. JoS. BrooksC.L.III LeeH.S. ImW. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.J. Comput. Chem.201738211879188610.1002/jcc.2482928497616
    [Google Scholar]
  40. MiyamotoS. KollmanP.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models.J. Comput. Chem.199213895296210.1002/jcc.540130805
    [Google Scholar]
  41. EssmannU. PereraL. BerkowitzM.L. DardenT. LeeH. PedersenL.G. A smooth particle mesh Ewald method.J. Chem. Phys.1995103198577859310.1063/1.470117
    [Google Scholar]
  42. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  43. LankaG. BegumD. BanerjeeS. AdhikariN. PY. GhoshB. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors.Comput. Biol. Med.202316610748110.1016/j.compbiomed.2023.10748137741229
    [Google Scholar]
  44. BanerjeeS. JanaS. JhaT. GhoshB. AdhikariN. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches.Comput. Biol. Chem.202411010805110.1016/j.compbiolchem.2024.10805138520883
    [Google Scholar]
  45. SuvarnaE. SetlurA.S. KC. MS. NiranjanV. Computational molecular perspectives on novel carbazole derivative as an anti-cancer molecule against CDK1 of breast and colorectal cancers via gene expression studies, novel two-way docking strategies, molecular mechanics and dynamics.Comput. Biol. Chem.202410810797910.1016/j.compbiolchem.2023.10797937989072
    [Google Scholar]
  46. SinghA. MunshiS. RaghavanV. Effect of external electric field stress on gliadin protein conformation.Proteomes201312253910.3390/proteomes102002528250397
    [Google Scholar]
  47. SrivastavaH.K. SastryG.N. Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives.J. Biomol. Struct. Dyn.201331552253710.1080/07391102.2012.70307122877232
    [Google Scholar]
  48. GolyshevV.M. PyshnyiD.V. LomzovA.A. Calculation of energy for RNA/RNA and DNA/RNA duplex formation by molecular dynamics simulation.Mol. Biol. (Mosk.)20215561030104434837707
    [Google Scholar]
  49. JanaS. BanerjeeS. BaidyaS.K. A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors.J. Biomol. Struct. Dyn.20231738165455
    [Google Scholar]
  50. BaidyaS.K. BanerjeeS. GhoshB. JhaT. AdhikariN. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: A ligand-based molecular modelling approach validated by molecular dynamics simulation analysis.SAR QSAR Environ. Res.202435866569210.1080/1062936X.2024.238982239193767
    [Google Scholar]
  51. PapaleoE. MereghettiP. FantucciP. GrandoriR. De GioiaL. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case.J. Mol. Graph. Model.200927888989910.1016/j.jmgm.2009.01.00619264523
    [Google Scholar]
  52. RaghavanS.S. IqbalS. AyyaduraiN. GunasekaranK. Insights in the structural understanding of amyloidogenicity and mutation-led conformational dynamics of amyloid beta (Aβ) through molecular dynamics simulations and principal component analysis.J. Biomol. Struct. Dyn.202240125577558710.1080/07391102.2021.187195533438527
    [Google Scholar]
  53. FanCZ Class of kNN-Type entropy estimators: Algorithm, convergence, and application to molecular modeling[Thesis] University of California San Diego2021
    [Google Scholar]
  54. BaidyaS.K. BanerjeeS. GhoshB. JhaT. AdhikariN. Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches.SAR QSAR Environ. Res.2023341080583010.1080/1062936X.2023.226184237850742
    [Google Scholar]
  55. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  56. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  57. AminS. AdhikariN. AgrawalR. JhaT. GayenS. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches.Lett. Drug Des. Discov.201714551552710.2174/1570180813666160916153017
    [Google Scholar]
  58. ClarkM. CramerR.D.III Van OpdenboschN. Validation of the general purpose tripos 5.2 force field.J. Comput. Chem.1989108982101210.1002/jcc.540100804
    [Google Scholar]
  59. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  60. PrašnikarE. LjubičM. PerdihA. BorišekJ. Machine learning heralding a new development phase in molecular dynamics simulations.Artif. Intell. Rev.202457410210.1007/s10462‑024‑10731‑4
    [Google Scholar]
  61. ŠponerJ. KreplM. BanášP. KührováP. ZgarbováM. JurečkaP. HavrilaM. OtyepkaM. How to understand atomistic molecular dynamics simulations of RNA and protein– RNA complexes?Wiley Interdiscip. Rev. RNA201783e140510.1002/wrna.140527863061
    [Google Scholar]
  62. KollmanP.A. MassovaI. ReyesC. KuhnB. HuoS. ChongL. LeeM. LeeT. DuanY. WangW. DoniniO. CieplakP. SrinivasanJ. CaseD.A. CheathamT.E.III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models.Acc. Chem. Res.2000331288989710.1021/ar000033j11123888
    [Google Scholar]
  63. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.103293625835573
    [Google Scholar]
  64. TachibanaT. KitamuraS. KatoM. MitsuiT. ShirasakaY. YamashitaS. SugiyamaY. Model analysis of the concentration-dependent permeability of P-gp substrates.Pharm. Res.201027344244610.1007/s11095‑009‑0026‑920135207
    [Google Scholar]
  65. SahaS. ButtariB. ProfumoE. SasoL. Macrotyloma uniflorum extract counteracts oxidative imbalance induced in vitro by sodium oxalate in the rat kidney: In silico prediction of quercetin and kaempferol superiority among fitocomponentsJ. Biol. Regul. Homeost. Agents202337739293940
    [Google Scholar]
  66. KoukouritakiS.B. ManroJ.R. MarshS.A. StevensJ.C. RettieA.E. McCarverD.G. HinesR.N. Developmental expression of human hepatic CYP2C9 and CYP2C19.J. Pharmacol. Exp. Ther.2004308396597410.1124/jpet.103.06013714634042
    [Google Scholar]
  67. KibbleH. ShawcrossD.L. The assessment and management of cirrhotic patients with encephalopathy.United European Gastroenterol. J.202412218719310.1002/ueg2.1253038180440
    [Google Scholar]
  68. ZhangC. WeiL. WangJ. SongW. Protective effects of modified Danggui Shaoyao San on con a-induced immunological liver injury in mice.Pharmacol. Clinic. Chin. Materia. Medica.20193561115
    [Google Scholar]
  69. KangS. TanakaT. NarazakiM. KishimotoT. Targeting interleukin-6 signaling in clinic.Immunity20195041007102310.1016/j.immuni.2019.03.02630995492
    [Google Scholar]
  70. ShrikiA. LantonT. SonnenblickA. Levkovitch-SianyO. EidelshteinD. AbramovitchR. RosenbergN. PappoO. ElgavishS. NevoY. SafadiR. PeledA. Rose-JohnS. GalunE. AxelrodJ.H. Multiple roles of IL6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis.Cancer Res.202181184766477710.1158/0008‑5472.CAN‑21‑032134117031
    [Google Scholar]
  71. ChouC.C. HuaK.T. ChenM.W. WuC.J. HsuC.H. WangJ.T. HsiaoM. WeiL.H. Discovery and characterization of a monoclonal antibody targeting a conformational epitope of IL-6/IL-6Rα to inhibit IL-6/ IL-6Rα /gp130 hexameric signaling complex formation.MAbs2022141202967510.1080/19420862.2022.202967535133941
    [Google Scholar]
  72. CasellaG. GarzettiL. GattaA.T. FinardiA. MaiorinoC. RuffiniF. MartinoG. MuzioL. FurlanR. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo.J. Neuroinflammation201613113910.1186/s12974‑016‑0596‑527266518
    [Google Scholar]
  73. ChesworthR. GamageR. UllahF. SonegoS. MillingtonC. FernandezA. LiangH. KarlT. MünchG. NiedermayerG. GyengesiE. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin.Front. Neurosci.20211569932910.3389/fnins.2021.69932934393713
    [Google Scholar]
  74. Sancho-AlonsoM. ArenasY.M. Izquierdo-AltarejosP. Martinez-GarciaM. LlansolaM. FelipoV. Enhanced activation of the S1PR2-IL-1β-Src-BDNF-TrkB pathway mediates neuroinflammation in the hippocampus and cognitive impairment in hyperammonemic rats.Int. J. Mol. Sci.202324241725110.3390/ijms24241725138139078
    [Google Scholar]
  75. JiaG. WangR. YueY. DaiH. Activation of protein kinase cδ contributes to the induction of Src/EGF receptor/ERK signaling in ammonia-treated astrocytes.J. Mol. Neurosci.20207071110111910.1007/s12031‑020‑01517‑832125625
    [Google Scholar]
  76. HuangY. WangZ.L. HeY. YeL.M. GuoW.Q. ZhangJ.J. Jiawei Taohe Chengqi decoction attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway.J. Ethnopharmacol.202330511605910.1016/j.jep.2022.11605936549368
    [Google Scholar]
  77. BrownR.B. Dysregulated phosphate metabolism in autism spectrum disorder: Associations and insights for future research.Expert Rev. Mol. Med.202325e2010.1017/erm.2023.1537309057
    [Google Scholar]
  78. ChuE. MychasiukR. HibbsM.L. SempleB.D. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation.J. Neuroinflammation202118127610.1186/s12974‑021‑02325‑634838047
    [Google Scholar]
  79. YangY. JiaX. QuM. YangX. FangY. YingX. ZhangM. WeiJ. PanY. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages.Heliyon202396e1711610.1016/j.heliyon.2023.e1711637484431
    [Google Scholar]
  80. MinJ. ZhengH. XiaH. TianX. LiangM. ZhangJ. HuangW. Ruxolitinib attenuates microglial inflammatory response by inhibiting NF-κB/MAPK signaling pathway.Eur. J. Pharmacol.202496817640310.1016/j.ejphar.2024.17640338354846
    [Google Scholar]
  81. ShuM. HuangD. HungZ. HuX. ZhangS. Inhibition of MAPK and NF-κB signaling pathways alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in Toll-like receptor 5 (TLR5) deficiency mice.Biochem. Biophys. Res. Commun.2016471123323910.1016/j.bbrc.2016.01.11926845355
    [Google Scholar]
  82. ArenasY.M. López-GramajeA. MontoliuC. LlansolaM. FelipoV. Increased levels and activation of the IL-17 receptor in microglia contribute to enhanced neuroinflammation in cerebellum of hyperammonemic rats.Biol. Res.20245711810.1186/s40659‑024‑00504‑238671534
    [Google Scholar]
  83. ShawcrossD.L. WrightG.A.K. StadlbauerV. HodgesS.J. DaviesN.A. Wheeler-JonesC. PitsillidesA.A. JalanR. Ammonia impairs neutrophil phagocytic function in liver disease.Hepatology20084841202121210.1002/hep.2247418697192
    [Google Scholar]
  84. ArenasY.M. FelipoV. Sustained Hyperammonemia activates NF-κB in purkinje neurons through activation of the TrkB-PI3K-AKT pathway by microglia-derived BDNF in a rat model of minimal hepatic encephalopathy.Mol. Neurobiol.20236063071308510.1007/s12035‑023‑03264‑436790604
    [Google Scholar]
  85. Nezhad SalariA.M. RasoulizadehZ. ShabgahA.G. Vakili-GhartavolR. SargaziG. Gholizadeh NavashenaqJ. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders.Cell Biochem. Funct.2024422e396410.1002/cbf.396438439154
    [Google Scholar]
  86. LeeC. YoonS. MoonJ.O. Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways.Int. J. Mol. Sci.2023248690010.3390/ijms24086900
    [Google Scholar]
  87. CampbellJ.S. ArgastG.M. YuenS.Y. HayesB. FaustoN. Inactivation of p38 MAPK during liver regeneration.Int. J. Biochem. Cell Biol.201143218018810.1016/j.biocel.2010.08.00220708092
    [Google Scholar]
  88. RajendranP. AmmarR.B. Al-SaeediF.J. MohamedM.E. ElNaggarM.A. Al-RamadanS.Y. BekhetG.M. SolimanA.M. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: In vitro and in vivo studies.Int. J. Mol. Sci.202022121710.3390/ijms2201021733379332
    [Google Scholar]
  89. LiuZ. YaoX. SunB. JiangW. LiaoC. DaiX. ChenY. ChenJ. DingR. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury.Free Radic. Biol. Med.202116814215410.1016/j.freeradbiomed.2021.03.03733823244
    [Google Scholar]
  90. MiszczukE. BajguzA. KiragaŁ. CrowleyK. ChłopeckaM. Phytosterols and the digestive system: A review study from insights into their potential health benefits and safety.Pharmaceuticals202417555710.3390/ph1705055738794127
    [Google Scholar]
  91. ZhengY. ZhaoJ. ChangS. ZhuangZ. WaimeiS. LiX. ChenZ. JingB. ZhangD. ZhaoG. β-Sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway.J. Neuroimmune Pharmacol.202318469070310.1007/s11481‑023‑10091‑w38041701
    [Google Scholar]
  92. El-ShouraE.A.M. AbdelzaherL.A. MahmoudN.I. FarghalyO.A. SabryM. Girgis ShahataaM. SalemE.A. SaadH.M. ElhussienyO. KozmanM.R. AtwaA.M. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways.Int. Immunopharmacol.202414011290410.1016/j.intimp.2024.112904
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128363445241218062155
Loading
/content/journals/cpd/10.2174/0113816128363445241218062155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test