Skip to content
2000
Volume 31, Issue 19
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Clinical Hereditary Hemolytic Anemia (HAA) particularly Hereditary Spherocytosis (HS) encompasses diverse genetic disorders causing premature red blood cell destruction and intrinsic RBC defects. There’s a pressing need for standardized diagnostic protocols tailored to the Asian population, particularly in Saudi Arabia, underscoring the significance of thorough blood biochemistry analysis.

Materials and Methods

A case-control prospective study was conducted at King Abdulaziz University, samples were obtained from King Fahad Hospital, Jeddah, Saudi Arabia, serving a significant population, and blood samples from 27 patients meeting ethical criteria for HHA and HS. Inclusion criteria included diagnosed patients of any age and sex, while exclusion criteria encompass chronic infections, metabolic diseases, pregnancy, and lactation. Blood profiling was conducted following strict protocols, aiming to glean insights into patients’ management and therapeutic strategies. Despite an intended larger sample size, limitations in availability led to the inclusion of 27 patient analyses.

Results

Among 27 participants, males comprised 59.3%, females 40.7%. Anemia types indicated 22.2% Type 1 (HHA) and 77.8% Type 3 (HS). Age groups (<30, 31-59, ≥60 years) highlighted HS prevalence, notably in older individuals. Blood pressure analysis revealed age-related increases, especially in those over 60 with systolic BP (147.33 ± 9.86 mm/Hg) (≤0.02) and diastolic BP (85.67 ± 9.01 mm/Hg) (≤0.03) emphasizing age-specific monitoring. Temperature variations were noted across ages, significant in patients over 60 (35.93 ± 1.100C) (≤0.09), indicating potential clinical relevance. Iron levels showed no age-related differences, while Blood Urea Nitrogen (BUN) levels rose with age, particularly in those over 60 (35.83 ± 16.67 mm/dL) (≤0.04), suggesting age-related influence. Alkaline Phosphatase levels increased with age, especially in patients aged 31 to 59 (205.80 ± 123.17IU/L)(≤0.001), warranting further investigation. Similarly, Aspartate Transferase levels rose with age, especially in patients aged 31 to 59 (134.69 ± 284.58 U/L) (≤0.01), underlining age-specific considerations. Notable differences in BUN (15.03 mm/dL and 29.06 mm/dL) and Aspartate Transferase (33.01 U/L and 115.66 U/L) levels were observed among different anemia types with no major significant alteration in LDH.

Conclusion

The results suggest unique biochemical signatures with potential renal and hepatic implications, underscoring the importance of biochemical assessment in managing hereditary hemolytic anemias, particularly HS.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326588241211063917
2025-01-24
2025-09-04
Loading full text...

Full text loading...

References

  1. ShimY.J. JungH.L. ShinH.Y. KangH.J. ChoiJ.Y. HahJ.O. LeeJ.M. LimY.T. YangE.J. BaekH.J. ChoiH.S. YooK.H. ParkJ.E. KimS. KimJ.Y. ParkE.S. ImH.J. ChuehH.W. KimS.K. LeeJ.H. YooE.S. ParkH.J. LeeJ.A. ParkM. KangH.S. ParkJ.K. LeeN.H. ParkS.K. LeeY.H. LeeS.W. ChoiE.J. KongS.G. Epidemiological study of hereditary hemolytic anemia in the Korean pediatric population during 1997–2016: A nationwide retrospective cohort study.J. Korean Med. Sci.20203533e27910.3346/jkms.2020.35.e27932830468
    [Google Scholar]
  2. KalfaT.A. Diagnosis and clinical management of red cell membrane disorders.Hematology (Am. Soc. Hematol. Educ. Program)20212021133134010.1182/hematology.202100026534889366
    [Google Scholar]
  3. AgarwalA.M. RetsA.V. Molecular diagnosis of hereditary hemolytic anemias: Recent updates.Int. J. Lab. Hematol.202345S2Suppl. 2798610.1111/ijlh.1410637290893
    [Google Scholar]
  4. AgarwalA.M. McMurtyV. ClaytonA.L. BoliaA. ReadingN.S. ManiC. PatelJ.L. RetsA. Clinical utility of targeted next-generation sequencing panel in routine diagnosis of hereditary hemolytic anemia: A national reference laboratory experience.Eur. J. Haematol.2023110668869510.1111/ejh.1395136825813
    [Google Scholar]
  5. ShenH. GaoZ. YeQ. The correlation between clinical phenotype and genotype of hereditary spherocytosis.Genet. Test. Mol. Biomarkers2024281333810.1089/gtmb.2023.030738294355
    [Google Scholar]
  6. TangH. ZhangN. LiuX. XiaoH. ZhangH. ZhouK. DengJ. Incidence trends of inherited anemias at the global, regional, and national levels over three decades.J. Epidemiol. Glob. Health20232023114
    [Google Scholar]
  7. SongdejD. SurapolchaiP. KomwilaisakP. SripornsawanP. LauhasurayotinS. TeawtrakulN. RungjirajittranonT. TantiworawitA. SinlapamongkolkulP. TorcharusK. SutcharitchanP. PongtanakulB. SirachainanN. CharoenkwanP. Molecular characteristics of hereditary red blood cell membrane disorders in Thailand: A multi-center registry.Ann. Hematol.2024103238539310.1007/s00277‑023‑05555‑137996759
    [Google Scholar]
  8. AltinozM.A. Hereditary gastric and breast cancer syndrome: CDH1: One genotype with multiple phenotypes.ChamSpringer202340542210.1007/978‑3‑031‑21317‑5_26
    [Google Scholar]
  9. ChuehH.W. HwangS.M. ShimY.J. LeeJ.M. ParkH.S. LeeJ.H. NamY. KimN. JungH.L. ChoiH.S. Korean clinical practice guidelines for the diagnosis of hereditary hemolytic anemia.Blood Res.2022572869410.5045/br.2022.202122435593002
    [Google Scholar]
  10. BarcelliniW. FattizzoB. ZaninoniA. Current and emerging treatment options for autoimmune hemolytic anemia.Expert Rev. Clin. Immunol.2018141085787210.1080/1744666X.2018.152172230204521
    [Google Scholar]
  11. FattizzoB. BarcelliniW. Autoimmune hemolytic anemia: Causes and consequences.Expert Rev. Clin. Immunol.202218773174510.1080/1744666X.2022.208911535702053
    [Google Scholar]
  12. FasanoR.M. MeierE.R. ChonatS. Sickle cell disease, thalassemia, and hereditary hemolytic anemias. Rossi's Principles of Transfusion MedicineNew York, United StatesWiley202232634510.1002/9781119719809.ch30
    [Google Scholar]
  13. NelwanE.J. ShakinahS. PasaribuA. Association of G6PD status and haemolytic anaemia in patients receiving anti-malarial agents: A systematic review and meta-analysis.Malar. J.20232217710.1186/s12936‑023‑04493‑736872344
    [Google Scholar]
  14. AydinS. CevizogluM. Drug-induced hemolytic anemia: Isotretinoin.J. Pediatr. Hematol. Oncol.202446632832910.1097/MPH.000000000000291238934630
    [Google Scholar]
  15. KaurP. FatimaH. Time does not heal all ills: The late occurrence of hemolytic anemia after prosthetic mitral valve replacement.Cureus2022146e2634810.7759/cureus.2634835903568
    [Google Scholar]
  16. AleissaM. AlorainiT. AlsubaieL.F. HassounM. AbdulrahmanG. SwaidA. EyaidW.A. MutairiF.A. AbabnehF. AlfadhelM. AlfaresA. Common disease-associated gene variants in a Saudi Arabian population.Ann. Saudi Med.2022421293510.5144/0256‑4947.2022.2935112591
    [Google Scholar]
  17. HorwichT.B. FonarowG.C. HamiltonM.A. MacLellanW.R. BorensteinJ. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure.J. Am. Coll. Cardiol.200239111780178610.1016/S0735‑1097(02)01854‑512039491
    [Google Scholar]
  18. GanT. HuJ. LiuW. LiC. XuQ. WangY. LuS. AledanA.K.O. WangY. WangZ. Causal association between anemia and cardiovascular disease: A 2-sample bidirectional Mendelian randomization study.J. Am. Heart Assoc.20231212e02968910.1161/JAHA.123.02968937301769
    [Google Scholar]
  19. EzekowitzJ.A. McAlisterF.A. ArmstrongP.W. Anemia is common in heart failure and is associated with poor outcomes: Insights from a cohort of 12065 patients with new-onset heart failure.Circulation2003107222322510.1161/01.CIR.0000052622.51963.FC12538418
    [Google Scholar]
  20. Kim-MitsuyamaS. SoejimaH. YasudaO. NodeK. JinnouchiH. YamamotoE. SekigamiT. OgawaH. MatsuiK. Anemia is an independent risk factor for cardiovascular and renal events in hypertensive outpatients with well-controlled blood pressure: A subgroup analysis of the ATTEMPT-CVD randomized trial.Hypertens. Res.201942688389110.1038/s41440‑019‑0210‑130664702
    [Google Scholar]
  21. TanS. LiuD. ZhangY. LiS. ZhangK. ZuoH. Trends in blood pressure and hypertension among older adults and oldest-old individuals in China between 2008-2018.Hypertens. Res.20234651145115610.1038/s41440‑023‑01183‑436750610
    [Google Scholar]
  22. MaS. YangL. ZhaoM. MagnussenC.G. XiB. Trends in hypertension prevalence, awareness, treatment and control rates among Chinese adults, 1991–2015.J. Hypertens.202139474074810.1097/HJH.000000000000269833186320
    [Google Scholar]
  23. StockmannC. FandreyJ. Hypoxia-induced erythropoietin production: A paradigm for oxygen-regulated gene expression.Clin. Exp. Pharmacol. Physiol.2006331096897910.1111/j.1440‑1681.2006.04474.x17002676
    [Google Scholar]
  24. WongchadakulP. LohasammakulS. RattanadechoP. Comparative analysis of RADAR vs. conventional techniques for AVF maturation in patients with blood viscosity and vessel elasticity-related diseases through fluid-structure interaction modeling: Anemia, hypertension, and diabetes.PLoS One2024191e029663110.1371/journal.pone.029663138227602
    [Google Scholar]
  25. AkaishiT. AbeM. MikiT. MikiM. FunamizuY. ItoS. AbeT. IshiiT. Ratio of diastolic to systolic blood pressure represents renal resistive index.J. Hum. Hypertens.202034751251910.1038/s41371‑019‑0264‑131586124
    [Google Scholar]
  26. LanQ. ZhengL. ZhouX. WuH. BuysN. LiuZ. SunJ. FanH. The value of blood urea nitrogen in the prediction of risks of cardiovascular disease in an older population.Front. Cardiovasc. Med.2021861411710.3389/fcvm.2021.61411734095242
    [Google Scholar]
  27. HigashiY. KiharaY. NomaK. Endothelial dysfunction and hypertension in aging.Hypertens. Res.201235111039104710.1038/hr.2012.13822972557
    [Google Scholar]
  28. ParkJ. ShinY.K. KimU. SeolG.H. Ginsenoside Rb1 reduces hyper-vasoconstriction induced by high glucose and endothelial dysfunction in rat aorta.Pharmaceuticals (Basel)2023169123810.3390/ph1609123837765046
    [Google Scholar]
  29. MasiS. GeorgiopoulosG. ChiriacòM. GrassiG. SeravalleG. SavoiaC. VolpeM. TaddeiS. RizzoniD. VirdisA. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk.Cardiovasc. Res.2020116242943731220219
    [Google Scholar]
  30. RoweJ.W. TroenB.R. Sympathetic nervous system and aging in man.Endocr. Rev.19801216717910.1210/edrv‑1‑2‑1676263602
    [Google Scholar]
  31. UmeharaT. OkaH. NakaharaA. ShiraishiT. SatoT. MatsunoH. KomatsuT. OmotoS. MurakamiH. IguchiY. Sympathetic nervous activity and hemoglobin levels in de novo Parkinson’s disease.Clin. Auton. Res.202030327327810.1007/s10286‑020‑00668‑331983020
    [Google Scholar]
  32. LeBouefT. Physiology, Autonomic Nervous System.Treasure Island, FLStatPearls2023
    [Google Scholar]
  33. HiltyM.P. SiebenmannC. RasmussenP. KeiserS. MüllerA. LundbyC. MaggioriniM. Beta-adrenergic blockade increases pulmonary vascular resistance and causes exaggerated hypoxic pulmonary vasoconstriction at high altitude: A physiological study.Eur. Heart J. Cardiovasc. Pharmacother.202410431632810.1093/ehjcvp/pvae00438216517
    [Google Scholar]
  34. GattiJ.R. AhmadS.A. Gardner YeltonS. DiGiustoM. LeungD. XuR. CohenA.R. GottesmanR.F. SunL.R. Relative anemia and perioperative stroke in children with moyamoya.J. Stroke Cerebrovasc. Dis.202433110747610.1016/j.jstrokecerebrovasdis.2023.10747637976795
    [Google Scholar]
  35. DybiecJ. SzlagorM. MłynarskaE. RyszJ. FranczykB. Structural and functional changes in aging kidneys.Int. J. Mol. Sci.202223231543510.3390/ijms23231543536499760
    [Google Scholar]
  36. SturmlechnerI. DurikM. SiebenC.J. BakerD.J. van DeursenJ.M. Cellular senescence in renal ageing and disease.Nat. Rev. Nephrol.2017132778910.1038/nrneph.2016.18328029153
    [Google Scholar]
  37. ChaoY.P. FangW.H. ChenW.L. PengT.C. YangW.S. KaoT.W. Exploring muscle health deterioration and its determinants among community-dwelling older adults.Front. Nutr.2022981704410.3389/fnut.2022.81704435571885
    [Google Scholar]
  38. OlaniyanE.T. O’HalloranF. McCarthyA.L. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults.Nutr. Res. Rev.202134114715710.1017/S095442242000021932883378
    [Google Scholar]
  39. WangX.H. MitchW.E. PriceS.R. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease.Nat. Rev. Nephrol.202218313815210.1038/s41581‑021‑00498‑034750550
    [Google Scholar]
  40. LeitãoC. MignanoA. EstrelaM. FardilhaM. FigueirasA. RoqueF. HerdeiroM.T. The effect of nutrition on aging-A systematic review focusing on aging-related biomarkers.Nutrients202214355410.3390/nu1403055435276919
    [Google Scholar]
  41. SyauqyA. HsuC.Y. LeeH.A. RauH.H. ChaoJ.C.J. Association between dietary patterns and kidney function parameters in adults with metabolic syndrome: A cross-sectional study.Nutrients20201314010.3390/nu1301004033374257
    [Google Scholar]
  42. HartK. MarsdenR. PaxmanJ. Generation of thirst: A critical review of dehydration among older adults living in residential care.Nurs. Resident. Care2020221211210.12968/nrec.2020.22.12.6
    [Google Scholar]
  43. EdmondsC.J. FogliaE. BoothP. FuC.H.Y. GardnerM. Dehydration in older people: A systematic review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance.Arch. Gerontol. Geriatr.20219510438010.1016/j.archger.2021.10438033636649
    [Google Scholar]
  44. HoenL. PfefferD. ZapfR. RaabeA. HildebrandJ. KraftJ. KalkhofS. Association of drug application and hydration status in elderly patients.Nutrients2021136192910.3390/nu1306192934199738
    [Google Scholar]
  45. ClarkA.L. KalraP.R. PetrieM.C. MarkP.B. TomlinsonL.A. TomsonC.R.V. Change in renal function associated with drug treatment in heart failure: National guidance.Heart20191051290491010.1136/heartjnl‑2018‑31415831118203
    [Google Scholar]
  46. HanJ. ZhangX. ShahB. SarafS.L. GordeukV.R. Alkaline phosphatase as a marker for acute complications in sickle cell disease. Blood 2023; 142(Suppl. 1): 3683.10.1182/blood‑2023‑174807
    [Google Scholar]
  47. GuralnikJ. ErshlerW. ArtzA. Lazo-LangnerA. WalstonJ. PahorM. FerrucciL. EvansW.J. Unexplained anemia of aging: Etiology, health consequences, and diagnostic criteria.J. Am. Geriatr. Soc.202270389189910.1111/jgs.1756534796957
    [Google Scholar]
  48. AksuT. ÜnalS. Iron deficiency anemia in infancy, childhood, and adolescence.Turk. Pediatri Ars.202358435836210.5152/TurkArchPediatr.2023.2304937357449
    [Google Scholar]
  49. WiafeM.A. AyenuJ. Eli-CophieD. A review of the risk factors for iron deficiency anaemia among adolescents in developing countries.Anemia20232023640628610.1155/2023/6406286
    [Google Scholar]
  50. VaroN. Bone remodeling markers: Monitoring the changing bone.Adv. Lab. Med.20245113
    [Google Scholar]
  51. RawatC. KukalS. KushwahaS. AgarwalR. SharmaS. SrivastavaA.K. KukretiR. Elevated serum alkaline phosphatase in epilepsy: Effect of age and treatment.Br. J. Biomed. Sci.2020771444710.1080/09674845.2019.166378131483219
    [Google Scholar]
  52. LuoX. WeiL. LiuS. WuK. HuangD. XiaoS. GuoE. LeiL. QiuX. ZengX. Correlation between urinary rare earth elements and liver function in a Zhuang population aged 35–74 years in Nanning.J. Trace Elem. Med. Biol.20248412742610.1016/j.jtemb.2024.12742638579497
    [Google Scholar]
  53. De MatteisF. Hepatotoxicology.Boca Raton, FloridaCRC press202043747910.1201/9780367812041‑10
    [Google Scholar]
  54. VogtA.C.S. ArsiwalaT. MohsenM. VogelM. ManolovaV. BachmannM.F. On iron metabolism and its regulation.Int. J. Mol. Sci.2021229459110.3390/ijms2209459133925597
    [Google Scholar]
  55. DiemarS.S. MøllehaveL.T. QuardonN. LylloffL. ThuesenB.H. LinnebergA. JørgensenN.R. Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase—reference intervals and confounders for two bone formation markers.Arch. Osteoporos.20201512610.1007/s11657‑020‑00715‑632095898
    [Google Scholar]
  56. PolineniS. ResulajM. FajeA.T. MeenaghanE. BredellaM.A. BouxseinM. LeeH. MacDougaldO.A. KlibanskiA. FazeliP.K. Red and white blood cell counts are associated with bone marrow adipose tissue, bone mineral density, and bone microarchitecture in premenopausal women.J. Bone Miner. Res.20203561031103910.1002/jbmr.398632078187
    [Google Scholar]
  57. UcheC.L. IsaiahA.O. EzirimE.O. AiraodionA.I. Sickle cell anemia contributes to liver abnormality.Int. J. Res. Reports Hematol.202252122134
    [Google Scholar]
  58. MuellerS. Alcohol and Alcohol-related Diseases.ChamSpringer202378579310.1007/978‑3‑031‑32483‑3_41
    [Google Scholar]
  59. NsiahK. DzogbefiaV. AnsongD. AkotoA.O. BoatengH. OclooD. Pattern of AST and ALT changes in relation to hemolysis in sickle cell disease.Clin. Med. Insights Blood Disorders20114419
    [Google Scholar]
  60. PariseE.R. OliveiraA.C. Figueiredo-MendesC. LanzoniV. MartinsJ. NaderH. FerrazM.L. Noninvasive serum markers in the diagnosis of structural liver damage in chronic hepatitis C virus infection.Liver Int.20062691095109910.1111/j.1478‑3231.2006.01356.x17032410
    [Google Scholar]
  61. NiuH. ZhouY. Nonlinear relationship between AST-to-ALT ratio and the incidence of Type 2 diabetes mellitus: A follow-up study.Int. J. Gen. Med.2021148373838210.2147/IJGM.S34179034819745
    [Google Scholar]
  62. SakboonyaratB. PooviengJ. LertsakulbunlueS. JongcherdchootrakulK. SrisawatP. MungthinM. RangsinR. Association between raised blood pressure and elevated serum liver enzymes among active-duty Royal Thai Army personnel in Thailand.BMC Cardiovasc. Disord.202323114310.1186/s12872‑023‑03181‑336944947
    [Google Scholar]
  63. ChoiW.J. KimG.A. ParkJ. JangS. JungW.J. ShimJ.J. ParkY. ChoiG.H. KimJ.W. JeongS.H. JangE.S. Incidence and pattern of aminotransferase elevation during anti-hypertensive therapy with angiotensin-II receptor blockers.J. Korean Med. Sci.20223733e25510.3346/jkms.2022.37.e25535996932
    [Google Scholar]
  64. CavallaroF. BarcelliniW. FattizzoB. Antibody based therapeutics for autoimmune hemolytic anemia.Expert Opin. Biol. Ther.202323121227123710.1080/14712598.2023.227491237874225
    [Google Scholar]
  65. WestE.E. WoodruffT. Fremeaux-BacchiV. KemperC. Complement in human disease: Approved and up-and-coming therapeutics.Lancet20234031042439240537979593
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326588241211063917
Loading
/content/journals/cpd/10.2174/0113816128326588241211063917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test