Skip to content
2000
Volume 31, Issue 25
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It primarily affects the central nervous system (CNS), but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. The blood-brain barrier (BBB), which separates peripheral blood circulation from the central nervous system, is essential for maintaining intracerebral homeostasis. Drug delivery systems based on nanomaterials (NDDSs) employ nanoparticles (NPs) as their drug transport vehicles. Moreover, nanotechnology-based methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs, especially in diagnosis and drug delivery, with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, .), that showed great therapeutic benefits against NDs. The discussion concluded with a look at the opportunities and problems that come with NDDSs in modern basic and clinical research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128352935250116064725
2025-02-06
2025-09-05
Loading full text...

Full text loading...

References

  1. KarthivashanG. GanesanP. ParkS.Y. KimJ.S. ChoiD.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease.Drug Deliv.201825130732010.1080/10717544.2018.142824329350055
    [Google Scholar]
  2. HanssonO. Biomarkers for neurodegenerative diseases.Nat. Med.202127695496310.1038/s41591‑021‑01382‑x34083813
    [Google Scholar]
  3. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  4. Terreros-RoncalJ. Moreno-JiménezE.P. Flor-GarcíaM. Rodríguez-MorenoC.B. TrincheroM.F. CafiniF. RábanoA. Llorens-MartínM. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis.Science2021374801106111310.1126/science.abl5163
    [Google Scholar]
  5. SenguptaU. KayedR. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases.Prog. Neurobiol.202221410227010.1016/j.pneurobio.2022.10227035447272
    [Google Scholar]
  6. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in cns neurodegenerative diseases.Immunology2018154220421910.1111/imm.1292229513402
    [Google Scholar]
  7. CeniniG. LloretA. CascellaR. Oxidative stress and mitochondrial damage in neurodegenerative diseases: From molecular mechanisms to targeted therapies.Oxid. Med. Cell. Longev.20202020127025610.1155/2020/1270256
    [Google Scholar]
  8. KhanM.S. GowdaB.H.J. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  9. HsiehS.J. AlexopoulouZ. MehrotraN. StruykA. StochS.A. Neurodegenerative diseases: The value of early predictive end points.Clin. Pharmacol. Ther.2022111483583910.1002/cpt.254435234294
    [Google Scholar]
  10. SegarraM. AburtoM.R. Acker-PalmerA. Blood–brain barrier dynamics to maintain brain homeostasis.Trends Neurosci.202144539340510.1016/j.tins.2020.12.00233423792
    [Google Scholar]
  11. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood–brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  12. SaeediM. EslamifarM. KhezriK. DizajS.M. Applications of nanotechnology in drug delivery to the central nervous system.Biomed. Pharmacother.201911166667510.1016/j.biopha.2018.12.13330611991
    [Google Scholar]
  13. AsilSM. AhlawatJ. Guillama BarrosoG. NarayanM. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases.Biomater. Sci.20208154109412810.1039/D0BM00809E32638706
    [Google Scholar]
  14. NiuX. ChenJ. GaoJ. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances.Asian J Pharm Sci201914548049610.1016/j.ajps.2018.09.00532104476
    [Google Scholar]
  15. SiddiqiK.S. HusenA. SohrabS.S. YassinM.O. Recent status of nanomaterial fabrication and their potential applications in neurological disease management.Nanoscale Res. Lett.201813123110.1186/s11671‑018‑2638‑730097809
    [Google Scholar]
  16. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.00119782542
    [Google Scholar]
  17. ReF. GregoriM. MasseriniM. Nanotechnology for neurodegenerative disorders.Maturitas2012731455110.1016/j.maturitas.2011.12.01522261367
    [Google Scholar]
  18. FurtadoD. BjörnmalmM. AytonS. BushA.I. KempeK. CarusoF. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases.Adv. Mater.20183046180136210.1002/adma.20180136230066406
    [Google Scholar]
  19. GabrM.T. IbrahimM.M. Multitarget therapeutic strategies for Alzheimer’s disease.Neural Regen. Res.201914343744010.4103/1673‑5374.24546330539809
    [Google Scholar]
  20. DanieleS. GiacomelliC. MartiniC. Brain ageing and neurodegenerative disease: The role of cellular waste management.Biochem. Pharmacol.201815820721610.1016/j.bcp.2018.10.03030393045
    [Google Scholar]
  21. De la TorreC. CeñaV. The delivery challenge in neurodegenerative disorders: The nanoparticles role in Alzheimer’s disease therapeutics and diagnostics.Pharmaceutics201810419010.3390/pharmaceutics1004019030336640
    [Google Scholar]
  22. LiuE.Y. CaliC.P. LeeE.B. Rna metabolism in neurodegenerative disease.Dis. Model. Mech.201710550951810.1242/dmm.02861328468937
    [Google Scholar]
  23. MehtaM. AdemA. SabbaghM. New acetylcholinesterase inhibitors for Alzheimer’s disease.Int. J. Alzheimers. Dis.2012201272898310.1155/2012/728983
    [Google Scholar]
  24. AdamsW.R. High-accuracy detection of early Parkinson’s disease using multiple characteristics of finger movement while typing.PLoS One20171211e018822610.1371/journal.pone.018822629190695
    [Google Scholar]
  25. MaitiP. MannaJ. DunbarG.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments.Transl. Neurodegener.2017612810.1186/s40035‑017‑0099‑z29090092
    [Google Scholar]
  26. AdamH. GopinathS.C.B. HashimU. Integration of aluminium interdigitated electrodes with zinc oxide as nanocomposite for selectively detect alpha-synuclein for Parkinson’s disease diagnosis.J. Phys. Conf. Ser.20212129101209410.1088/1742‑6596/2129/1/012094
    [Google Scholar]
  27. AnsorenaE. CasalesE. ArandaA. TamayoE. GarbayoE. SmerdouC. Blanco-PrietoM.J. AymerichM.S. A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a semliki forest virus expression system.Int. J. Pharm.20134401192610.1016/j.ijpharm.2012.04.07122580212
    [Google Scholar]
  28. AndréE.M. DelcroixG.J. KandalamS. SindjiL. Montero-MeneiC.N. A combinatorial cell and drug delivery strategy for huntington’s disease using pharmacologically active microcarriers and rnai neuronally-committed mesenchymal stromal cells.Pharmaceutics2019111052610.3390/pharmaceutics1110052631614758
    [Google Scholar]
  29. JansenA.H.P. BatenburgK.L. Pecho-VrieselingE. ReitsE.A. Visualization of prion-like transfer in huntington’s disease models.Biochim. Biophys. Acta Mol. Basis Dis.20171863379380010.1016/j.bbadis.2016.12.01528040507
    [Google Scholar]
  30. LiuX. LuS. LiuD. ZhangL. ZhangL. YuX. LiuR. Scfv-conjugated superparamagnetic iron oxide nanoparticles for mri-based diagnosis in transgenic mouse models of parkinson’s and huntington’s diseases.Brain Res.2019170714115310.1016/j.brainres.2018.11.03430481502
    [Google Scholar]
  31. AulićS. BolognesiM.L. LegnameG. Small-molecule theranostic probes: A promising future in neurodegenerative diseases.Int. J. Cell Biol.2013201311910.1155/2013/15095224324497
    [Google Scholar]
  32. BirksJ.S. EvansJG Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.2015104CD00119110.1002/14651858.CD001191.pub325858345
    [Google Scholar]
  33. HaniU. GowdaB.H.J SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  34. EricksonM.A. BanksW.A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease.J. Cereb. Blood Flow Metab.201333101500151310.1038/jcbfm.2013.13523921899
    [Google Scholar]
  35. van AssemaD.M.E. LubberinkM. BoellaardR. SchuitR.C. WindhorstA.D. ScheltensP. LammertsmaA.A. van BerckelB.N.M. P-glycoprotein function at the blood-brain barrier: Effects of age and gender.Mol. Imaging Biol.201214677177610.1007/s11307‑012‑0556‑022476967
    [Google Scholar]
  36. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  37. DuanL. LiX. JiR. HaoZ. KongM. WenX. GuanF. MaS. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers 2023159219610.3390/polym1509219637177342
    [Google Scholar]
  38. NehraG. BauerB. HartzA.M.S. Blood-brain barrier leakage in Alzheimer’s disease: From discovery to clinical relevance.Pharmacol. Ther.202223410811910.1016/j.pharmthera.2022.10811935108575
    [Google Scholar]
  39. CunyG.D. Foreword: Neurodegenerative diseases: Challenges and opportunities.Future Med. Chem.20124131647164910.4155/fmc.12.12322924500
    [Google Scholar]
  40. SweeneyM.D. SagareA.P. ZlokovicB.V. Blood–brain barrier breakdown in alzheimer disease and other neurodegenerative disorders.Nat. Rev. Neurol.201814313315010.1038/nrneurol.2017.18829377008
    [Google Scholar]
  41. DingS. KhanA.I. CaiX. SongY. LyuZ. DuD. DuttaP. LinY. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  42. HanL. JiangC. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies.Acta Pharm. Sin. B20211182306232510.1016/j.apsb.2020.11.02334522589
    [Google Scholar]
  43. HayashiM. TomitaM. AwazuS. Transcellular and paracellular contribution to transport processes in the colorectal route.Adv. Drug Deliv. Rev.199728219120410.1016/S0169‑409X(97)00072‑0
    [Google Scholar]
  44. GoldsteinJ.L. AndersonR.G.W. BrownM.S. Coated pits, coated vesicles, and receptor-mediated endocytosis.Nature1979279571567968510.1038/279679a0221835
    [Google Scholar]
  45. LuW. Adsorptive-mediated brain delivery systems.Curr. Pharm. Biotechnol.201213122340234810.2174/13892011280334185123016640
    [Google Scholar]
  46. EdwardsR.H. Drug delivery via the blood–brain barrier.Nat. Neurosci.20014322122210.1038/8504511224531
    [Google Scholar]
  47. KanwarJ. SriramojuB. KanwarR.K. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier.Int. J. Nanomedicine201273259327810.2147/IJN.S3091922848160
    [Google Scholar]
  48. BreeJ.B.M.M. BoerA.G. DanhofM. BreimerD.D. Drug transport across the blood-brain barrier.Pharm. World Sci.199315S12910.1007/BF021161638485503
    [Google Scholar]
  49. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  50. PaulK. GowdaB.H.J. HaniU. ChandanR.S. MohantoS. AhmedM.G. AshiqueS. KesharwaniP. Traditional uses, phytochemistry, and pharmacological activities of coleus amboinicus: A comprehensive review.Curr. Pharm. Des.202430751953510.2174/011381612828326724013006260038321896
    [Google Scholar]
  51. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  52. TemsamaniJ. ScherrmannJ.M. ReesA.R. KaczorekM. Brain drug delivery technologies: Novel approaches for transporting therapeutics.Pharm. Sci. Technol. Today20003515516210.1016/S1461‑5347(00)00258‑310785657
    [Google Scholar]
  53. FortinD. GendronC. BoudriasM. GarantM.P. Enhanced chemotherapy delivery by intraarterial infusion and blood‐brain barrier disruption in the treatment of cerebral metastasis.Cancer2007109475176010.1002/cncr.2245017211866
    [Google Scholar]
  54. DeekenJ.F. LöscherW. The blood-brain barrier and cancer: Transporters, treatment, and trojan horses.Clin. Cancer Res.20071361663167410.1158/1078‑0432.CCR‑06‑285417363519
    [Google Scholar]
  55. YuanH. GaberM.W. McColganT. NaimarkM.D. KianiM.F. MerchantT.E. Radiation-induced permeability and leukocyte adhesion in the rat blood–brain barrier: Modulation with anti-icam-1 antibodies.Brain Res.20039691-2596910.1016/S0006‑8993(03)02278‑912676365
    [Google Scholar]
  56. ReinholdH.S. CalvoW. HopewellJ.W. Van Den BergA.P. Development of blood vessel-related radiation damage in the fimbria of the central nervous system.Int. J. Radiat. Oncol. Biol. Phys.1990181374210.1016/0360‑3016(90)90264‑K2298633
    [Google Scholar]
  57. HynynenK. McDannoldN. SheikovN.A. JoleszF.A. VykhodtsevaN. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications.Neuroimage2005241122010.1016/j.neuroimage.2004.06.04615588592
    [Google Scholar]
  58. KinoshitaM. McDannoldN. JoleszF.A. HynynenK. Targeted delivery of antibodies through the blood–brain barrier by mri-guided focused ultrasound.Biochem. Biophys. Res. Commun.200634041085109010.1016/j.bbrc.2005.12.11216403441
    [Google Scholar]
  59. AryalM. ArvanitisC.D. AlexanderP.M. McDannoldN. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system.Adv. Drug Deliv. Rev.2014729410910.1016/j.addr.2014.01.00824462453
    [Google Scholar]
  60. DamiriF. GowdaB.H.J. AndraS. BaluS. RojekarS. BerradaM. Chitosan Nanocomposites as Scaffolds for Bone Tissue Regeneration.Chitosan Nanocomposites Bionanomechanical Appl. SwainS.K. BiswalA. SingaporeSpringer Nature Singapore202337739410.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  61. XuD.H. YanM. LiH.D. FangP.F. LiuY.W. Influence of p-glycoprotein on brucine transport at the in vitro blood–brain barrier.Eur. J. Pharmacol.20126901-3687610.1016/j.ejphar.2012.06.03222749978
    [Google Scholar]
  62. ArifY. SameeyaN. HasanN. GowdaB.H.J. GuptaG. AlsayariA. WahabS. KesharwaniP. Advancements in dendrimer-based drug delivery for combinatorial cancer therapy.J. Drug Deliv. Sci. Technol.20249710575510.1016/j.jddst.2024.105755
    [Google Scholar]
  63. MaysingerD. MorinvilleA. Drug delivery to the nervous system.Trends Biotechnol.1997151041041810.1016/S0167‑7799(97)01095‑09351285
    [Google Scholar]
  64. HackettM.J. ZaroJ.L. ShenW.C. GuleyP.C. ChoM.J. Fatty acids as therapeutic auxiliaries for oral and parenteral formulations.Adv. Drug Deliv. Rev.201365101331133910.1016/j.addr.2012.07.01222921839
    [Google Scholar]
  65. PisonU. WelteT. GiersigM. GronebergD.A. Nanomedicine for respiratory diseases.Eur. J. Pharmacol.20065331-334135010.1016/j.ejphar.2005.12.06816434033
    [Google Scholar]
  66. LiuM. LiM. SunS. LiB. DuD. SunJ. CaoF. LiH. JiaF. WangT. ChangN. YuH. WangQ. PengH. The use of antibody modified liposomes loaded with amo-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy.Biomaterials201435113697370710.1016/j.biomaterials.2013.12.09924468403
    [Google Scholar]
  67. SilvaG.A. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the cns.BMC Neurosci.20089S3S410.1186/1471‑2202‑9‑S3‑S419091001
    [Google Scholar]
  68. JiaF. LiuX. LiL. MallapragadaS. NarasimhanB. WangQ. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents.J. Control. Release201317231020103410.1016/j.jconrel.2013.10.01224140748
    [Google Scholar]
  69. WangQ. GuZ. JamalS. DetamoreM.S. BerklandC. Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering.Tissue Eng. Part A20131923-242586259310.1089/ten.tea.2013.007523815275
    [Google Scholar]
  70. CaffoM. CurcioA. RajivK. CarusoG. VenzaM. GermanòA. Potential role of carbon nanomaterials in the treatment of malignant brain gliomas.Cancers 2023159257510.3390/cancers1509257537174040
    [Google Scholar]
  71. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  72. LiM. DengH. PengH. WangQ. Functional nanoparticles in targeting glioma diagnosis and therapies.J. Nanosci. Nanotechnol.201414141543210.1166/jnn.2014.875724730272
    [Google Scholar]
  73. LiM.H. YuH. WangT.F. ChangN.D. ZhangJ.Q. DuD. LiuM.F. SunS.L. WangR. TaoH.Q. GengS.L. ShenZ.Y. WangQ. PengH.S. Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo.J. Mater. Chem. B Mater. Biol. Med.20142121619162510.1039/c3tb21423k32261389
    [Google Scholar]
  74. de JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  75. AhamedJ. GowdaB.H.J AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  76. WongH.L. ChattopadhyayN. WuX.Y. BendayanR. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain.Adv. Drug Deliv. Rev.2010624-550351710.1016/j.addr.2009.11.02019914319
    [Google Scholar]
  77. BriggerI. MorizetJ. AubertG. ChacunH. Terrier-LacombeM.J. CouvreurP. VassalG. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting.J. Pharmacol. Exp. Ther.2002303392893610.1124/jpet.102.03966912438511
    [Google Scholar]
  78. PeiraE. MarzolaP. PodioV. AimeS. SbarbatiA. GascoM.R. In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide.J. Drug Target.2003111192410.1080/106118603100008610812852437
    [Google Scholar]
  79. KreuterJ. Nanoparticulate systems for brain delivery of drugs.Adv. Drug Deliv. Rev.2001471658110.1016/S0169‑409X(00)00122‑811251246
    [Google Scholar]
  80. HuK. LiJ. ShenY. LuW. GaoX. ZhangQ. JiangX. Lactoferrin-conjugated peg–pla nanoparticles with improved brain delivery: In vitro and in vivo evaluations.J. Control. Release20091341556110.1016/j.jconrel.2008.10.01619038299
    [Google Scholar]
  81. GelperinaS. MaksimenkoO. KhalanskyA. VanchugovaL. ShipuloE. AbbasovaK. BerdievR. WohlfartS. ChepurnovaN. KreuterJ. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: Influence of the formulation parameters.Eur. J. Pharm. Biopharm.201074215716310.1016/j.ejpb.2009.09.00319755158
    [Google Scholar]
  82. DavoudiZ. Peroutka-BigusN. BellaireB. WannemuehlerM. BarrettT.A. NarasimhanB. WangQ. Intestinal organoids containing poly(lactic‐ co ‐glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases.J. Biomed. Mater. Res. A2018106487688610.1002/jbm.a.3630529226615
    [Google Scholar]
  83. TosiG. BortotB. RuoziB. DolcettaD. VandelliM.A. ForniF. SeveriniG.M. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.Curr. Med. Chem.201320172212222510.2174/092986731132017000623458620
    [Google Scholar]
  84. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  85. WangQ. JamalS. DetamoreM.S. BerklandC. Plga‐chitosan/plga‐alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells.J. Biomed. Mater. Res. A201196A352052710.1002/jbm.a.3300021254383
    [Google Scholar]
  86. YadavK.S. ChuttaniK. MishraA.K. SawantK.K. Long circulating nanoparticles of etoposide using PLGA‐MPEG and PLGA‐pluronic block copolymers: Characterization, drug‐release, blood‐clearance, and biodistribution studies.Drug Dev. Res.201071422823910.1002/ddr.20365
    [Google Scholar]
  87. HamdyS. HaddadiA. HungR.W. LavasanifarA. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations.Adv. Drug Deliv. Rev.20116310-1194395510.1016/j.addr.2011.05.02121679733
    [Google Scholar]
  88. Sneh-EdriH. LikhtenshteinD. StepenskyD. Intracellular targeting of plga nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro.Mol. Pharm.2011841266127510.1021/mp200198c21661745
    [Google Scholar]
  89. Vela-RamirezJ.E. GoodmanJ.T. BoggiattoP.M. RoychoudhuryR. PohlN.L.B. HostetterJ.M. WannemuehlerM.J. NarasimhanB. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles.AAPS J.201517125626710.1208/s12248‑014‑9699‑z25421457
    [Google Scholar]
  90. BinneboseA.M. HaughneyS.L. MartinR. ImermanP.M. NarasimhanB. BellaireB.H. Polyanhydride nanoparticle delivery platform dramatically enhances killing of filarial worms.PLoS Negl. Trop. Dis.2015910e000417310.1371/journal.pntd.000417326496201
    [Google Scholar]
  91. BrenzaT.M. GhaisasS. RamirezJ.E.V. HarischandraD. AnantharamV. KalyanaramanB. KanthasamyA.G. NarasimhanB. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy.Nanomedicine201713380982010.1016/j.nano.2016.10.00427771430
    [Google Scholar]
  92. XingZ.C. ChangY. KangI.K. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications.Sci. Technol. Adv. Mater.201011101410110.1088/1468‑6996/11/1/01410127877316
    [Google Scholar]
  93. KhanM.S GowdaB.H.J HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  94. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  95. SintovA.C. Velasco-AguirreC. Gallardo-ToledoE. ArayaE. KoganM.J. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier.Int. Rev. Neurobiol.201613019922710.1016/bs.irn.2016.06.00727678178
    [Google Scholar]
  96. MaleD. GromnicovaR. McQuaidC. Gold nanoparticles for imaging and drug transport to the cns.Int. Rev. Neurobiol.201613015519810.1016/bs.irn.2016.05.00327678177
    [Google Scholar]
  97. González-DíazJ.B. García-MartínA. García-MartínJ.M. CebolladaA. ArmellesG. SepúlvedaB. AlaverdyanY. KällM. Plasmonic au/co/au nanosandwiches with enhanced magneto-optical activity.Small20084220220510.1002/smll.20070059418196506
    [Google Scholar]
  98. SwierczewskaM. LeeS. ChenX. The design and application of fluorophore–gold nanoparticle activatable probes.Phys. Chem. Chem. Phys.201113219929994110.1039/c0cp02967j21380462
    [Google Scholar]
  99. ShiloM. MotieiM. HanaP. PopovtzerR. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications.Nanoscale2014642146215210.1039/C3NR04878K24362586
    [Google Scholar]
  100. CurryT. KopelmanR. ShiloM. PopovtzerR. Multifunctional theranostic gold nanoparticles for targeted ct imaging and photothermal therapy.Contrast Media Mol. Imaging201491536110.1002/cmmi.156324470294
    [Google Scholar]
  101. KimT. LeeN. ArifinD.R. ShatsI. JanowskiM. WalczakP. HyeonT. BulteJ.W.M. In vivo micro-ct imaging of human mesenchymal stem cells labeled with gold-poly- l -lysine nanocomplexes.Adv. Funct. Mater.2017273160421310.1002/adfm.20160421328713230
    [Google Scholar]
  102. MartinsP.A.T. AlsaiariS. JulfakyanK. NieZ. KhashabN.M. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates.Chem. Commun. 201753132102210510.1039/C6CC09085K28098266
    [Google Scholar]
  103. SelaH. CohenH. EliaP. ZachR. KarpasZ. ZeiriY. Spontaneous penetration of gold nanoparticles through the blood brain barrier (bbb).J. Nanobiotechnology20151317110.1186/s12951‑015‑0133‑126489846
    [Google Scholar]
  104. ZhangY. WalkerJ.B. MinicZ. LiuF. GoshgarianH. MaoG. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier.Sci. Rep.2016612579410.1038/srep2579427180729
    [Google Scholar]
  105. ClarkA.J. DavisM.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.Proc. Natl. Acad. Sci. USA201511240124861249110.1073/pnas.151704811226392563
    [Google Scholar]
  106. ChengY. DaiQ. MorshedR.A. FanX. WegscheidM.L. WainwrightD.A. HanY. ZhangL. AuffingerB. TobiasA.L. RincónE. ThaciB. AhmedA.U. WarnkeP.C. HeC. LesniakM.S. Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging.Small201410245137515010.1002/smll.20140065425104165
    [Google Scholar]
  107. AlievG. DazaJ. HerreraA. Carmen Arias EsparzaM. MoralesL. EcheverriaV. BachurinS. BarretoG. Nanoparticles as alternative strategies for drug delivery to the alzheimer brain: Electron microscopy ultrastructural analysis.CNS Neurol. Disord. Drug Targets20151491235124210.2174/187152731466615082110263126295828
    [Google Scholar]
  108. HuangC.L. HsiaoI.L. LinH.C. WangC.F. HuangY.J. ChuangC.Y. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells.Environ. Res.201513625326310.1016/j.envres.2014.11.00625460644
    [Google Scholar]
  109. Gonzalez-CarterD.A. LeoB.F. RuenraroengsakP. ChenS. GoodeA.E. TheodorouI.G. ChungK.F. CarzanigaR. ShafferM.S.P. DexterD.T. RyanM.P. PorterA.E. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of h2s-synthesizing enzymes.Sci. Rep.2017714287110.1038/srep4287128251989
    [Google Scholar]
  110. SkalskaJ. StrużyńskaL. Toxic effects of silver nanoparticles in mammals – does a risk of neurotoxicity exist?Folia Neuropathol.20154428130010.5114/fn.2015.5654326785363
    [Google Scholar]
  111. De MatteisV. RizzelloL. CascioneM. Liatsi-DouvitsaE. ApricenoA. RinaldiR. Green plasmonic nanoparticles and bio-inspired stimuli-responsive vesicles in cancer therapy application.Nanomaterials 2020106108310.3390/nano1006108332486479
    [Google Scholar]
  112. ZhangX. LiY. HuY. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer’s rat model.Colloids Surf. A Physicochem. Eng. Asp.202060512528810.1016/j.colsurfa.2020.125288
    [Google Scholar]
  113. SardjonoR.E. KhoerunnisaF. MusthopaI. AkasumN.S.M.M. RachmawatiR. Synthesize, characterization, and anti-parkinson activity of silver-indonesian velvet beans ( mucuna pruriens ) seed extract nanoparticles (agmpn).J. Phys. Conf. Ser.2018101301219510.1088/1742‑6596/1013/1/012195
    [Google Scholar]
  114. YoussifK.A. HaggagE.G. ElshamyA.M. RabehM.A. GabrN.M. SeleemA. SalemM.A. HusseinA.S. KrischkeM. MuellerM.J. AbdelmohsenU.R. Anti-alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of lampranthus coccineus and malephora lutea aqueous extracts.PLoS One20191411e022378110.1371/journal.pone.022378131693694
    [Google Scholar]
  115. NagS. MitraO. Sankarganesh P. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CEONPS): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  116. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  117. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  118. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  119. KongS.D. LeeJ. RamachandranS. EliceiriB.P. ShubayevV.I. LalR. JinS. Magnetic targeting of nanoparticles across the intact blood–brain barrier.J. Control. Release20121641495710.1016/j.jconrel.2012.09.02123063548
    [Google Scholar]
  120. GoodfellowF.T. SimchickG.A. MortensenL.J. SticeS.L. ZhaoQ. Tracking and quantification of magnetically labeled stem cells using magnetic resonance imaging.Adv. Funct. Mater.201626223899391510.1002/adfm.20150444428751853
    [Google Scholar]
  121. YuanM. WangY. QinY.X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF).Nanomedicine20181441337134710.1016/j.nano.2018.03.00429627520
    [Google Scholar]
  122. NiuS. ZhangL.K. ZhangL. ZhuangS. ZhanX. ChenW.Y. DuS. YinL. YouR. LiC.H. GuanY.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model.Theranostics20177234435610.7150/thno.1656228042339
    [Google Scholar]
  123. DaadiM.M. HuS. KlausnerJ. LiZ. SofilosM. SunG. WuJ.C. SteinbergG.K. Imaging neural stem cell graft-induced structural repair in stroke.Cell Transplant.201322588189210.3727/096368912X65614423044338
    [Google Scholar]
  124. DowdingJ.M. SongW. BossyK. KarakotiA. KumarA. KimA. BossyB. SealS. EllismanM.H. PerkinsG. SelfW.T. Bossy-WetzelE. Cerium oxide nanoparticles protect against aβ-induced mitochondrial fragmentation and neuronal cell death.Cell Death Differ.201421101622163210.1038/cdd.2014.7224902900
    [Google Scholar]
  125. AfifiM. AlmaghrabiO.A. KadasaN.M. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes.Biomed Res. Int.2015201515357310.1155/2015/153573
    [Google Scholar]
  126. LaiL. ZhaoC. SuM. LiX. LiuX. JiangH. AmatoreC. WangX. In vivo target bio-imaging of Alzheimer’s disease by fluorescent zinc oxide nanoclusters.Biomater. Sci.2016471085109110.1039/C6BM00233A27229662
    [Google Scholar]
  127. SoniS. RuhelaR.K. MedhiB. Nanomedicine in central nervous system (CNS) disorders: A present and future prospective.Adv. Pharm. Bull.20166331933510.15171/apb.2016.04427766216
    [Google Scholar]
  128. YarjanliZ. GhaediK. EsmaeiliA. RahgozarS. ZarrabiA. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation.BMC Neurosci.20171815110.1186/s12868‑017‑0369‑928651647
    [Google Scholar]
  129. BrambillaD. Le DroumaguetB. NicolasJ. HashemiS.H. WuL.P. MoghimiS.M. CouvreurP. AndrieuxK. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues.Nanomedicine20117552154010.1016/j.nano.2011.03.00821477665
    [Google Scholar]
  130. NarayanaS. GowdaB.H.J. HaniU. ShimuS.S. PaulK. DasA. AshiqueS. AhmedM.G. TarighatM.A. AbdiG. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges.J. Nanobiotechnology202422142710.1186/s12951‑024‑02701‑339030546
    [Google Scholar]
  131. CupaioliF.A. ZuccaF.A. BoraschiD. ZeccaL. Engineered nanoparticles. how brain friendly is this new guest?Prog. Neurobiol.2014119-120203810.1016/j.pneurobio.2014.05.00224820405
    [Google Scholar]
  132. ZhangB. YanW. ZhuY. YangW. LeW. ChenB. ZhuR. ChengL. Nanomaterials in neural‐stem‐cell‐mediated regenerative medicine: Imaging and treatment of neurological diseases.Adv. Mater.20183017170569410.1002/adma.20170569429543350
    [Google Scholar]
  133. YangW. GuoW. GongX. ZhangB. WangS. ChenN. YangW. TuY. FangX. ChangJ. Facile synthesis of Gd-Cu-In-s/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging.ACS Appl. Mater. Interfaces2015733187591876810.1021/acsami.5b0537226257133
    [Google Scholar]
  134. TokurakuK. MarquardtM. IkezuT. Real-time imaging and quantification of amyloid-beta peptide aggregates by novel quantum-dot nanoprobes.PLoS One2009412e849210.1371/journal.pone.000849220041162
    [Google Scholar]
  135. MaW. LiuH.T. LongY.T. Monitoring dopamine quinone-induced dopaminergic neurotoxicity using dopamine functionalized quantum dots.ACS Appl. Mater. Interfaces2015726143521435810.1021/acsami.5b0304426070031
    [Google Scholar]
  136. SanchezD.N.R. BertanhaM. FernandesT.D. ResendeL.A.L. DeffuneE. AmorimR.M. Effects of canine and murine mesenchymal stromal cell transplantation on peripheral nerve regeneration.Int. J. Stem Cells2017101839210.15283/ijsc1603728446003
    [Google Scholar]
  137. AgarwalR. DomowiczM.S. SchwartzN.B. HenryJ. MedintzI. DelehantyJ.B. StewartM.H. SusumuK. HustonA.L. DeschampsJ.R. DawsonP.E. PalomoV. DawsonG. Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain.ACS Chem. Neurosci.20156349450410.1021/acschemneuro.5b0002225688887
    [Google Scholar]
  138. HopkinsL.E. PatchinE.S. ChiuP.L. BrandenbergerC. Smiley-JewellS. PinkertonK.E. Nose-to-brain transport of aerosolised quantum dots following acute exposure.Nanotoxicology20148888589310.3109/17435390.2013.84226724040866
    [Google Scholar]
  139. GuoX. LieQ. LiuY. JiaZ. GongY. YuanX. LiuJ. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation.ACS Appl. Mater. Interfaces20211326302613027310.1021/acsami.1c0069034169710
    [Google Scholar]
  140. LiuJ. ErogbogboF. YongK.T. YeL. LiuJ. HuR. ChenH. HuY. YangY. YangJ. RoyI. KarkerN.A. SwihartM.T. PrasadP.N. Assessing clinical prospects of silicon quantum dots: Studies in mice and monkeys.ACS Nano2013787303731010.1021/nn402923423841561
    [Google Scholar]
  141. ShangW. ZhangX. ZhangM. FanZ. SunY. HanM. FanL. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells.Nanoscale20146115799580610.1039/C3NR06433F24740121
    [Google Scholar]
  142. LiS. AmatD. PengZ. VanniS. RaskinS. De AnguloG. OthmanA.M. GrahamR.M. LeblancR.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells.Nanoscale2016837166621666910.1039/C6NR05055G27714111
    [Google Scholar]
  143. KnieselU. WolburgH. Tight junctions of the blood-brain barrier.Cell. Mol. Neurobiol.2000201577610.1023/A:100699591083610690502
    [Google Scholar]
  144. QianJ. LiX. WeiM. GaoX. XuZ. HeS. Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging.Opt. Express20081624195681957810.1364/OE.16.01956819030044
    [Google Scholar]
  145. BarandehF. NguyenP.L. KumarR. IacobucciG.J. KuznickiM.L. KostermanA. BergeyE.J. PrasadP.N. GunawardenaS. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo.PLoS One201271e2942410.1371/journal.pone.002942422238611
    [Google Scholar]
  146. LiuD. LinB. ShaoW. ZhuZ. JiT. YangC. In vitro and in vivo studies on the transport of pegylated silica nanoparticles across the blood-brain barrier.ACS Appl. Mater. Interfaces2014632131213610.1021/am405219u24417514
    [Google Scholar]
  147. JampilekJ. ZarubaK. OravecM. KunesM. BabulaP. UlbrichP. BrezaniovaI. OpatrilovaR. TriskaJ. SuchyP. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.Biomed Res. Int.2015201581267310.1155/2015/812673
    [Google Scholar]
  148. SolankiA. ShahS. YinP.T. LeeK.B. Nanotopography-mediated reverse uptake for sirna delivery into neural stem cells to enhance neuronal differentiation.Sci. Rep.201331155310.1038/srep0155323531983
    [Google Scholar]
  149. SchmidtN. SchulzeJ. WarwasD.P. EhlertN. LenarzT. WarneckeA. BehrensP. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro.PLoS One2018133e019477810.1371/journal.pone.019477829584754
    [Google Scholar]
  150. SunR. LiuM. XuZ. SongB. HeY. WangH. Silicon-based nanoprobes cross the blood—brain barrier for photothermal therapy of glioblastoma.Nano Res.20221587392740110.1007/s12274‑022‑4367‑6
    [Google Scholar]
  151. Pinzón-DazaM. CampiaI. KopeckaJ. GarzónR. GhigoD. RigantC. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier.Curr. Drug Metab.201314662564010.2174/138920021131406000123869808
    [Google Scholar]
  152. CamposD.F.D MarquezA.B O’SeanainC. FischerH. BlaeserA. VogtM. CoralloD. AveicS. Exploring cancer cell behavior in vitro in three-dimensional multicellular bioprintable collagen-based hydrogels.Cancers 201911218010.3390/cancers1102018030764492
    [Google Scholar]
  153. NogueiraE. GomesA.C. PretoA. Cavaco-PauloA. Design of liposomal formulations for cell targeting.Colloids Surf. B Biointerfaces201513651452610.1016/j.colsurfb.2015.09.03426454541
    [Google Scholar]
  154. TamV.H. SosaC. LiuR. YaoN. PriestleyR.D. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier.Int. J. Pharm.20165151-233134210.1016/j.ijpharm.2016.10.03127769885
    [Google Scholar]
  155. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  156. ElizondoE. MorenoE. CabreraI. CórdobaA. SalaS. VecianaJ. VentosaN. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine.Prog. Mol. Biol. Transl. Sci.201110415210.1016/B978‑0‑12‑416020‑0.00001‑222093216
    [Google Scholar]
  157. ScherrmannJ.M. Drug delivery to brain via the blood–brain barrier.Vascul. Pharmacol.200238634935410.1016/S1537‑1891(02)00202‑112529929
    [Google Scholar]
  158. HelmF. FrickerG. Liposomal conjugates for drug delivery to the central nervous system.Pharmaceutics20157274210.3390/pharmaceutics7020027
    [Google Scholar]
  159. PardridgeW.M. Blood–brain barrier delivery of protein and non-viral gene therapeutics with molecular trojan horses.J. Control. Release2007122334534810.1016/j.jconrel.2007.04.00117512078
    [Google Scholar]
  160. VisserC.C. StevanovićS. VoorwindenL.H. BlooisL. GaillardP.J. DanhofM. CrommelinD.J.A. BoerA.G. Targeting liposomes with protein drugs to the blood–brain barrier in vitro.Eur. J. Pharm. Sci.2005252-329930510.1016/j.ejps.2005.03.00815911226
    [Google Scholar]
  161. ReF. Salvati SesanaS. CambianicaI. SanciniG. MasseriniM. GregoriM. Liposomes functionalized to overcome the blood–brain barrier and to target amyloid-β peptide: The chemical design affects the permeability across an in vitro model.Int. J. Nanomedicine201381749175810.2147/IJN.S4278323674890
    [Google Scholar]
  162. McDannoldN. ArvanitisC.D. VykhodtsevaN. LivingstoneM.S. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques.Cancer Res.201272143652366310.1158/0008‑5472.CAN‑12‑012822552291
    [Google Scholar]
  163. GuoJ. ChenG. WuJ. ChinC.T. ShenY. ChenJ. SuoY. Passive delivery of liposomes to mouse brain after blood-brain barrier opening induced by focused ultrasound with microbubbles.IEEE Int. Ultrason. Symp.20151410.1109/ULTSYM.2015.0405
    [Google Scholar]
  164. DingH. SagarV. AgudeloM. Pilakka-KanthikeelS. AtluriV.S.R. RaymondA. SamikkannuT. NairM.P. Enhanced blood–brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation.Nanotechnology201425505510110.1088/0957‑4484/25/5/05510124406534
    [Google Scholar]
  165. SawantR.R. TorchilinV.P. Challenges in development of targeted liposomal therapeutics.AAPS J.201214230331510.1208/s12248‑012‑9330‑022415612
    [Google Scholar]
  166. YuM.K. ParkJ. JonS. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.Theranostics20122134410.7150/thno.346322272217
    [Google Scholar]
  167. AkitaH. TamaruM. KajimotoK. SatoY. HatakeyamaH. HarashimaH. NakataniT. Application of apolipoprotein e-modified liposomal nanoparticles as a carrier for delivering dna and nucleic acid in the brain.Int. J. Nanomedicine201494267427610.2147/IJN.S6540225228805
    [Google Scholar]
  168. ZhengX. ShaoX. ZhangC. TanY. LiuQ. WanX. ZhangQ. XuS. JiangX. Intranasal h102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease.Pharm. Res.201532123837384910.1007/s11095‑015‑1744‑926113236
    [Google Scholar]
  169. GuoJ.W. GuanP.P. DingW.Y. WangS.L. HuangX.S. WangZ.Y. WangP. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer’s disease by concurrently inducing neurogenesis and reducing apoptosis in app/ps1 transgenic mice.Biomaterials201714510612710.1016/j.biomaterials.2017.07.02328865290
    [Google Scholar]
  170. ManciniS. BalducciC. MicottiE. TolomeoD. ForloniG. MasseriniM. ReF. Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of alzheimer disease.J. Control. Release201725812112910.1016/j.jconrel.2017.05.01328501671
    [Google Scholar]
  171. CunhaS. AmaralM. LoboJ. SilvaA. Therapeutic strategies for Alzheimer’s and Parkinson’s diseases by means of drug delivery systems.Curr. Med. Chem.201623313618363110.2174/092986732366616082416240127554805
    [Google Scholar]
  172. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  173. SchiborrC. KocherA. BehnamD. JandasekJ. ToelstedeS. FrankJ. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes.Mol. Nutr. Food Res.201458351652710.1002/mnfr.20130072424402825
    [Google Scholar]
  174. ZhangZ.G. ChoppM. Exosomes in stroke pathogenesis and therapy.J. Clin. Invest.201612641190119710.1172/JCI8113327035810
    [Google Scholar]
  175. GyörgyB. HungM.E. BreakefieldX.O. LeonardJ.N. Therapeutic applications of extracellular vesicles: Clinical promise and open questions.Annu. Rev. Pharmacol. Toxicol.201555143946410.1146/annurev‑pharmtox‑010814‑12463025292428
    [Google Scholar]
  176. BaniganM.G. KaoP.F. KozubekJ.A. WinslowA.R. MedinaJ. CostaJ. SchmittA. SchneiderA. CabralH. Cagsal-GetkinO. VanderburgC.R. DelalleI. Differential expression of exosomal micrornas in prefrontal cortices of schizophrenia and bipolar disorder patients.PLoS One201381e4881410.1371/journal.pone.004881423382797
    [Google Scholar]
  177. MoskowitzM.A. LoE.H. IadecolaC. The science of stroke: Mechanisms in search of treatments.Neuron201067218119810.1016/j.neuron.2010.07.00220670828
    [Google Scholar]
  178. DoeppnerT.R. HerzJ. GörgensA. SchlechterJ. LudwigA.K. RadtkeS. de MiroschedjiK. HornP.A. GiebelB. HermannD.M. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression.Stem Cells Transl. Med.20154101131114310.5966/sctm.2015‑007826339036
    [Google Scholar]
  179. ZhangY. ChoppM. MengY. KatakowskiM. XinH. MahmoodA. XiongY. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury.J. Neurosurg.2015122485686710.3171/2014.11.JNS1477025594326
    [Google Scholar]
  180. XinH. LiY. LiuZ. WangX. ShangX. CuiY. ZhangZ.G. ChoppM. Mir-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles.Stem Cells201331122737274610.1002/stem.140923630198
    [Google Scholar]
  181. MatsumotoJ. StewartT. BanksW.A. ZhangJ. The transport mechanism of extracellular vesicles at the blood-brain barrier.Curr. Pharm. Des.201823406206621410.2174/138161282366617091316473828914201
    [Google Scholar]
  182. ChenC.C. LiuL. MaF. WongC.W. GuoX.E. ChackoJ.V. FarhoodiH.P. ZhangS.X. ZimakJ. SégalinyA. RiazifarM. PhamV. DigmanM.A. PoneE.J. ZhaoW. Elucidation of exosome migration across the blood–brain barrier model in vitro.Cell. Mol. Bioeng.20169450952910.1007/s12195‑016‑0458‑328392840
    [Google Scholar]
  183. MontecalvoA. LarreginaA.T. ShufeskyW.J. Beer StolzD. SullivanM.L.G. KarlssonJ.M. BatyC.J. GibsonG.A. ErdosG. WangZ. MilosevicJ. TkachevaO.A. DivitoS.J. JordanR. Lyons-WeilerJ. WatkinsS.C. MorelliA.E. Mechanism of transfer of functional micrornas between mouse dendritic cells via exosomes.Blood2012119375676610.1182/blood‑2011‑02‑33800422031862
    [Google Scholar]
  184. KusumaR.J. MancaS. FriemelT. SukreetS. NguyenC. ZempleniJ. Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis.Am. J. Physiol. Cell Physiol.201631010C800C80710.1152/ajpcell.00169.201526984735
    [Google Scholar]
  185. QuM. LinQ. HuangL. FuY. WangL. HeS. FuY. YangS. ZhangZ. ZhangL. SunX. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease.J. Control. Release201828715616610.1016/j.jconrel.2018.08.03530165139
    [Google Scholar]
  186. MoradG. CarmanC.V. HagedornE.J. PerlinJ.R. ZonL.I. MustafaogluN. ParkT.E. IngberD.E. DaisyC.C. MosesM.A. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis.ACS Nano20191312138531386510.1021/acsnano.9b0439731479239
    [Google Scholar]
  187. HaqqaniA.S. DelaneyC.E. BrunetteE. BaumannE. FarringtonG.K. SiskW. EldredgeJ. DingW. TremblayT.-L. StanimirovicD.B. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier.J. Cereb. Blood Flow Metab.20183872774010.1177/0271678X17740031
    [Google Scholar]
  188. TofarisG.K. A critical assessment of exosomes in the pathogenesis and stratification of Parkinson’s disease.J. Parkinsons Dis.20177456957610.3233/JPD‑17117628922170
    [Google Scholar]
  189. HeidarzadehM. Gürsoy-ÖzdemirY. KayaM. Eslami AbrizA. ZarebkohanA. RahbarghaziR. SokulluE. Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls.Cell Biosci.202111114210.1186/s13578‑021‑00650‑034294165
    [Google Scholar]
  190. WangY.I. AbaciH.E. ShulerM.L. Microfluidic blood–brain barrier model provides in vivo‐like barrier properties for drug permeability screening.Biotechnol. Bioeng.2017114118419410.1002/bit.2604527399645
    [Google Scholar]
  191. HaqqaniA.S. ThomG. BurrellM. DelaneyC.E. BrunetteE. BaumannE. SodjaC. JezierskiA. WebsterC. StanimirovicD.B. Intracellular sorting and transcytosis of the rat transferrin receptor antibody ox26 across the blood–brain barrier in vitro is dependent on its binding affinity.J. Neurochem.2018146673575210.1111/jnc.1448229877588
    [Google Scholar]
  192. CullenP.J. SteinbergF. To degrade or not to degrade: Mechanisms and significance of endocytic recycling.Nat. Rev. Mol. Cell Biol.2018191167969610.1038/s41580‑018‑0053‑730194414
    [Google Scholar]
  193. BhattP. VermaA. Al-AbassiF. AnwarF. KumarV. PandaB. Development of surface-engineered plga nanoparticulate-delivery system of tet-1-conjugated nattokinase enzyme for inhibition of aβ40 plaques in Alzheimer’s disease.Int. J. Nanomedicine2017128749876810.2147/IJN.S14454529263666
    [Google Scholar]
  194. AminF.U. ShahS.A. BadshahH. KhanM. KimM.O. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/jnk pathway against aβ1–42-induced oxidative stress.J. Nanobiotechnology20171511210.1186/s12951‑016‑0227‑428173812
    [Google Scholar]
  195. UmerskaA. GaucherC. Oyarzun-AmpueroF. Fries-RaethI. ColinF. Villamizar-SarmientoM. MaincentP. Sapin-MinetA. Polymeric nanoparticles for increasing oral bioavailability of curcumin.Antioxidants2018744610.3390/antiox704004629587350
    [Google Scholar]
  196. ZhangC. WanX. ZhengX. ShaoX. LiuQ. ZhangQ. QianY. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice.Biomaterials201435145646510.1016/j.biomaterials.2013.09.06324099709
    [Google Scholar]
  197. ShenY. CaoB. SnyderN.R. WoeppelK.M. ElesJ.R. CuiX.T. Ros responsive resveratrol delivery from ldlr peptide conjugated pla-coated mesoporous silica nanoparticles across the blood–brain barrier.J. Nanobiotechnology20181611310.1186/s12951‑018‑0340‑729433522
    [Google Scholar]
  198. SalianR.T. NoushidaN. MohantoS. GowdaB.H.J. ChakrabortyM. NasrineA. NarayanaS. AhmedM.G. Development of optimized resveratrol/piperine-loaded phytosomal nanocomplex for isoproterenol-induced myocardial infarction treatment.J. Liposome Res.20243446405710.1080/08982104.2024.237813039001631
    [Google Scholar]
  199. RogerM. ClavreulA. Venier-JulienneM.C. PassiraniC. SindjiL. SchillerP. Montero-MeneiC. MeneiP. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors.Biomaterials201031328393840110.1016/j.biomaterials.2010.07.04820688391
    [Google Scholar]
  200. GaucherG. DufresneM.H. SantV.P. KangN. MaysingerD. LerouxJ.C. Block copolymer micelles: Preparation, characterization and application in drug delivery.J. Control. Release20051091-316918810.1016/j.jconrel.2005.09.03416289422
    [Google Scholar]
  201. AndréE.M. PassiraniC. SeijoB. SanchezA. Montero-MeneiC.N. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to huntington’s disease.Biomaterials20168334736210.1016/j.biomaterials.2015.12.00826802487
    [Google Scholar]
  202. PahujaR. SethK. ShuklaA. ShuklaR.K. BhatnagarP. ChauhanL.K.S. SaxenaP.N. ArunJ. ChaudhariB.P. PatelD.K. SinghS.P. ShuklaR. KhannaV.K. KumarP. ChaturvediR.K. GuptaK.C. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.ACS Nano2015954850487110.1021/nn506408v25825926
    [Google Scholar]
  203. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  204. FonD. Al-AbboodiA. ChanP.P.Y. ZhouK. CrackP. FinkelsteinD.I. ForsytheJ.S. Effects of GDNF-loaded injectable gelatin-based hydrogels on endogenous neural progenitor cell migration.Adv. Healthc. Mater.20143576177410.1002/adhm.20130028724596339
    [Google Scholar]
  205. Carballo-MolinaO.A. Sánchez-NavarroA. López-OrnelasA. Lara-RodarteR. SalazarP. Campos-RomoA. Ramos-MejíaV. VelascoI. Semaphorin 3c released from a biocompatible hydrogel guides and promotes axonal growth of rodent and human dopaminergic neurons.Tissue Eng. Part A20162211-1285086110.1089/ten.tea.2016.000827174503
    [Google Scholar]
  206. ChengT.Y. ChenM.H. ChangW.H. HuangM.Y. WangT.W. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.Biomaterials20133482005201610.1016/j.biomaterials.2012.11.04323237515
    [Google Scholar]
  207. GarshasbiH.R. NaghibS.M. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review.Curr. Pharm. Des.202329443546356210.2174/011381612828380623121107303138115614
    [Google Scholar]
  208. GarshasbiH. SalehiS. NaghibS.M. GhorbanzadehS. ZhangW. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems.Front. Bioeng. Biotechnol.202310112677410.3389/fbioe.2022.112677436698640
    [Google Scholar]
  209. RochaD.N. CarvalhoE.D. PêgoA.P. High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases.Drug Discov. Today20162191355136610.1016/j.drudis.2016.05.00527178019
    [Google Scholar]
  210. ChoiS.H. KimY.H. HebischM. SliwinskiC. LeeS. D’AvanzoC. ChenH. HooliB. AsselinC. MuffatJ. KleeJ.B. ZhangC. WaingerB.J. PeitzM. KovacsD.M. WoolfC.J. WagnerS.L. TanziR.E. KimD.Y. A three-dimensional human neural cell culture model of Alzheimer’s disease.Nature2014515752627427810.1038/nature1380025307057
    [Google Scholar]
  211. VashistA. KaushikA. VashistA. BalaJ. Nikkhah-MoshaieR. SagarV. NairM. Nanogels as potential drug nanocarriers for CNS drug delivery.Drug Discov. Today20182371436144310.1016/j.drudis.2018.05.01829775669
    [Google Scholar]
  212. KarM. ShihY.R.V. VelezD.O. CabralesP. VargheseS. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.Biomaterials20167718619710.1016/j.biomaterials.2015.11.01826606444
    [Google Scholar]
  213. TukmachevD. ForostyakS. KociZ. ZaviskovaK. VackovaI. VybornyK. SandvigI. SandvigA. MedberryC.J. BadylakS.F. SykovaE. KubinovaS. Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair.Tissue Eng. Part A2016223-430631710.1089/ten.tea.2015.042226729284
    [Google Scholar]
  214. Perez-EstenagaI. ProsperF. PelachoB. Allogeneic mesenchymal stem cells and biomaterials: The perfect match for cardiac repair?Int. J. Mol. Sci.20181910323610.3390/ijms1910323630347686
    [Google Scholar]
  215. DenmarkD.J. HydeR.H. GladneyC. PhanM.H. BishtK.S. SrikanthH. MukherjeeP. WitanachchiS. Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications.Drug Deliv.20172411317132410.1080/10717544.2017.137316428906151
    [Google Scholar]
  216. TsintouM. WangC. DalamagkasK. WengD. ZhangY-N. NiuW. 5 - Nanogels for biomedical applications: Drug delivery, imaging, tissue engineering, and biosensors.Nanogels for biomedical applications.20178712410.1016/B978‑0‑08‑100963‑5.00005‑7
    [Google Scholar]
  217. AzadiA. HamidiM. RouiniM.R. Methotrexate-loaded chitosan nanogels as ‘trojan horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization.Int. J. Biol. Macromol.20136252353010.1016/j.ijbiomac.2013.10.00424120961
    [Google Scholar]
  218. AzadiA. HamidiM. KhoshayandM.R. AminiM. RouiniM.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery.Carbohydr. Polym.201290146247110.1016/j.carbpol.2012.05.06624751066
    [Google Scholar]
  219. GuanQ.F. HanZ.M. ZhuY. XuW.L. YangH.B. LingZ.C. YanB.B. YangK.P. YinC.H. WuH. YuS.H. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers.Nano Lett.202121295295810.1021/acs.nanolett.0c0370733401909
    [Google Scholar]
  220. GartnerZ.J. HuJ.L. Guiding tissue-scale self-organization.Nat. Mater.20212012310.1038/s41563‑020‑00885‑133340008
    [Google Scholar]
  221. ZhaoZ. WangZ. LiG. CaiZ. WuJ. WangL. DengL. CaiM. CuiW. Injectable microfluidic hydrogel microspheres for cell and drug delivery.Adv. Funct. Mater.20213131210333910.1002/adfm.202103339
    [Google Scholar]
  222. ChaG.D. LeeW.H. SunwooS.H. KangD. KangT. ChoK.W. KimM. ParkO.K. JungD. LeeJ. ChoiS.H. HyeonT. KimD.H. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications.ACS Nano202216155456710.1021/acsnano.1c0764935014797
    [Google Scholar]
  223. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  224. BassoJ. MirandaA. NunesS. CovaT. SousaJ. VitorinoC. PaisA. Hydrogel-based drug delivery nanosystems for the treatment of brain tumorsGels201841610.3390/gels4030062
    [Google Scholar]
  225. NeamtuI. RusuA.G. DiaconuA. NitaL.E. ChiriacA.P. Basic concepts and recent advances in nanogels as carriers for medical applications.Drug Deliv.201724153955710.1080/10717544.2016.127623228181831
    [Google Scholar]
  226. CugginoJ.C. BlancoE.R.O. GugliottaL.M. IgarzabalC.I.A. CalderónM. Crossing biological barriers with nanogels to improve drug delivery performance.J. Control. Release201930722124610.1016/j.jconrel.2019.06.00531175895
    [Google Scholar]
  227. YinY. HuB. YuanX. CaiL. GaoH. YangQ. Nanogel: A versatile nano-delivery system for biomedical applications.Pharmaceutics202012329010.3390/pharmaceutics1203029032210184
    [Google Scholar]
  228. StawickiB. SchacherT. ChoH. Nanogels as a versatile drug delivery system for brain cancerGels2021716310.3390/gels7020063
    [Google Scholar]
  229. SinghS. DrudeN. BlankL. DesaiP.B. KönigsH. RüttenS. LangenK.J. MöllerM. MottaghyF.M. MorgenrothA. Protease responsive nanogels for transcytosis across the blood−brain barrier and intracellular delivery of radiopharmaceuticals to brain tumor cells.Adv. Healthc. Mater.20211020210081210.1002/adhm.20210081234490744
    [Google Scholar]
  230. SongP. SongN. LiL. WuM. LuZ. ZhaoX. Angiopep-2-modified carboxymethyl chitosan-based ph/reduction dual-stimuli-responsive nanogels for enhanced targeting glioblastoma.Biomacromolecules20212272921293410.1021/acs.biomac.1c0031434180218
    [Google Scholar]
  231. ShatsbergZ. ZhangX. OfekP. MalhotraS. KrivitskyA. ScomparinA. TiramG. CalderónM. HaagR. Satchi-FainaroR. Functionalized nanogels carrying an anticancer microrna for glioblastoma therapy.J. Control. Release201623915916810.1016/j.jconrel.2016.08.02927569663
    [Google Scholar]
  232. ChenZ. LiuF. ChenY. LiuJ. WangX. ChenA.T. DengG. ZhangH. LiuJ. HongZ. ZhouJ. Targeted delivery of crispr/cas9‐mediated cancer gene therapy via liposome‐templated hydrogel nanoparticles.Adv. Funct. Mater.20172746170303610.1002/adfm.20170303629755309
    [Google Scholar]
  233. TurabeeM.H. JeongT.H. RamalingamP. KangJ.H. KoY.T. N,n,n-trimethyl chitosan embedded in situ pluronic f127 hydrogel for the treatment of brain tumor.Carbohydr. Polym.201920330230910.1016/j.carbpol.2018.09.06530318217
    [Google Scholar]
  234. VellimanaA.K. RecinosV.R. HwangL. FowersK.D. LiK.W. ZhangY. OkonmaS. EberhartC.G. BremH. TylerB.M. Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model.J. Neurooncol.2013111322923610.1007/s11060‑012‑1014‑123224713
    [Google Scholar]
  235. LiuJ. LiM. HuangY. ZhangL. LiW. CaoP. MinW. LiJ. JingW. A nanogel with effective blood-brain barrier penetration ability through passive and active dual-targeting function.J. Nanomater.2021202111110.1155/2021/6623031
    [Google Scholar]
  236. BrachiG. Ruiz-RamírezJ. DograP. WangZ. CristiniV. CiardelliG. RostomilyR.C. FerrariM. MikheevA.M. BlancoE. MattuC. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma.Nanoscale20201246238382385010.1039/D0NR05053A33237080
    [Google Scholar]
  237. LinF.W. ChenP.Y. WeiK.C. HuangC.Y. WangC.K. YangH.W. Rapid in situ MRI traceable gel-forming dual-drug delivery for synergistic therapy of brain tumor.Theranostics2017792524253610.7150/thno.1985628744332
    [Google Scholar]
  238. ZhangJ. LiuR. ZhangD. ZhangZ. ZhuJ. XuL. GuoY. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease.Colloids Surf. B Biointerfaces202120011158410.1016/j.colsurfb.2021.11158433508658
    [Google Scholar]
  239. da Silva CórneoE. de Bem SilveiraG. ScusselR. CorreaM.E.A.B. da Silva AbelJ. LuizG.P. FeuserP.E. SilveiraP.C.L. Machado-de-ÁvilaR.A. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease.Colloids Surf. B Biointerfaces202019611130210.1016/j.colsurfb.2020.11130232777662
    [Google Scholar]
  240. WahyuningtyasD. ChenW.H. HeR.Y. HuangY.A. TsaoC.K. HeY.J. YuC.Y. LuP.C. ChenY.C. WangS.H. NgK.C. Po-Wen ChenB. WeiP.K. ShieJ.J. KuoC.H. SunY.H. Jen-Tse HuangJ. Polyglutamine-specific gold nanoparticle complex alleviates mutant huntingtin-induced toxicity.ACS Appl. Mater. Interfaces20211351608946090610.1021/acsami.1c1875434914364
    [Google Scholar]
  241. MarcuzzoS. IsaiaD. BonannoS. MalacarneC. CavalcanteP. ZacheoA. LaquintanaV. DenoraN. SanavioB. SalvatiE. AndreozziP. StellacciF. KrolS. Mellado-LópezM. MantegazzaR. Moreno-ManzanoV. BernasconiP. Fm19g11-loaded Gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from als mice.Cells20198327910.3390/cells803027930909571
    [Google Scholar]
  242. CongW. BaiR. LiY.F. WangL. ChenC. Selenium nanoparticles as an efficient nanomedicine for the therapy of huntington’s disease.ACS Appl. Mater. Interfaces20191138347253473510.1021/acsami.9b1231931479233
    [Google Scholar]
  243. Leyton-JaimesM.F. IvertP. HoeberJ. HanY. FeilerA. ZhouC. PankratovaS. Shoshan-BarmatzV. IsraelsonA. KozlovaE.N. Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of als.Sci. Rep.20201012067510.1038/s41598‑020‑77578‑x33244084
    [Google Scholar]
  244. KimD. KwonH.J. HyeonT. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid‐β in Alzheimer’s disease.Adv. Mater.20193119180796510.1002/adma.20180796530920695
    [Google Scholar]
  245. XuZ. QuA. WangW. LuM. ShiB. ChenC. HaoC. XuL. SunM. XuC. KuangH. Facet‐dependent biodegradable mn 3 o 4 nanoparticles for ameliorating Parkinson’s disease.Adv. Healthc. Mater.20211023210131610.1002/adhm.202101316
    [Google Scholar]
  246. YangM. JinL. WuZ. XieY. ZhangP. WangQ. YanS. ChenB. LiangH. NamanC.B. ZhangJ. HeS. YanX. ZhaoL. CuiW. PLGA-PEG nanoparticles facilitate in vivo anti-alzheimer’s effects of fucoxanthin, a marine carotenoid derived from edible brown algae.J. Agric. Food Chem.202169349764977710.1021/acs.jafc.1c0056934404210
    [Google Scholar]
  247. ChenT. LiuW. XiongS. LiD. FangS. WuZ. WangQ. ChenX. Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease.ACS Appl. Mater. Interfaces20191148452764528910.1021/acsami.9b1604731638771
    [Google Scholar]
  248. BiroliniG. ValenzaM. OttonelliI. PassoniA. FavagrossaM. DuskeyJ.T. BombaciM. VandelliM.A. ColomboL. BagnatiR. CacciaC. LeoniV. TaroniF. ForniF. RuoziB. SalmonaM. TosiG. CattaneoE. Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington’s disease.J. Control. Release202133058759810.1016/j.jconrel.2020.12.05133412229
    [Google Scholar]
  249. MedinaD.X. ChungE.P. TeagueC.D. BowserR. SirianniR.W. Intravenously administered, retinoid activating nanoparticles increase lifespan and reduce neurodegeneration in the sod1g93a mouse model of als.Front. Bioeng. Biotechnol.2020822410.3389/fbioe.2020.0022432292776
    [Google Scholar]
  250. Lopez-BertoniH. KozielskiK.L. RuiY. LalB. VaughanH. WilsonD.R. MihelsonN. EberhartC.G. LaterraJ. GreenJ.J. Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating mirnas inhibit glioblastoma growth and prolong survival.Nano Lett.20181874086409410.1021/acs.nanolett.8b0039029927251
    [Google Scholar]
  251. Sánchez-LópezE. EttchetoM. EgeaM.A. EspinaM. CanoA. CalpenaA.C. CaminsA. CarmonaN. SilvaA.M. SoutoE.B. GarcíaM.L. Memantine loaded plga pegylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization.J. Nanobiotechnology20181613210.1186/s12951‑018‑0356‑z29587747
    [Google Scholar]
  252. TaoX. MaoS. ZhangQ. YuH. LiY. HeX. YangS. ZhangZ. YiZ. SongY. FengX. Brain-targeted polysorbate 80-emulsified donepezil drug-loaded nanoparticles for neuroprotection.Nanoscale Res. Lett.202116113210.1186/s11671‑021‑03584‑134406517
    [Google Scholar]
  253. FornagueraC. Feiner-GraciaN. CalderóG. García-CelmaM.J. SolansC. Galantamine-loaded plga nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases.Nanoscale2015728120761208410.1039/C5NR03474D26118655
    [Google Scholar]
  254. VermaS.K. AroraI. JavedK. AkhtarM. SamimM. Enhancement in the neuroprotective power of riluzole against cerebral ischemia using a brain targeted drug delivery vehicle.ACS Appl. Mater. Interfaces2016830197161972310.1021/acsami.6b0177627378322
    [Google Scholar]
  255. YangJ. ShiZ. LiuR. WuY. ZhangX. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology.Theranostics20201073223323910.7150/thno.4029832194864
    [Google Scholar]
  256. KuangJ. SongW. YinJ. ZengX. HanS. ZhaoY.P. TaoJ. LiuC.J. HeX.H. ZhangX.Z. IRGD modified chemo‐immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma.Adv. Funct. Mater.20182817180002510.1002/adfm.201800025
    [Google Scholar]
  257. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future Journal of Pharmaceutical Sciences20217118610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  258. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  259. YuG. YuS. SahaM.L. ZhouJ. CookT.R. YungB.C. ChenJ. MaoZ. ZhangF. ZhouZ. LiuY. ShaoL. WangS. GaoC. HuangF. StangP.J. ChenX. A discrete organoplatinum(ii) metallacage as a multimodality theranostic platform for cancer photochemotherapy.Nat. Commun.201891433510.1038/s41467‑018‑06574‑730337535
    [Google Scholar]
  260. PoonC. McMahonD. HynynenK. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound.Neuropharmacology2017120203710.1016/j.neuropharm.2016.02.01426907805
    [Google Scholar]
  261. KarakatsaniM.E. BlesaJ. KonofagouE.E. Blood–brain barrier opening with focused ultrasound in experimental models of Parkinson’s disease.Mov. Disord.20193491252126110.1002/mds.2780431361356
    [Google Scholar]
  262. MeadB.P. KimN. MillerG.W. HodgesD. MastorakosP. KlibanovA.L. MandellJ.W. HirshJ. SukJ.S. HanesJ. PriceR.J. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model.Nano Lett.2017173533354210.1021/acs.nanolett.7b00616
    [Google Scholar]
  263. ManeyV. SinghM. The synergism of platinum-gold bimetallic nanoconjugates enhances 5-fluorouracil delivery in vitro.Pharmaceutics201911943910.3390/pharmaceutics1109043931480562
    [Google Scholar]
  264. KrsekA. BaticicL. Nanotechnology-driven therapeutic innovations in neurodegenerative disorders: A focus on Alzheimer’s and Parkinson’s disease.Future Pharmacology20244235237910.3390/futurepharmacol4020020
    [Google Scholar]
  265. ChenW. OuyangJ. YiX. XuY. NiuC. ZhangW. WangL. ShengJ. DengL. LiuY.N. GuoS. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy.Adv. Mater.2018303170345810.1002/adma.20170345829194780
    [Google Scholar]
  266. VenkatasJ. SinghM. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer.Nanomedicine 202116151311132810.2217/nnm‑2021‑004434027672
    [Google Scholar]
  267. AderibigbeB.A. Metal-based nanoparticles for the treatment of infectious diseases.Molecules201722137010.3390/molecules22081370
    [Google Scholar]
  268. YaqoobS.B. AdnanR. KhanRMR RashidM. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications.Front Chem.2020837610.3389/fchem.2020.0037632582621
    [Google Scholar]
  269. OladimejiO. AkinyeluJ. SinghM. Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells.J. Biomed. Nanotechnol.202016685386610.1166/jbn.2020.293033187581
    [Google Scholar]
  270. GoundenS. DanielsA. SinghM. Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells.Biointerface Res. Appl. Chem.2020113105721058410.33263/BRIAC113.1057210584
    [Google Scholar]
  271. PattadarD.K. SharmaJ.N. MainaliB.P. ZamboriniF.P. Anodic stripping electrochemical analysis of metal nanoparticles.Curr. Opin. Electrochem.20191314715610.1016/j.coelec.2018.12.006
    [Google Scholar]
  272. LiuY. ZhouH. YinT. GongY. YuanG. ChenL. LiuJ. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease.J. Colloid Interface Sci.201955238840010.1016/j.jcis.2019.05.06631151017
    [Google Scholar]
  273. KanatO. ErtasH. CanerB. Platinum-induced neurotoxicity: A review of possible mechanisms.World J. Clin. Oncol.20178432933510.5306/wjco.v8.i4.32928848699
    [Google Scholar]
  274. SinghD. SinghM. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro.Pharmaceutics202113329810.3390/pharmaceutics1303029833668320
    [Google Scholar]
  275. MoodleyT. SinghM. Sterically stabilised polymeric mesoporous silica nanoparticles improve doxorubicin efficiency: Tailored cancer therapy.Molecules202025374210.3390/molecules2503074232046364
    [Google Scholar]
  276. PadayacheeJ. DanielsA. BalgobindA. AriattiM. SinghM. her-2/Neu and Myc gene silencing in breast cancer: Therapeutic potential and advancement in nonviral nanocarrier systems.Nanomedicine 202015141437145210.2217/nnm‑2019‑045932515263
    [Google Scholar]
  277. RamnandanD. MokhosiS. DanielsA. SinghM. Chitosan, polyethylene glycol and polyvinyl alcohol modified MGFE2o4 ferrite magnetic nanoparticles in doxorubicin delivery: A comparative study in vitro.Molecules20212613389310.3390/molecules2613389334202245
    [Google Scholar]
  278. AnsariM.O. AhmadM.F. ShadabG.G.H.A. SiddiqueH.R. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer.J. Drug Deliv. Sci. Technol.20184517718310.1016/j.jddst.2018.03.017
    [Google Scholar]
  279. SanginarioA. MiccoliB. DemarchiD. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment.Biosensors 201771910.3390/bios701000928212271
    [Google Scholar]
  280. MbathaL.S. MaiyoF. DanielsA. SinghM. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro.Pharmaceutics202113690010.3390/pharmaceutics1306090034204271
    [Google Scholar]
  281. AkinyeluJ. OladimejiO. SinghM. Lactobionic acid-chitosan functionalised gold-coated poly(lactide-co-glycolide) nanoparticles for hepatocyte targeted gene delivery.Adv. Nat. Sci.: Nanosci. Nanotech.202011404501710.1088/2043‑6254/abc9c3
    [Google Scholar]
  282. KassemL.M. IbrahimN.A. FarhanaS.A. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: Does it help in curing alzheimer disease?J. Nanotechnol.202020201810.1155/2020/8147080
    [Google Scholar]
  283. D’MelloS.R. CruzC.N. ChenM.L. KapoorM. LeeS.L. TynerK.M. The evolving landscape of drug products containing nanomaterials in the united states.Nat. Nanotechnol.201712652352910.1038/nnano.2017.6728436961
    [Google Scholar]
  284. YoungJ.S. BernalG. PolsterS.P. NunezL. LarsenG.F. MansourN. PodellM. YaminiB. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors.World Neurosurg.2018117e698e70410.1016/j.wneu.2018.06.11429960096
    [Google Scholar]
  285. AbdolahiM. JafariehA. SarrafP. SedighiyanM. YousefiA. TafakhoriA. AbdollahiH. SalehiniaF. DjalaliM. The neuromodulatory effects of ω-3 fatty acids and nano-curcumin on the COX-2/ INOS network in migraines: A clinical trial study from gene expression to clinical symptoms.Endocr. Metab. Immune Disord. Drug Targets201919687488410.2174/187153031966619021217014030760195
    [Google Scholar]
  286. NayabD.E. DinF. AliH. KausarW.A. UroojS. ZafarM. KhanI. ShabbirK. KhanG.M. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: An up-to-date perspective.J. Nanobiotechnology202321147710.1186/s12951‑023‑02250‑138087359
    [Google Scholar]
  287. PardridgeW.M. Treatment of Alzheimer’s disease and blood–brain barrier drug delivery.Pharmaceuticals 2020131139410.3390/ph1311039433207605
    [Google Scholar]
  288. SunA. BenetL.Z. Late-stage failures of monoclonal antibody drugs: A retrospective case study analysis.Pharmacology20201053-414516310.1159/00050537931910414
    [Google Scholar]
  289. FengL. WangH. XueX. Recent progress of nanomedicine in the treatment of central nervous system diseases.Adv. Ther. 202035190015910.1002/adtp.201900159
    [Google Scholar]
  290. PatelS. NandaR. Nanotechnology in healthcare: Applications and challenges.Med. Chem. 201551252853310.4172/2161‑0444.1000312
    [Google Scholar]
  291. AzharA. AshrafG.M. ZiaQ. AnsariS.A. PerveenA. HafeezA. SaeedM. KamalM.A. AlexiouA. GanashM. YarlaN.S. BaeesaS.S. AlfikyM.M. BajouhO.S. Frontier view on nanotechnological strategies for neuro-therapy.Curr. Drug Metab.201819759660410.2174/138920021966618030514414329512448
    [Google Scholar]
  292. WuT. TangM. Review of the effects of manufactured nanoparticles on mammalian target organs.J. Appl. Toxicol.2018381254010.1002/jat.349928799656
    [Google Scholar]
  293. TeleanuD.M. ChircovC. GrumezescuA.M. TeleanuR.I. Neurotoxicity of nanomaterials: An up-to-date overview.Nanomaterials 2019919610.3390/nano901009630642104
    [Google Scholar]
  294. ThakorA.S. GambhirS.S. Nanooncology: The future of cancer diagnosis and therapy.CA Cancer J. Clin.201363639541810.3322/caac.2119924114523
    [Google Scholar]
  295. ShannahanJ. The biocorona: A challenge for the biomedical application of nanoparticles.Nanotechnol. Rev.20176434535310.1515/ntrev‑2016‑009829607287
    [Google Scholar]
  296. TeleanuD.M. ChircovC. GrumezescuA.M. TeleanuR.I. Neuronanomedicine: An up-to-date overview.Pharmaceutics201911310110.3390/pharmaceutics1103010130813646
    [Google Scholar]
  297. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  298. NarayanaS. NasrineA. AhmedM.G. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.01337026047
    [Google Scholar]
  299. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128352935250116064725
Loading
/content/journals/cpd/10.2174/0113816128352935250116064725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test