Skip to content
2000
Volume 31, Issue 19
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Pyrido[2,3-]pyrimidine and its derivatives have garnered significant attention due to their potential biological and pharmacological activities. Research has demonstrated their significant potential for antitumor and antibacterial applications. Over the years, pyrido[2,3-]pyrimidine derivatives have remained a research focus for scientists, with numerous synthetic methods and reaction conditions reported. This review comprehensively summarizes the fast, facile, and economical synthetic methods for pyrido[2,3-]pyrimidine derivatives over the past years, which are categorized based on different synthetic precursors, and evaluates their antitumor and antibacterial activities, aiming to make them better serve the cause of human health.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338087241217072045
2025-01-30
2025-08-18
Loading full text...

Full text loading...

References

  1. GoodwinC.M. WatersA.M. KlompJ.E. JavaidS. BryantK.L. StalneckerC.A. Drizyte-MillerK. PapkeB. YangR. AmparoA.M. Ozkan-DagliyanI. BaldelliE. CalvertV. PierobonM. SorrentinoJ.A. BeelenA.P. BublitzN. LüthenM. WoodK.C. PetricoinE.F.III SersC. McReeA.J. CoxA.D. DerC.J. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer.Cancer Res.202383114115710.1158/0008‑5472.CAN‑22‑039136346366
    [Google Scholar]
  2. AryaR. KimT. YounJ.W. BaeT. KimK.K. Identification of an antivirulence agent targeting the master regulator of virulence genes in Staphylococcus aureus. Front. Cell. Infect. Microbiol.202313126804410.3389/fcimb.2023.126804438029271
    [Google Scholar]
  3. GarutiL. RobertiM. BottegoniG. Irreversible protein kinase inhibitors.Curr. Med. Chem.201118202981299410.2174/09298671179639170521651479
    [Google Scholar]
  4. TanL. WuC. ZhangJ. YuQ. WangX. ZhangL. GeM. WangZ. OuyangL. WangY. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by X-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site.J. Med. Chem.20236653588362010.1021/acs.jmedchem.2c0211536802449
    [Google Scholar]
  5. ZhangX. HeJ. XuS. FuL. ZhengP. XuS. PanQ. ZhuW. Insights into the overcoming EGFR Del19/T790M/C797S mutation: A perspective on the 2‐aryl‐4‐aminothienopyrimidine backbone.ChemMedChem2024199e20230063410.1002/cmdc.20230063438351876
    [Google Scholar]
  6. ZhangH. ChuC. LongL. ZhengP. ZhuW. Anti-cancer effects of bis-oxidized thiopyran derivatives on non-small cell lung cancer: Rational design, synthesis, and activity evaluation.New J. Chem.20244862825284110.1039/D3NJ04021F
    [Google Scholar]
  7. WangL. FanD. RuanW. HuangX. ZhuW. TuY. ZhengP. T6496 targeting EGFR mediated by T790M or C797S mutant: Machine learning, virtual screening and bioactivity evaluation study.J. Biomol. Struct. Dyn.202411210.1080/07391102.2023.230075638174383
    [Google Scholar]
  8. ChaudharyA. Multicomponent approach for the sustainable syntheses of Pyrido[2,3-d]pyrimidine scaffold.Curr. Org. Chem.202125232856288410.2174/1385272825666211117152900
    [Google Scholar]
  9. Al-WarhiT. Al-KarmalawyA.A. ElmaatyA.A. AlshubramyM.A. Abdel-MotaalM. MajrashiT.A. AsemM. NabilA. EldehnaW.M. SharakyM. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors.J. Enzyme Inhib. Med. Chem.202338117619110.1080/14756366.2022.213551236317648
    [Google Scholar]
  10. GuoY. JiangX. ChangQ. XiaoZ. ChenZ. JiangD. HuG. LiQ. Novel pyrazolo[3,4‐b]pyridine derivatives: Synthesis, structure–activity relationship studies, and regulation of the AMPK/70S6K pathway.Arch. Pharm.20223557210046510.1002/ardp.202100465
    [Google Scholar]
  11. XuL. QiuS. YangL. XuH. LiuX. FanS. CuiR. FuW. ZhaoC. ShenL. WangL. HuangX. Aminocyanopyridines as anti‐lung cancer agents by inhibiting the STAT3 pathway.Mol. Carcinog.20195881512152510.1002/mc.2303831069881
    [Google Scholar]
  12. DaiJ. ZhangJ. FuD. LiuM. ZhangH. TangS. WangL. XuS. ZhuW. TangQ. ZhengP. ChenT. Design, synthesis and biological evaluation of 4-(4-aminophenoxy)picolinamide derivatives as potential antitumor agents.Eur. J. Med. Chem.202325711549910.1016/j.ejmech.2023.11549937229832
    [Google Scholar]
  13. YangF. ZhangQ. GuoQ. PanQ. WenC. LvX. ZhuW. ZhengP. Design, synthesis and biological evaluation of 4-phenoxy-pyridine/pyrimidine derivatives as dual VEGFR-2/c-Met inhibitors.New J. Chem.20224626126511266510.1039/D2NJ01561G
    [Google Scholar]
  14. WangL. ZhangQ. WangZ. ZhuW. TanN. Design, synthesis, docking, molecular dynamics and bioevaluation studies on novel N-methylpicolinamide and thienopyrimidine derivatives with inhibiting NF-κB and TAK1 activities: Cheminformatics tools RDKit applied in drug design.Eur. J. Med. Chem.202122311357610.1016/j.ejmech.2021.113576
    [Google Scholar]
  15. RagabA. FouadS.A. AmmarY.A. Aboul-MagdD.S. AbusaifM.S. Antibiofilm and anti-quorum-sensing activities of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as carbonic anhydrase I and II inhibitors: Design, synthesis, radiosterilization, and molecular docking studies.Antibiotics 202312112810.3390/antibiotics1201012836671329
    [Google Scholar]
  16. MekkyA.E.M. SanadS.M.H. Synthesis of new pyrazolo[1,5‐a]pyrimidines as potential antibacterial agents: In vitro and in silico study.ChemistrySelect2023817e20230048710.1002/slct.202300487
    [Google Scholar]
  17. LiC. LiuY. RenX. TanY. JinL. ZhouX. Design, synthesis and bioactivity of novel pyrimidine sulfonate esters containing thioether moiety.Int. J. Mol. Sci.2023245469110.3390/ijms2405469136902121
    [Google Scholar]
  18. KumarA. BhagatK.K. SinghA.K. SinghH. AngreT. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Medicinal chemistry perspective of pyrido[2,3-d]pyrimidines as anticancer agents.RSC Advances202313106872690810.1039/D3RA00056G36865574
    [Google Scholar]
  19. KahrimanN. PekerK. SerdaroğluV. AydınA. UstaA. FandaklıS. YaylıN. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities.Bioorg. Chem.20209910380510.1016/j.bioorg.2020.10380532272366
    [Google Scholar]
  20. KanthS.R. ReddyG.V. KishoreK.H. RaoP.S. MurthyU.S.N. A new and highly expedient synthesis of pyrido[2,3-d]pyrimidines.Eur. J. Med. Chem.20064110111016
    [Google Scholar]
  21. PavanaR.K. ChoudharyS. BastianA. IhnatM.A. BaiR. HamelE. GangjeeA. Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents.Bioorg. Med. Chem.201725254555610.1016/j.bmc.2016.11.02627894589
    [Google Scholar]
  22. FarghalyT.A. HassaneenH.M.E. Synthesis of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones as potential antimicrobial agents.Arch. Pharm. Res.201336556457210.1007/s12272‑013‑0045‑223446650
    [Google Scholar]
  23. YadavP. ShahK. An overview on synthetic and pharmaceutical prospective of pyrido[2,3‐d]pyrimidines scaffold.Chem. Biol. Drug Des.202197363364810.1111/cbdd.1380032946161
    [Google Scholar]
  24. AgarwalAnu. Solid supported synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidines using microwave irradiation.Tetrahedron Lett.200546813451348
    [Google Scholar]
  25. JiS.J. NiS.N. YangF. ShiJ.W. DouG.L. LiX.Y. WangX.S. ShiD.Q. An efficient synthesis of pyrimido[4,5‐b]quinoline and indeno[2′,1′:5,6]pyrido[2,3‐d]pyrimidine derivatives via multicomponent reactions in ionic liquid.J. Heterocycl. Chem.200845369370210.1002/jhet.5570450310
    [Google Scholar]
  26. JitenderM.K. Aqua mediated indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles.Tetrahedron Lett.2012532430183022
    [Google Scholar]
  27. OsanlouF. NematiF. SabaqianS. An eco-friendly and magnetized biopolymer cellulose-based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water.Res Chem Intermed20174321592174
    [Google Scholar]
  28. GhashangM. GuhanathanS. MansoorS.S. Nano Fe2O3@SiO2–SO3H: Efficient catalyst for the multi-component preparation of indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione derivatives.Res. Chem. Intermed.201743127257727610.1007/s11164‑017‑3073‑6
    [Google Scholar]
  29. Ghorbani-VagheiR. SarmastN. Hexamethylenetetramine grafted layered double hydroxides as a novel and green heterogeneous ionic liquid catalyst for the synthesis of pyrido[2,3-d]pyrimidine derivatives.Res. Chem. Intermed.20184474483450110.1007/s11164‑018‑3399‑8
    [Google Scholar]
  30. KheirkhahL. MamaghaniM. MahmoodiN.O. YahyazadehA. ShojaeiA.F. RostamliY. An expedient synthesis of novel derivatives of pyrido[2,3‐d]pyrimidines using magnetically supported ZrO 2 nanocatalyst.J. Chin. Chem. Soc.201663541041610.1002/jccs.201500482
    [Google Scholar]
  31. RoknabadiM.H. MossleminM.H. MohebatR. Efficient synthesis of a novel series of indeno-fused pyrido[2,3-d]pyrimidines using a deep eutectic solvent system comprised of choline chloride/urea.J. Chem. Res.201741743043310.3184/175815517X14981249895596
    [Google Scholar]
  32. ShaabaniA. SepahvandH. BoroujeniM.B. FaroghiM.T. A green one-pot three-component cascade reaction: The synthesis of 2-amino-5,8-dihydro-3H-pyrido[2,3-d]pyrimidin-4-ones in aqueous medium.Mol. Divers.201721114715310.1007/s11030‑016‑9712‑928083767
    [Google Scholar]
  33. Melik-OhanjanyanR.G. HovsepyanT.R. KarakhanyanG.S. IsraelyanS.G. NersesyanL.E. PanosyanG.A. One-step three-component synthesis of new 2,5,6,7-functionalized 5,8-dihydropyrido-[2,3-d]pyrimidin-4(3H)-ones.Russ. J. Org. Chem.201854110711110.1134/S1070428018010104
    [Google Scholar]
  34. DehghanpourH. R. MohammadH. Graphene oxide: A carbocatalyst for the one-pot multicomponent synthesis of 5-aryl-1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione.J. Chem. Res.20184213539
    [Google Scholar]
  35. MamaghaniM. SheykhanM. SadeghpourM. TavakoliF. An expeditious one-pot synthesis of novel bioactive indole-substituted pyrido[2,3-d]pyrimidines using Fe3O4@SiO2-supported ionic liquid nanocatalyst.Monatsh Chem201814914371446
    [Google Scholar]
  36. BayatM. NasriS. NotashB. Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives.Tetrahedron201773111522152710.1016/j.tet.2017.02.005
    [Google Scholar]
  37. El-KalyoubiS. AgiliF. Synthesis, in silico prediction and in vitro evaluation of antitumor activities of novel pyrido[2,3-d]pyrimidine, xanthine and lumazine derivatives.Molecules20202521520510.3390/molecules2521520533182318
    [Google Scholar]
  38. HarutyunyanА.А. One-stage synthesis of condensed pyrimidines by reaction of substituted 3-(pyrimidin-5-yl)propanoic acids with ortho-diamines: Extension of limits.Russ. J. Org. Chem.201652223523910.1134/S1070428016020135
    [Google Scholar]
  39. MyriagkouM. PapakonstantinouE. DeligiannidouG.E. PatsilinakosA. KontogiorgisC. PontikiE. Novel pyrimidine derivatives as antioxidant and anticancer agents: Design, synthesis and molecular modeling studies.Molecules2023289391310.3390/molecules2809391337175322
    [Google Scholar]
  40. FaresMohamed. An improved synthesis of pyrido[2,3-d]pyrimidine-4(1H)-ones and their antimicrobial activity.Org Biomol Chem2018161833893395
    [Google Scholar]
  41. KhalifaN.M. NossierE.S. AmrA.E. Efficient synthesis and reactions of new functionally substituted pyrido[2,3-d]pyrimidine candidates.Russ. J. Gen. Chem.20188861228123110.1134/S1070363218060300
    [Google Scholar]
  42. WangJ. LiJ. LiuH. XuZ. ZhuS. A facile and efficient synthesis of spiro[indoline-3,5`-pyrido[2,3-d]pyrimidine] derivatives via microwave-assisted multicomponent reactions.Lett. Org. Chem.2015121626610.2174/157017861201150112124526
    [Google Scholar]
  43. DaiL. MaoK.M. PanZ.B. RongL. Green metal-free synthesis of spiro-fused 3,4-pyrazole 4,3:5,6 pyrido[2,3-d]pyrimidine derivatives via deamination cyclization reactions in aqueous medium.Res. Chem. Intermed.201945276978810.1007/s11164‑018‑3642‑3
    [Google Scholar]
  44. MousavifarS.M. KefayatiH. ShariatiS. Ultrasound‐assisted synthesis of novel spiro[indoline‐3,5′‐pyrido[2,3‐d]pyrimidine] derivatives using Fe 3 O 4 @Propylsilane@Histidine[HSO 4 − ] as an effective magnetic nanocatalyst.J. Heterocycl. Chem.202057115716210.1002/jhet.3758
    [Google Scholar]
  45. JamasbiN. Irankhah-KhanghahM. ShiriniF. TajikH. LangarudiM.S.N. DABCO-based ionic liquids: Introduction of two metal-free catalysts for one-pot synthesis of 1,2,4-triazolo[4,3-a]pyrimidines and pyrido[2,3-d]pyrimidines.New J. Chem.201842119016902710.1039/C8NJ01455H
    [Google Scholar]
  46. MartinhoL. A. AndradeC. K. Z. A greener approach for the synthesis of pyrido[2,3‐d]pyrimidine derivatives in glycerol under microwave heating.J. Heterocycl. Chem.202259814171429
    [Google Scholar]
  47. SinghS. SaquibM. SinghM. TiwariJ. TufailF. SinghJ. SinghJ. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium.New J. Chem.2016401636710.1039/C5NJ01938A
    [Google Scholar]
  48. ChizhovaM.E. BakulinaO.Y. IvanovA.Y. LobanovP.S. Dar’inD.V. Facile synthesis of pyrido[2,3-d]pyrimidines via cyclocondensation of 4,6-dichloro-2-methylsulfanylpyrimidine-5-carbaldehyde with β-substituted β-aminoacrylic esters.Tetrahedron201571366196620310.1016/j.tet.2015.06.085
    [Google Scholar]
  49. SaikiaP. SharmaG. GogoiS. BoruahR.C. Cascade imination, Buchwald–Hartwig cross coupling and cycloaddition reaction: Synthesis of pyrido[2,3-d]pyrimidines.RSC Advances2015530232102321210.1039/C5RA00725A
    [Google Scholar]
  50. GhaediA. BardajeeG.R. MirshokrayiA. MahdaviM. AkbarzadehT. Facile access to new pyrido[2,3-d]pyrimidine derivatives.Mol. Divers.201923233334010.1007/s11030‑018‑9852‑130238394
    [Google Scholar]
  51. ChandrasekaranB. DebP.K. KachlerS. AkkinepalliR.R. MailavaramR. KlotzK.N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines.Med. Chem. Res.201827375676710.1007/s00044‑017‑2099‑z
    [Google Scholar]
  52. El-SayedH.A. MorsyH.A. A facile synthesis of highly fluorescent pyrido[2,3-d]pyrimidines and 1,8-naphthyridines via oxazine transformation and enaminic addition reactions.J. Indian Chem. Soc.2019164723732
    [Google Scholar]
  53. E. M.; AbdEllatif, M., Synthesis of some novel pyrido[2,3-d]pyrimidine and pyrido[3,2-e]1,3,4 triazolo and tetrazolo[1,5-c]pyrimidine derivatives as potential antimicrobial and anticancer agents.J. Heterocycl. Chem.201855241943010.1002/jhet.3058
    [Google Scholar]
  54. AcostaP. InsuastyB. OrtizA. AboniaR. SortinoM. ZacchinoS.A. QuirogaJ. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity.Arab. J. Chem.20169348149210.1016/j.arabjc.2015.03.002
    [Google Scholar]
  55. SunY.Q. ZongC.Y. JiJ.Y. Efficient and library-friendly synthesis of 4-N-substituted 6-bromopyrido[2,3-d]pyrimidines under microwave irradiation.Chem. Pap.20187229657210.1007/s11696‑018‑0498‑3
    [Google Scholar]
  56. MaddilaS. GanguK.K. MaddilaS.N. JonnalagaddaS.B. A viable and efficacious catalyst, CeO2/HAp, for green synthesis of novel pyrido[2,3-d]pyrimidine derivatives.Res. Chem. Intermed.20184421397140910.1007/s11164‑017‑3174‑2
    [Google Scholar]
  57. BakheradM. Synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines in the magnetized deionized water based on UV-visible study.J. Indian Chem. Soc.202118483952
    [Google Scholar]
  58. A.NZinchenko. Synthesis of new 4-amino-substituted 7-iminopyrido[2,3-d]pyrimidines.Chem Heterocycl Comp201753589596
    [Google Scholar]
  59. JavahershenasR. KhalafyJ. A green synthesis of 7‐amino‐5‐(4‐aroyl)‐1,3‐dimethyl‐2,4‐dioxo‐1,2,3,4,5,8‐hexahydropyrido[2,3‐d]pyrimidine‐6‐carbonitrile derivatives by a one‐pot three‐component reaction.J. Heterocycl. Chem.20175463163316810.1002/jhet.2930
    [Google Scholar]
  60. RiadiY. UV light mediated palladium-catalyzed synthesis of 2-Substitued pyrido[2,3-d]pyrimidines.Polycycl. Aromat. Compd.201916
    [Google Scholar]
  61. ElzahabiH.S.A. NossierE.S. KhalifaN.M. AlasfouryR.A. El-ManawatyM.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold.J. Enzyme Inhib. Med. Chem.201833154655710.1080/14756366.2018.143772929482389
    [Google Scholar]
  62. Naresh KumarR. Jitender DevG. RavikumarN. Krishna SwaroopD. DebanjanB. BharathG. NarsaiahB. Nishant JainS. Gangagni RaoA. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents.Bioorg. Med. Chem. Lett.201626122927293010.1016/j.bmcl.2016.04.03827130357
    [Google Scholar]
  63. FaidallahH. M. RostomS. A. F. KhanK. A. Synthesis of some polysubstituted nicotinonitriles and derived pyrido[2,3-d]pyrimidines as in vitro cytotoxic and antimicrobial candidatesJ. Chem.201620162016112
    [Google Scholar]
  64. BehaloM.S. MeleG. Synthesis and evaluation of pyrido[2,3‐d]pyrimidine and 1,8‐naphthyridine derivatives as potential antitumor agents.J. Heterocycl. Chem.201754129530010.1002/jhet.2581
    [Google Scholar]
  65. DengL. SunH. HuW. LiaoW. ZhouZ. PanH. Synthesis, crystal structure, and DFT study of a new derivative of pyrido[2,3-d]pyrimidine.Russ. J. Gen. Chem.202191122489249610.1134/S1070363221120197
    [Google Scholar]
  66. AryanR. BeyzaeiH. NojavanM. PiraniF. Samareh DelaramiH. SanchooliM. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities.Mol. Divers.20192319310510.1007/s11030‑018‑9859‑730027387
    [Google Scholar]
  67. IbrahimM.H. El MenofyN.G. El kikiS.M. SherbinyF.F. IsmailM.M.F. Development of fluorinated nicotinonitriles and fused candidates as antimicrobial, antibiofilm, and enzyme inhibitors.Arch. Pharm. 20223557220004010.1002/ardp.20220004035411641
    [Google Scholar]
  68. DastmardS. MamaghaniM. FarahnakL. RassaM. Facile synthesis of polyfunctional Indole-pyrido[2,3-d]pyrimidine hybrids using nickel-incorporated fluorapatite encapsulated iron oxide nanocatalyst and study of their antibacterial activities.Polycycl. Aromat. Compd.202042417471760
    [Google Scholar]
  69. AchagarR. ElmakssoudiA. ThoumeA. DakirM. ElamraniA. ZouheirY. ZahouilyM. Ait-TouchenteZ. JamaleddineJ. ChehimiM.M. Nanostructured Na2CaP2O7: A new and efficient catalyst for one-pot synthesis of 2-amino-3-cyanopyridine derivatives and evaluation of their antibacterial activity.Appl. Sci.20221211548710.3390/app12115487
    [Google Scholar]
  70. ChandrasekaranB. CherukupalliS. KarunanidhiS. KajeeA. AletiR.R. SayyadN. KushwahaB. MeruguS.R. MlisanaK.P. KarpoormathR. Design and synthesis of novel heterofused pyrimidine analogues as effective antimicrobial agents.J. Mol. Struct.2019118324625510.1016/j.molstruc.2019.01.105
    [Google Scholar]
  71. FuJ. YuJ. ZhangX. ChangY. FanH. DongM. LiM. LiuY. HuJ. Design, synthesis, and biological evaluation of pyrido[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine derivatives as novel EGFRL858R/T790M inhibitors.J. Enzyme Inhib. Med. Chem.2023381220560510.1080/14756366.2023.2205605
    [Google Scholar]
  72. SyedaA.B. SyedaA.B. FerazoddinM. PaulJ.P. SyedT. JuluruB. Design, synthesis and biological evaluation of aryl amino derivatives of pyrido[3,2-d]pyrimidines as anticancer agents.Synth. Commun.202353171426143810.1080/00397911.2023.2229926
    [Google Scholar]
  73. DasariR. GaliS. KorraR. VaddirajuN. Novel oxadiazole functionalized pyridopyrimidine derivatives; their anticancer activity and molecular docking studies.J. Heterocycl. Chem.202461464265010.1002/jhet.4792
    [Google Scholar]
  74. SivanandhanM. ParasuramanA. In-silico molecular docking and ADMET predictions of pyrido[2,3-d]pyrimidine-2,4( 1H,3H )-dione analogues as promising antimicrobial, antioxidant and anticancer agents.Polycycl. Aromat. Compd.20244421273129010.1080/10406638.2023.2191973
    [Google Scholar]
  75. SongY.Y. XiaK. WuX.Q. ZengC.G. TangS.A. YuanY. GuiY.T. ZhangX.H. ZhongH. Design, synthesis, and anti‐breast cancer activity evaluation of endoperoxide‐type pyrido/pyrrolo[2,3‐d]pyrimidine derivatives.J. Heterocycl. Chem.20236071138114910.1002/jhet.4655
    [Google Scholar]
  76. RaiS. BishnoiA. FatmaS. ShuklaS. DeviP. SinghV. An expedient three-component synthesis of novel pyrido-pyrimidine derivatives: Antimicrobial activity, molecular docking, and ADME studies.Polycycl. Aromat. Compd.2023444275274
    [Google Scholar]
  77. MuthurajR. GopalD. AhmedI. ChandrasekaranJ. Insightful t-SNE guided exploration spotlighting Palbociclib and Ribociclib analogues as novel WEE1 kinase inhibitory candidates.J. Biomol. Struct. Dyn.202411310.1080/07391102.2024.230531638239070
    [Google Scholar]
  78. WedamS. Fashoyin-AjeL. BloomquistE. TangS. SridharaR. GoldbergK.B. TheoretM.R. Amiri-KordestaniL. PazdurR. BeaverJ.A. FDA approval summary: Palbociclib for male patients with metastatic breast cancer.Clin. Cancer Res.20202661208121210.1158/1078‑0432.CCR‑19‑258031649043
    [Google Scholar]
  79. YangY. SuoN. CuiS. WuX. RenX. LiuY. GuoR. XieX. Trametinib, an anti-tumor drug, promotes oligodendrocytes generation and myelin formation.Acta Pharmacol. Sin.202445122527253910.1038/s41401‑024‑01313‑938871922
    [Google Scholar]
  80. KimM.Y. KimM.J. LeeC. LeeJ. KimS.S. HongS. KimH.T. SeoJ. YoonK.J. HanS. Trametinib activates endogenous neurogenesis and recovers neuropathology in a model of Alzheimer’s disease.Exp. Mol. Med.202355102177218910.1038/s12276‑023‑01073‑237779138
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338087241217072045
Loading
/content/journals/cpd/10.2174/0113816128338087241217072045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test