Skip to content
2000
Volume 31, Issue 19
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Epigenetics mechanisms play a crucial role in regulating gene expression and cellular function in the development and progression of neurological disorders. Emerging evidence suggests that dysregulation of these epigenetic processes contributes significantly to the pathogenesis of various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNAs, significantly impact neural plasticity. The use of epigenetic modulators, including DNA methyltransferase and histone deacetylase inhibitors, offers a promising strategy to correct and modify aberrant epigenetic marks, potentially restoring neurological homeostasis. This review highlights recent research findings from ongoing clinical trials and the potential benefits and challenges of epigenetic therapies for neurological disorders. We discuss the capacity of these interventions to potentially halt or reverse disease progression, their targeted nature, and their neuroprotective effects. Additionally, we address the hurdles facing the field, including issues of specificity, delivery, and long-term efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330087241030093112
2025-02-11
2025-10-06
Loading full text...

Full text loading...

References

  1. JowaedA. SchmittI. KautO. WüllnerU. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains.J. Neurosci.201030186355635910.1523/JNEUROSCI.6119‑09.201020445061
    [Google Scholar]
  2. Sadri-VakiliG. ChaJ.H.J. Mechanisms of disease: Histone modifications in Huntington’s disease.Nat. Clin. Pract. Neurol.20062633033810.1038/ncpneuro019916932577
    [Google Scholar]
  3. HuynhJ.L. GargP. ThinT.H. YooS. DuttaR. TrappB.D. HaroutunianV. ZhuJ. DonovanM.J. SharpA.J. CasacciaP. Epigenome-wide differences in pathology-free regions of multiple sclerosis–affected brains.Nat. Neurosci.201417112113010.1038/nn.358824270187
    [Google Scholar]
  4. Sanchez-MutJ.V. HeynH. VidalE. MoranS. SayolsS. Delgado-MoralesR. SchultzM.D. AnsoleagaB. Garcia-EsparciaP. Pons-EspinalM. de LagranM.M. DopazoJ. RabanoA. AvilaJ. DierssenM. LottI. FerrerI. EckerJ.R. EstellerM. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns.Transl. Psychiatry201661e71810.1038/tp.2015.21426784972
    [Google Scholar]
  5. GräffJ. TsaiL.H. Histone acetylation: Molecular mnemonics on the chromatin.Nat. Rev. Neurosci.20131429711110.1038/nrn342723324667
    [Google Scholar]
  6. GuidottiA. AutaJ. ChenY. DavisJ.M. DongE. GavinD.P. GraysonD.R. MatriscianoF. PinnaG. SattaR. SharmaR.P. TremolizzoL. TuetingP. Epigenetic GABAergic targets in schizophrenia and bipolar disorder.Neuropharmacology2011607-81007101610.1016/j.neuropharm.2010.10.02121074545
    [Google Scholar]
  7. MazeI. NohK.M. SoshnevA.A. AllisC.D. Every amino acid matters: Essential contributions of histone variants to mammalian development and disease.Nat. Rev. Genet.201415425927110.1038/nrg367324614311
    [Google Scholar]
  8. VeldicM. CarunchoH.J. LiuW.S. DavisJ. SattaR. GraysonD.R. GuidottiA. CostaE. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains.Proc. Natl. Acad. Sci. USA2004101134835310.1073/pnas.263701310014684836
    [Google Scholar]
  9. KleinC.J. BotuyanM.V. WuY. WardC.J. NicholsonG.A. HammansS. HojoK. YamanishiH. KarpfA.R. WallaceD.C. SimonM. LanderC. BoardmanL.A. CunninghamJ.M. SmithG.E. LitchyW.J. BoesB. AtkinsonE.J. MiddhaS. B DyckP.J. ParisiJ.E. MerG. SmithD.I. DyckP.J. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss.Nat. Genet.201143659560010.1038/ng.83021532572
    [Google Scholar]
  10. XuG.L. BestorT.H. Bourc’hisD. HsiehC.L. TommerupN. BuggeM. HultenM. QuX. RussoJ.J. Viegas-PéquignotE. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene.Nat1999402675818719110.1038/4605210647011
    [Google Scholar]
  11. MastroeniD. GroverA. DelvauxE. WhitesideC. ColemanP.D. RogersJ. Epigenetic changes in Alzheimer’s disease: Decrements in DNA methylation.Neurobiol. Aging201031122025203710.1016/j.neurobiolaging.2008.12.00519117641
    [Google Scholar]
  12. BollatiV. GalimbertiD. PergoliL. Dalla ValleE. BarrettaF. CortiniF. ScarpiniE. BertazziP.A. BaccarelliA. DNA methylation in repetitive elements and Alzheimer disease.Brain Behav. Immun.20112561078108310.1016/j.bbi.2011.01.01721296655
    [Google Scholar]
  13. MaD.K. JangM.H. GuoJ.U. KitabatakeY. ChangM. Pow-anpongkulN. FlavellR.A. LuB. MingG. SongH. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.Science200932359171074107710.1126/science.116685919119186
    [Google Scholar]
  14. DayJ.J. ChildsD. Guzman-KarlssonM.C. KibeM. MouldenJ. SongE. TahirA. SweattJ.D. DNA methylation regulates associative reward learning.Nat. Neurosci.201316101445145210.1038/nn.350423974711
    [Google Scholar]
  15. Hernando-HerraezI. Prado-MartinezJ. GargP. Fernandez-CallejoM. HeynH. HvilsomC. NavarroA. EstellerM. SharpA.J. Marques-BonetT. Dynamics of DNA methylation in recent human and great ape evolution.PLoS Genet.201399e100376310.1371/journal.pgen.100376324039605
    [Google Scholar]
  16. KaasG.A. ZhongC. EasonD.E. RossD.L. VachhaniR.V. MingG. KingJ.R. SongH. SweattJ.D. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation.Neuron20137961086109310.1016/j.neuron.2013.08.03224050399
    [Google Scholar]
  17. GuoJ.U. SuY. ShinJ.H. ShinJ. LiH. XieB. ZhongC. HuS. LeT. FanG. ZhuH. ChangQ. GaoY. MingG. SongH. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain.Nat. Neurosci.201417221522210.1038/nn.360724362762
    [Google Scholar]
  18. PortelaA. EstellerM. Epigenetic modifications and human disease.Nat. Biotechnol.201028101057106810.1038/nbt.168520944598
    [Google Scholar]
  19. Al-MahdawiS. VirmouniS.A. PookM.A. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases.Front. Neurosci.2014839710.3389/fnins.2014.0039725538551
    [Google Scholar]
  20. UrdinguioR.G. Sanchez-MutJ.V. EstellerM. Epigenetic mechanisms in neurological diseases: Genes, syndromes, and therapies.Lancet Neurol.20098111056107210.1016/S1474‑4422(09)70262‑519833297
    [Google Scholar]
  21. LorsonC.L. HahnenE. AndrophyE.J. WirthB. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy.Proc. Natl. Acad. Sci. USA199996116307631110.1073/pnas.96.11.630710339583
    [Google Scholar]
  22. MacDonaldM.E. AmbroseC.M. DuyaoM.P. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell199372697198310.1016/0092‑8674(93)90585‑E8458085
    [Google Scholar]
  23. SellierC. RauF. LiuY. TassoneF. HukemaR.K. GattoniR. SchneiderA. RichardS. WillemsenR. ElliottD.J. HagermanP.J. Charlet-BerguerandN. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients.EMBO J.20102971248126110.1038/emboj.2010.2120186122
    [Google Scholar]
  24. PrudencioM. BelzilV.V. BatraR. RossC.A. GendronT.F. PregentL.J. MurrayM.E. OverstreetK.K. Piazza-JohnstonA.E. DesaroP. BieniekK.F. DeTureM. LeeW.C. BiendarraS.M. DavisM.D. BakerM.C. PerkersonR.B. van BlitterswijkM. StetlerC.T. RademakersR. LinkC.D. DicksonD.W. BoylanK.B. LiH. PetrucelliL. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS.Nat. Neurosci.20151881175118210.1038/nn.406526192745
    [Google Scholar]
  25. Bañez-CoronelM. AyhanF. TarabochiaA.D. ZuT. PerezB.A. TusiS.K. PletnikovaO. BorcheltD.R. RossC.A. MargolisR.L. YachnisA.T. TroncosoJ.C. RanumL.P.W. RAN translation in Huntington disease.Neuron201588466767710.1016/j.neuron.2015.10.03826590344
    [Google Scholar]
  26. WursterC.D. LudolphA.C. Antisense oligonucleotides in neurological disorders.Ther. Adv. Neurol. Disord.201811175628641877693210.1177/175628641877693229854003
    [Google Scholar]
  27. FinkelR.S. MercuriE. DarrasB.T. ConnollyA.M. KuntzN.L. KirschnerJ. ChiribogaC.A. SaitoK. ServaisL. TizzanoE. TopalogluH. TuliniusM. MontesJ. GlanzmanA.M. BishopK. ZhongZ.J. GheuensS. BennettC.F. SchneiderE. FarwellW. De VivoD.C. Nusinersen versus sham control in infantile-onset spinal muscular atrophy.N. Engl. J. Med.2017377181723173210.1056/NEJMoa170275229091570
    [Google Scholar]
  28. ChenS.H. WuH.M. OssolaB. SchendzielorzN. WilsonB.C. ChuC.H. ChenS.L. WangQ. ZhangD. QianL. LiX. HongJ.S. LuR.B. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage.Br. J. Pharmacol.2012165249450510.1111/j.1476‑5381.2011.01575.x21726209
    [Google Scholar]
  29. KontopoulosE. ParvinJ.D. FeanyM.B. α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity.Hum. Mol. Genet.200615203012302310.1093/hmg/ddl24316959795
    [Google Scholar]
  30. NicholasA.P. LubinF.D. HallettP.J. VattemP. RavenscroftP. BezardE. ZhouS. FoxS.H. BrotchieJ.M. SweattJ.D. StandaertD.G. Striatal histone modifications in models of levodopa-induced dyskinesia.J. Neurochem.2008106148649410.1111/j.1471‑4159.2008.05417.x18410512
    [Google Scholar]
  31. QingH. HeG. LyP.T.T. FoxC.J. StaufenbielM. CaiF. ZhangZ. WeiS. SunX. ChenC.H. ZhouW. WangK. SongW. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models.J. Exp. Med.2008205122781278910.1084/jem.2008158818955571
    [Google Scholar]
  32. ZhangL. LiuC. WuJ. TaoJ. SuiX. YaoZ. XuY. HuangL. ZhuH. ShengS. QinC. Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice.J. Alzheimers Dis.20144141193120510.3233/JAD‑14006624844691
    [Google Scholar]
  33. JianW. ZhangZ. ZhanJ. ChuS. PengY. ZhaoM. WangQ. ChenN. Donepezil attenuates vascular dementia in rats through increasing BDNF induced by reducing HDAC6 nuclear translocation.Acta Pharmacol. Sin.202041558859810.1038/s41401‑019‑0334‑531913348
    [Google Scholar]
  34. ChopraV. QuintiL. KhannaP. PaganettiP. KuhnR. YoungA.B. KazantsevA.G. HerschS. LBH589, a hydroxamic acid-derived HDAC inhibitor, is neuroprotective in mouse models of huntington’s disease.J. Huntingtons Dis.20165434735510.3233/JHD‑16022627983565
    [Google Scholar]
  35. HahnenE. EyüpogluI.Y. BrichtaL. HaastertK. TränkleC. SiebzehnrüblF.A. RiesslandM. HölkerI. ClausP. RomstöckJ. BusleiR. WirthB. BlümckeI. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy.J. Neurochem.200698119320210.1111/j.1471‑4159.2006.03868.x16805808
    [Google Scholar]
  36. SharmaV.K. MehtaV. SinghT.G. Alzheimer’s disorder: Epigenetic connection and associated risk factors.Curr. Neuropharmacol.202018874075310.2174/1570159X1866620012812564131989902
    [Google Scholar]
  37. EidA. BihaqiS.W. RenehanW.E. ZawiaN.H. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer’s disease.Alzheimers Dement. (Amst.)20162112313110.1016/j.dadm.2016.02.00227239543
    [Google Scholar]
  38. EllisonE.M. AbnerE.L. LovellM.A. Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer’s disease.J. Neurochem.2017140338339410.1111/jnc.1391227889911
    [Google Scholar]
  39. IwataA. NagataK. HatsutaH. TakumaH. BundoM. IwamotoK. TamaokaA. MurayamaS. SaidoT. TsujiS. Altered CpG methylation in sporadic Alzheimer’s disease is associated with APP and MAPT dysregulation.Hum. Mol. Genet.201423364865610.1093/hmg/ddt45124101602
    [Google Scholar]
  40. PiaceriI. RaspantiB. TeddeA. BagnoliS. SorbiS. NacmiasB. Epigenetic modifications in Alzheimer’s disease: Cause or effect?J. Alzheimers Dis.20144341169117310.3233/JAD‑14145225159670
    [Google Scholar]
  41. XieB. XuY. LiuZ. LiuW. JiangL. ZhangR. CuiD. ZhangQ. XuS. Elevation of peripheral BDNF promoter methylation predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: A 5-year longitudinal study.J. Alzheimers Dis.201756139140110.3233/JAD‑16095427935556
    [Google Scholar]
  42. WatsonC.T. RoussosP. GargP. HoD.J. AzamN. KatselP.L. HaroutunianV. SharpA.J. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease.Genome Med.201681510.1186/s13073‑015‑0258‑826803900
    [Google Scholar]
  43. KonkiM. MalonzoM. KarlssonI.K. LindgrenN. GhimireB. SmolanderJ. ScheininN.M. OllikainenM. LaihoA. EloL.L. LönnbergT. RöyttäM. PedersenN.L. KaprioJ. LähdesmäkiH. RinneJ.O. LundR.J. Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer’s disease.Clin. Epigenetics201911113010.1186/s13148‑019‑0729‑731477183
    [Google Scholar]
  44. MladenovaD. BarryG. KonenL.M. Adar3 is involved in learning and memory in mice.Front. Neurosci.2018122432971949710.3389/fnins.2018.00243
    [Google Scholar]
  45. ZhaoJ. ZhuY. YangJ. LiL. WuH. De JagerP.L. JinP. BennettD.A. A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer’s disease.Alzheimers Dement.201713667468810.1016/j.jalz.2016.10.00428089213
    [Google Scholar]
  46. BernsteinA.I. LinY. StreetR.C. LinL. DaiQ. YuL. BaoH. GearingM. LahJ.J. NelsonP.T. HeC. LeveyA.I. MulléJ.G. DuanR. JinP. 5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer’s disease modulate Tau-induced neurotoxicity.Hum. Mol. Genet.20162512ddw10910.1093/hmg/ddw10927060332
    [Google Scholar]
  47. RotsM.G. Van der WijstM.G. FaberK.N. RotsM.G. Regulation of mitochondrial gene expression the epigenetic enigma.Front. Biosci.20172271099111310.2741/453528199194
    [Google Scholar]
  48. HroudováJ. SinghN. FišarZ. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease.BioMed Res. Int.201420141910.1155/2014/17506224900954
    [Google Scholar]
  49. StoccoroA. SicilianoG. MiglioreL. CoppedèF. Decreased methylation of the mitochondrial D-loop region in late-onset Alzheimer’s disease.J. Alzheimers Dis.201759255956410.3233/JAD‑17013928655136
    [Google Scholar]
  50. AndersonK.W. TurkoI.V. Histone post-translational modifications in frontal cortex from human donors with Alzheimer’s disease.Clin. Proteomics20151212610.1186/s12014‑015‑9098‑126435705
    [Google Scholar]
  51. BannisterA.J. KouzaridesT. Regulation of chromatin by histone modifications.Cell Res.201121338139510.1038/cr.2011.2221321607
    [Google Scholar]
  52. PlaggB. EhrlichD. KniewallnerK. MarksteinerJ. HumpelC. Increased acetylation of histone H4 at lysine 12 (H4K12) in monocytes of transgenic Alzheimer’s mice and in human patients.Curr. Alzheimer Res.201512875276010.2174/156720501266615071011425626159193
    [Google Scholar]
  53. SungY.M. LeeT. YoonH. DiBattistaA.M. SongJ.M. SohnY. MoffatE.I. TurnerR.S. JungM. KimJ. HoeH.S. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer’s disease.Exp. Neurol.201323919220110.1016/j.expneurol.2012.10.00523063601
    [Google Scholar]
  54. AndrewsS. KruegerC. Mellado-LopezM. HembergerM. DeanW. Perez-GarciaV. HannaC.W. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B.Nat. Commun.202314137110.1038/s41467‑023‑36019‑936690623
    [Google Scholar]
  55. EspayA.J. KaliaL.V. Gan-OrZ. Williams-GrayC.H. BedardP.L. RoweS.M. MorganteF. FasanoA. StecherB. KauffmanM.A. FarrerM.J. CoffeyC.S. SchwarzschildM.A. ShererT. PostumaR.B. StrafellaA.P. SingletonA.B. BarkerR.A. KieburtzK. OlanowC.W. LozanoA. KordowerJ.H. CedarbaumJ.M. BrundinP. StandaertD.G. LangA.E. Disease modification and biomarker development in Parkinson disease.Neurology2020941148149410.1212/WNL.000000000000910732102975
    [Google Scholar]
  56. VirmaniR. VirmaniT. DeshwalC.S. SoroutG. Matrix tablet of rasagiline mesylate: An approach for the treatment of Parkinson disease.Am. J. Pharm. Educ.20174228428910.5281/ZENODO.345478
    [Google Scholar]
  57. PanickerN. GeP. DawsonV.L. DawsonT.M. The cell biology of Parkinson’s disease.J. Cell Biol.20212204e20201209510.1083/jcb.20201209533749710
    [Google Scholar]
  58. SohrabiT. Mirzaei-BehbahaniB. ZadaliR. PirhaghiM. Morozova-RocheL.A. MeratanA.A. Common mechanisms underlying α-synuclein-induced mitochondrial dysfunction in parkinson’s disease.J. Mol. Biol.20234351216799210.1016/j.jmb.2023.16799236736886
    [Google Scholar]
  59. SchaffnerS.L. KoborM.S. DNA methylation as a mediator of genetic and environmental influences on Parkinson’s disease susceptibility: Impacts of alpha-synuclein, physical activity, and pesticide exposure on the epigenome.Front. Genet.20221397129810.3389/fgene.2022.97129836061205
    [Google Scholar]
  60. SharmaA. SinghT. PathakD. VirmaniT. KumarG. AlhalmiA. Antidepressive-like effect of Aegle marmelos leaf extract in chronic unpredictable mild stress-induced depression-like behaviour in rats.BioMed Res. Int.2022202211610.1155/2022/647995336593774
    [Google Scholar]
  61. MasliahE. DumaopW. GalaskoD. DesplatsP. Distinctive patterns of DNA methylation associated with Parkinson disease.Epigenetics20138101030103810.4161/epi.2586523907097
    [Google Scholar]
  62. HendersonA.R. WangQ. MeechoovetB. SiniardA.L. NaymikM. De BothM. HuentelmanM.J. CaselliR.J. Driver-DunckleyE. DunckleyT. DNA methylation and expression profiles of whole blood in Parkinson’s disease.Front. Genet.20211264026610.3389/fgene.2021.64026633981329
    [Google Scholar]
  63. González-BarbosaE. García-AguilarR. VegaL. Cabañas-CortésM.A. GonzalezF.J. SegoviaJ. Morales-LázaroS.L. CisnerosB. ElizondoG. Parkin is transcriptionally regulated by the aryl hydrocarbon receptor: Impact on α-synuclein protein levels.Biochem. Pharmacol.201916842943710.1016/j.bcp.2019.08.00231404530
    [Google Scholar]
  64. RubinoA. D’AddarioC. Di BartolomeoM. Michele SalamoneE. LocuratoloN. FattappostaF. VanacoreN. PascaleE. DNA methylation of the 5′-UTR DAT 1 gene in Parkinson’s disease patients.Acta Neurol. Scand.2020142327528010.1111/ane.1327932415851
    [Google Scholar]
  65. SmolleM. WorkmanJ.L. Transcription-associated histone modifications and cryptic transcription.Biochim. Biophys. Acta. Gene Regul. Mech.201318291849710.1016/j.bbagrm.2012.08.00822982198
    [Google Scholar]
  66. PavlouM.A.S. OuteiroT.F. Epigenetics in Parkinson’s Disease.Adv. Exp. Med. Biol.201797836339010.1007/978‑3‑319‑53889‑1_1928523556
    [Google Scholar]
  67. Di NisioE. LupoG. LicursiV. NegriR. The role of histone lysine methylation in the response of mammalian cells to ionizing radiation.Front. Genet.20211263960210.3389/fgene.2021.63960233859667
    [Google Scholar]
  68. BernsteinB.E. HumphreyE.L. ErlichR.L. SchneiderR. BoumanP. LiuJ.S. KouzaridesT. SchreiberS.L. Methylation of histone H3 Lys 4 in coding regions of active genes.Proc. Natl. Acad. Sci. USA200299138695870010.1073/pnas.08224949912060701
    [Google Scholar]
  69. SugenoN. JäckelS. VoigtA. WassoufZ. Schulze-HentrichJ. KahleP.J. α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses.Sci. Rep.2016613632810.1038/srep3632827808254
    [Google Scholar]
  70. MuM.D. QianZ.M. YangS.X. RongK.L. YungW.H. KeY. Therapeutic effect of a histone demethylase inhibitor in Parkinson’s disease.Cell Death Dis.2020111092710.1038/s41419‑020‑03105‑533116116
    [Google Scholar]
  71. WangJ. LiZ. ZhangJ. Visualizing the knowledge structure and evolution of bioinformatics.BMC Bioinf202223Suppl 840410.1186/s12859‑022‑04948‑936180852
    [Google Scholar]
  72. WangC. QiH. Visualising the knowledge structure and evolution of wearable device research.J. Med. Eng. Technol.202145320722210.1080/03091902.2021.189131433769166
    [Google Scholar]
  73. GuhathakurtaS. KimJ. AdamsL. BasuS. SongM.K. AdlerE. JeG. FiadeiroM.B. KimY.S. Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson’s disease.EMBO Mol. Med.2021132e1218810.15252/emmm.20201218833428332
    [Google Scholar]
  74. LabbéC. Lorenzo-BetancorO. RossO.A. Epigenetic regulation in Parkinson’s disease.Acta Neuropathol.2016132451553010.1007/s00401‑016‑1590‑927358065
    [Google Scholar]
  75. ParkG. TanJ. GarciaG. KangY. SalvesenG. ZhangZ. Regulation of histone acetylation by autophagy in Parkinson disease.J. Biol. Chem.201629173531354010.1074/jbc.M115.67548826699403
    [Google Scholar]
  76. LeeJ.Y. KimH. JoA. KhangR. ParkC.H. ParkS.J. KwagE. ShinJ.H. α-synuclein A53T binds to transcriptional adapter 2-alpha and blocks histone H3 acetylation.Int. J. Mol. Sci.20212210539210.3390/ijms2210539234065515
    [Google Scholar]
  77. TokerL. TranG.T. SundaresanJ. TysnesO.B. AlvesG. HaugarvollK. NidoG.S. DölleC. TzoulisC. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain.Mol. Neurodegener.20211613110.1186/s13024‑021‑00450‑733947435
    [Google Scholar]
  78. LimE.W AarslandD. FfytcheD. Amyloid-β and Parkinson’s disease.J. Neurol.;266112605261910.1007/s00415‑018‑9100‑830377818
    [Google Scholar]
  79. SoldnerF. StelzerY. ShivalilaC.S. AbrahamB.J. LatourelleJ.C. BarrasaM.I. GoldmannJ. MyersR.H. YoungR.A. JaenischR. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression.Nature20165337601959910.1038/nature1793927096366
    [Google Scholar]
  80. HanK.A. ShinW.H. JungS. SeolW. SeoH. KoC.M. ChungK.C. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation.Hum. Mol. Genet.20172611-1810.1093/hmg/ddw36327798112
    [Google Scholar]
  81. SrivastavaA.K. ChoudhuryS.R. KarmakarS. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson’s disease models.Neuropharmacology202119410837210.1016/j.neuropharm.2020.10837233157086
    [Google Scholar]
  82. Hervás-CorpiónI. GuirettiD. Alcaraz-IborraM. OlivaresR. Campos-CaroA. BarcoÁ. ValorL.M. Early alteration of epigenetic-related transcription in Huntington’s disease mouse models.Sci. Rep.201881992510.1038/s41598‑018‑28185‑429967375
    [Google Scholar]
  83. PanY. DaitoT. SasakiY. ChungY.H. XingX. PondugulaS. SwamidassS.J. WangT. KimA.H. YanoH. Inhibition of DNA methyltransferases blocks mutant huntingtin-induced neurotoxicity.Sci. Rep.2016613102210.1038/srep3102227516062
    [Google Scholar]
  84. VirmaniT. KumarG. SharmaA. PathakK. An overview of ocular drug delivery systems—Conventional and novel drug delivery systems.Nanotechnol OphthalmolAcademic Press2023234810.1016/B978‑0‑443‑15264‑1.00007‑5
    [Google Scholar]
  85. GnyszkaA. JastrzebskiZ. FlisS. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer.Anticancer Res.20133382989299623898051
    [Google Scholar]
  86. BatesG.P. DorseyR. GusellaJ.F. HaydenM.R. KayC. LeavittB.R. NanceM. RossC.A. ScahillR.I. WetzelR. WildE.J. TabriziS.J. Huntington disease.Nat. Rev. Dis. Primers2015111500510.1038/nrdp.2015.527188817
    [Google Scholar]
  87. GatesL.A. FouldsC.E. O’MalleyB.W. Histone marks in the ‘Driver’s Seat’: Functional roles in steering the transcription cycle.Trends Biochem. Sci.2017421297798910.1016/j.tibs.2017.10.00429122461
    [Google Scholar]
  88. HarikumarA. MeshorerE. Chromatin remodeling and bivalent histone modifications in embryonic stem cells.EMBO Rep.201516121609161910.15252/embr.20154101126553936
    [Google Scholar]
  89. LokeY.J. HannanA.J. CraigJ.M. The role of epigenetic change in autism spectrum disorders.Front. Neurol.2015610710.3389/fneur.2015.0010726074864
    [Google Scholar]
  90. GaoY. Duque-WilckensN. AljaziM.B. WuY. MoeserA.J. MiasG.I. RobisonA.J. HeJ. Loss of histone methyltransferase ASH1L in the developing mouse brain causes autistic-like behaviors.Commun. Biol.20214175610.1038/s42003‑021‑02282‑z34145365
    [Google Scholar]
  91. ShenW. KrautscheidP. RutzA.M. Bayrak-ToydemirP. DuganS.L. De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder.Eur. J. Med. Genet.2019621556010.1016/j.ejmg.2018.05.00329753921
    [Google Scholar]
  92. KarayiorgouM. SimonT.J. GogosJ.A. 22q11.2 microdeletions: Linking DNA structural variation to brain dysfunction and schizophrenia.Nat. Rev. Neurosci.201011640241610.1038/nrn284120485365
    [Google Scholar]
  93. GuilleminC. ProvençalN. SudermanM. CôtéS.M. VitaroF. HallettM. TremblayR.E. SzyfM. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women.PLoS One201491e8682210.1371/journal.pone.008682224475181
    [Google Scholar]
  94. ZhubiA. ChenY. GuidottiA. GraysonD.R. Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects.Int. J. Dev. Neurosci.2017621637210.1016/j.ijdevneu.2017.02.00328229923
    [Google Scholar]
  95. MattL. KirkL.M. ChenauxG. SpecaD.J. PuhgerK.R. PrideM.C. QneibiM. HahamT. PlambeckK.E. Stern-BachY. SilvermanJ.L. CrawleyJ.N. HellJ.W. DíazE. SynDIG4/Prrt1 is required for excitatory synapse development and plasticity underlying cognitive function.Cell Rep.20182292246225310.1016/j.celrep.2018.02.02629490264
    [Google Scholar]
  96. EshraghiA.A. LiuG. KayS.I.S. EshraghiR.S. MittalJ. MoshireeB. MittalR. Epigenetics and autism spectrum disorder: Is there a correlation?Front. Cell. Neurosci.2018127810.3389/fncel.2018.0007829636664
    [Google Scholar]
  97. MushtaqA. MirU.S. HuntC.R. PanditaS. TantrayW.W. BhatA. PanditaR.K. AltafM. PanditaT.K. Role of histone methylation in maintenance of genome integrity.Genes (Basel)2021127100010.3390/genes1207100034209979
    [Google Scholar]
  98. SunW. PoschmannJ. Cruz-Herrera del RosarioR. ParikshakN.N. HajanH.S. KumarV. RamasamyR. BelgardT.G. ElanggovanB. WongC.C.Y. MillJ. GeschwindD.H. PrabhakarS. Histone acetylome-wide association study of autism spectrum disorder.Cell2016167513851397.e1110.1016/j.cell.2016.10.03127863250
    [Google Scholar]
  99. GuidottiA. GraysonD.R. CarunchoH.J. Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders.Front. Cell. Neurosci.2016108910.3389/fncel.2016.0008927092053
    [Google Scholar]
  100. FengJ. ZhouY. CampbellS.L. LeT. LiE. SweattJ.D. SilvaA.J. FanG. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nat. Neurosci.201013442343010.1038/nn.251420228804
    [Google Scholar]
  101. PaiS. LiP. KillingerB. MarshallL. JiaP. LiaoJ. PetronisA. SzabóP.E. LabrieV. Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis.Nat. Commun.2019101204610.1038/s41467‑019‑09786‑731053723
    [Google Scholar]
  102. DaiD. ChengJ. ZhouK. LvY. ZhuangQ. ZhengR. ZhangK. JiangD. GaoS. DuanS. Significant association between DRD3 gene body methylation and schizophrenia.Psychiatry Res.2014220377277710.1016/j.psychres.2014.08.03225262640
    [Google Scholar]
  103. GhadirivasfiM. NohesaraS. AhmadkhanihaH.R. EskandariM.R. MostafaviS. ThiagalingamS. AbdolmalekyH.M. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2011156553654510.1002/ajmg.b.3119221598376
    [Google Scholar]
  104. HorowitzE. BergmanL.C. AshkenazyC. Moscona-HurvitzI. Grinvald-FogelH. MagneziR. Off-label use of sodium valproate for schizophrenia.PLoS One201493e9257310.1371/journal.pone.009257324664210
    [Google Scholar]
  105. Bahari-JavanS. VarbanovH. HalderR. BenitoE. KauraniL. BurkhardtS. Anderson-SchmidtH. AnghelescuI. BuddeM. StillingR.M. CostaJ. MedinaJ. DietrichD.E. FiggeC. FolkertsH. GadeK. HeilbronnerU. KollerM. KonradC. NussbeckS.Y. ScherkH. SpitzerC. StierlS. StöckelJ. ThielA. von HagenM. ZimmermannJ. ZitzelsbergerA. SchulzS. SchmittA. DelalleI. FalkaiP. SchulzeT.G. DityatevA. SananbenesiF. FischerA. HDAC1 links early life stress to schizophrenia-like phenotypes.Proc. Natl. Acad. Sci. USA201711423E4686E469410.1073/pnas.161384211428533418
    [Google Scholar]
  106. ChaseK.A. RosenC. RubinL.H. FeinerB. BodapatiA.S. GinH. HuE. SharmaR.P. Evidence of a sex-dependent restrictive epigenome in schizophrenia.J. Psychiatr. Res.201565879410.1016/j.jpsychires.2015.04.00525935252
    [Google Scholar]
  107. SchroederF.A. GilbertT.M. FengN. TaillonB.D. VolkowN.D. InnisR.B. HookerJ.M. LipskaB.K. Expression of HDAC2 but not HDAC1 transcript is reduced in dorsolateral prefrontal cortex of patients with schizophrenia.ACS Chem. Neurosci.20178366266810.1021/acschemneuro.6b0037227959513
    [Google Scholar]
  108. GilbertT.M. ZürcherN.R. WuC.J. BhanotA. HightowerB.G. KimM. AlbrechtD.S. WeyH.Y. SchroederF.A. Rodriguez-ThompsonA. MorinT.M. HartK.L. PellegriniA.M. RileyM.M. WangC. StufflebeamS.M. HaggartyS.J. HoltD.J. LoggiaM.L. PerlisR.H. BrownH.E. RoffmanJ.L. HookerJ.M. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia.J. Clin. Invest.2018129136437210.1172/JCI12374330530989
    [Google Scholar]
  109. VirmaniT. KumarG. VirmaniR. SharmaA. PathakK. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease.Nanomedicine (Lond.)202217241833185410.2217/nnm‑2021‑040335856251
    [Google Scholar]
  110. WangD. LiuS. WarrellJ. WonH. ShiX. NavarroF.C.P. ClarkeD. GuM. EmaniP. YangY.T. XuM. GandalM.J. LouS. ZhangJ. ParkJ.J. YanC. RhieS.K. ManakongtreecheepK. ZhouH. NathanA. PetersM. MatteiE. FitzgeraldD. BrunettiT. MooreJ. JiangY. GirdharK. HoffmanG.E. KalayciS. GümüşZ.H. CrawfordG.E. RoussosP. AkbarianS. JaffeA.E. WhiteK.P. WengZ. SestanN. GeschwindD.H. KnowlesJ.A. GersteinM.B. Ashley-KochA.E. CrawfordG.E. GarrettM.E. SongL. SafiA. JohnsonG.D. WrayG.A. ReddyT.E. GoesF.S. ZandiP. BryoisJ. JaffeA.E. PriceA.J. IvanovN.A. Collado-TorresL. HydeT.M. BurkeE.E. KleimanJ.E. TaoR. ShinJ.H. AkbarianS. GirdharK. JiangY. KundakovicM. BrownL. KassimB.S. ParkR.B. WisemanJ.R. ZharovskyE. JacobovR. DevillersO. FlatowE. HoffmanG.E. LipskaB.K. LewisD.A. HaroutunianV. HahnC-G. CharneyA.W. DrachevaS. KozlenkovA. BelmontJ. DelValleD. FrancoeurN. HadjimichaelE. PintoD. van BakelH. RoussosP. FullardJ.F. BendlJ. HaubergM.E. MangraviteL.M. PetersM.A. ChaeY. PengJ. NiuM. WangX. WebsterM.J. BeachT.G. ChenC. JiangY. DaiR. ShiehA.W. LiuC. GrennanK.S. XiaY. VadukapuramR. WangY. FitzgeraldD. ChengL. BrownM. BrownM. BrunettiT. GoodmanT. AlsayedM. GandalM.J. GeschwindD.H. WonH. PolioudakisD. WamsleyB. YinJ. HadzicT. De La Torre UbietaL. SwarupV. SandersS.J. StateM.W. WerlingD.M. AnJ-Y. SheppardB. WillseyA.J. WhiteK.P. RayM. GiaseG. KefiA. MatteiE. PurcaroM. WengZ. MooreJ. PrattH. HueyJ. BorrmanT. SullivanP.F. Giusti-RodriguezP. KimY. SullivanP. SzatkiewiczJ. RhieS.K. ArmoskusC. CamarenaA. FarnhamP.J. SpitsynaV.N. WittH. SchreinerS. EvgrafovO.V. KnowlesJ.A. GersteinM. LiuS. WangD. NavarroF.C.P. WarrellJ. ClarkeD. EmaniP.S. GuM. ShiX. XuM. YangY.T. KitchenR.R. GürsoyG. ZhangJ. CarlyleB.C. NairnA.C. LiM. PochareddyS. SestanN. SkaricaM. LiZ. SousaA.M.M. SantpereG. ChoiJ. ZhuY. GaoT. MillerD.J. CherskovA. YangM. AmiriA. CoppolaG. MarianiJ. ScuderiS. SzekelyA. VaccarinoF.M. WuF. WeissmanS. RoychowdhuryT. AbyzovA. Comprehensive functional genomic resource and integrative model for the human brain.Science20183626420eaat846410.1126/science.aat846430545857
    [Google Scholar]
  111. ChenR. LiuY. DjekidelM.N. ChenW. BhattacherjeeA. ChenZ. ScolnickE. ZhangY. Cell type–specific mechanism of Setd1a heterozygosity in schizophrenia pathogenesis.Sci. Adv.202289eabm107710.1126/sciadv.abm107735245111
    [Google Scholar]
  112. YuC. ZhuangS. Histone methyltransferases as therapeutic targets for kidney diseases.Front. Pharmacol.201910139310.3389/fphar.2019.0139331866860
    [Google Scholar]
  113. ChaseK.A. FeinerB. RamakerM.J. HuE. RosenC. SharmaR.P. Examining the effects of the histone methyltransferase inhibitor BIX-01294 on histone modifications and gene expression in both a clinical population and mouse models.PLoS One2019146e021646310.1371/journal.pone.021646331185023
    [Google Scholar]
  114. JohnstoneA.L. O’ReillyJ.J. PatelA.J. GuoZ. AndradeN.S. MagistriM. NathansonL. EsanovR. MillerB.H. TureckiG. BrothersS.P. ZeierZ. WahlestedtC. EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia.Neurobiol. Dis.201811914915810.1016/j.nbd.2018.08.00530099093
    [Google Scholar]
  115. BharadwajA. SharmaA. SinghT. PathakD. VirmaniT. KumarG. SharmaA. AlhalmiA. Attenuation of strychnine-induced epilepsy employing Amaranthus viridis L. leaves extract in experimental rats.Behav. Neurol.2023202311010.1155/2023/668478136959866
    [Google Scholar]
  116. LystM.J. BirdA. Rett syndrome: A complex disorder with simple roots.Nat. Rev. Genet.201516526127510.1038/nrg389725732612
    [Google Scholar]
  117. GopikaS. KumarG. VirmaniR. SharmaA. SharmaA. VirmaniT. Advancement towards brain-targeted mnps in neurological disorders.Metallic Nanoparticles for Health and the Environment1st edBoca RatonCRC Press202320923710.1201/9781003317319‑9
    [Google Scholar]
  118. SinghK. BhushanB. ChanchalD.K. SharmaS.K. RaniK. YadavM.K. PorwalP. KumarS. SharmaA. VirmaniT. KumarG. NomanA.A. Emerging therapeutic potential of cannabidiol (CBD) in neurological disorders: A comprehensive review.Behav. Neurol.20232023111710.1155/2023/882535837868743
    [Google Scholar]
  119. CastroK. CasacciaP. Epigenetic modifications in brain and immune cells of multiple sclerosis patients.Mult. Scler.2018241697410.1177/135245851773738929307300
    [Google Scholar]
  120. VukicM. DaxingerL. DNA methylation in disease: Immunodeficiency, centromeric instability, facial anomalies syndrome.Essays Biochem.201963677378310.1042/EBC2019003531724723
    [Google Scholar]
  121. KumarG. VirmaniT. SharmaA. PathakK. Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers.Pharmaceutics202315388910.3390/pharmaceutics1503088936986748
    [Google Scholar]
  122. NobileV. PucciC. ChiurazziP. NeriG. TabolacciE. DNA methylation, mechanisms of FMR1 inactivation and therapeutic perspectives for fragile X syndrome.Biomolecules202111229610.3390/biom1102029633669384
    [Google Scholar]
  123. HenshallD.C. KobowK. Epigenetics and Epilepsy.Cold Spring Harb. Perspect. Med.2015512a02273110.1101/cshperspect.a02273126438606
    [Google Scholar]
  124. SahafnejadZ. RamaziS. AllahverdiA. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review.Genes (Basel)202314487310.3390/genes1404087337107631
    [Google Scholar]
  125. RasmiY. ShokatiA. HassanA. AzizS.G.G. BastaniS. JalaliL. MoradiF. AlipourS. The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders.IBRO Neurosci. Rep.202314283710.1016/j.ibneur.2022.12.00236590248
    [Google Scholar]
  126. CacabelosR. Epigenomic networking in drug development: From pathogenic mechanisms to pharmacogenomics.Drug Dev. Res.201475634836510.1002/ddr.2121925195579
    [Google Scholar]
  127. AggarwalR. JhaM. ShrivastavaA. JhaA.K. Natural compounds: Role in reversal of epigenetic changes.Biochemistry (Mosc.)201580897298910.1134/S000629791508002726547065
    [Google Scholar]
  128. HuangD. CuiL. AhmedS. ZainabF. WuQ. WangX. YuanZ. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs.Food Chem. Toxicol.201912357459410.1016/j.fct.2018.10.05230408543
    [Google Scholar]
  129. Martínez-IglesiasO. NaidooV. CarreraI. CorzoL. CacabelosR. Natural bioactive products as epigenetic modulators for treating neurodegenerative disorders.Pharmaceuticals (Basel)202316221610.3390/ph1602021637259364
    [Google Scholar]
  130. DesplatsP. SpencerB. CoffeeE. PatelP. MichaelS. PatrickC. AdameA. RockensteinE. MasliahE. α-synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases.J. Biol. Chem.2011286119031903710.1074/jbc.C110.21258921296890
    [Google Scholar]
  131. SongC. KanthasamyA. AnantharamV. SunF. KanthasamyA.G. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: Relevance to epigenetic mechanisms of neurodegeneration.Mol. Pharmacol.201077462163210.1124/mol.109.06217420097775
    [Google Scholar]
  132. WuX. ChenP.S. DallasS. WilsonB. BlockM.L. WangC.C. KinyamuH. LuN. GaoX. LengY. ChuangD.M. ZhangW. LuR.B. HongJ.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons.Int. J. Neuropsychopharmacol.20081181123113410.1017/S146114570800902418611290
    [Google Scholar]
  133. MillanM.J. The epigenetic dimension of Alzheimer’s disease: Causal, consequence, or curiosity?Dialogues Clin. Neurosci.201416337339310.31887/DCNS.2014.16.3/mmillan25364287
    [Google Scholar]
  134. JacobsH.I.L. RaduaJ. LückmannH.C. SackA.T. Meta-analysis of functional network alterations in Alzheimer’s disease: Toward a network biomarker.Neurosci. Biobehav. Rev.201337575376510.1016/j.neubiorev.2013.03.00923523750
    [Google Scholar]
  135. AdwanL. ZawiaN.H. Epigenetics: A novel therapeutic approach for the treatment of Alzheimer’s disease.Pharmacol. Ther.20131391415010.1016/j.pharmthera.2013.03.01023562602
    [Google Scholar]
  136. FusoA. SeminaraL. CavallaroR.A. D’AnselmiF. ScarpaS. S- adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production.Mol. Cell. Neurosci.200528119520410.1016/j.mcn.2004.09.00715607954
    [Google Scholar]
  137. ChenH. LiuS. JiL. WuT. JiY. ZhouY. ZhengM. ZhangM. XuW. HuangG. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: A randomized controlled trial.Mediators Inflamm.201620161591214610.1155/2016/591214627340344
    [Google Scholar]
  138. WongH.K.A. VeremeykoT. PatelN. LemereC.A. WalshD.M. EsauC. VanderburgC. KrichevskyA.M. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease.Hum. Mol. Genet.201322153077309210.1093/hmg/ddt16423585551
    [Google Scholar]
  139. SmithP.Y. Hernandez-RappJ. JolivetteF. LecoursC. BishtK. GoupilC. DorvalV. ParsiS. MorinF. PlanelE. BennettD.A. Fernandez-GomezF.J. SergeantN. BuéeL. TremblayM.È. CalonF. HébertS.S. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo.Hum. Mol. Genet.201524236721673510.1093/hmg/ddv37726362250
    [Google Scholar]
  140. LauP. BossersK. JankyR. SaltaE. FrigerioC.S. BarbashS. RothmanR. SierksmaA.S.R. ThathiahA. GreenbergD. PapadopoulouA.S. AchselT. AyoubiT. SoreqH. VerhaagenJ. SwaabD.F. AertsS. De StrooperB. Alteration of the micro RNA network during the progression of Alzheimer’s disease.EMBO Mol. Med.20135101613163410.1002/emmm.20120197424014289
    [Google Scholar]
  141. Santa-MariaI. AlanizM.E. RenwickN. CelaC. FulgaT.A. Van VactorD. TuschlT. ClarkL.N. ShelanskiM.L. McCabeB.D. CraryJ.F. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau.J. Clin. Invest.2015125268168610.1172/JCI7842125574843
    [Google Scholar]
  142. ValorL.M. GuirettiD. What’s wrong with epigenetics in Huntington’s disease?Neuropharmacology20148010311410.1016/j.neuropharm.2013.10.02524184315
    [Google Scholar]
  143. ValorL.M. Epigenetic-based therapies in the preclinical and clinical treatment of Huntington’s disease.Int. J. Biochem. Cell Biol.201567454810.1016/j.biocel.2015.04.00925936670
    [Google Scholar]
  144. ValorL.M. Transcription, epigenetics and ameliorative strategies in Huntington’s Disease: A genome-wide perspective.Mol. Neurobiol.201551140642310.1007/s12035‑014‑8715‑824788684
    [Google Scholar]
  145. HorvathS. LangfelderP. KwakS. AaronsonJ. RosinskiJ. VogtT.F. EszesM. FaullR.L.M. CurtisM.A. WaldvogelH.J. ChoiO.W. TungS. VintersH.V. CoppolaG. YangX.W. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.Aging (Albany NY)2016871485151210.18632/aging.10100527479945
    [Google Scholar]
  146. NgC.W. YildirimF. YapY.S. DalinS. MatthewsB.J. VelezP.J. LabadorfA. HousmanD.E. FraenkelE. Extensive changes in DNA methylation are associated with expression of mutant huntingtin.Proc. Natl. Acad. Sci. USA201311062354235910.1073/pnas.122129211023341638
    [Google Scholar]
  147. WangF. YangY. LinX. WangJ.Q. WuY.S. XieW. WangD. ZhuS. LiaoY.Q. SunQ. YangY.G. LuoH.R. GuoC. HanC. TangT.S. Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease.Hum. Mol. Genet.201322183641365310.1093/hmg/ddt21423669348
    [Google Scholar]
  148. ChiuF.L. LinJ.T. ChuangC.Y. ChienT. ChenC.M. ChenK.H. HsiaoH.Y. LinY.S. ChernY. KuoH.C. Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs.Hum. Mol. Genet.201524216066607910.1093/hmg/ddv31826264576
    [Google Scholar]
  149. HauserR.M. HenshallD.C. LubinF.D. The epigenetics of epilepsy and its progression.Neuroscientist201824218620010.1177/107385841770584028468530
    [Google Scholar]
  150. YounusI. ReddyD.S. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy.Pharmacol. Ther.201717710812210.1016/j.pharmthera.2017.03.00228279785
    [Google Scholar]
  151. HenshallD.C. HamerH.M. PasterkampR.J. GoldsteinD.B. KjemsJ. PrehnJ.H.M. SchorgeS. LamottkeK. RosenowF. MicroRNAs in epilepsy: Pathophysiology and clinical utility.Lancet Neurol.201615131368137610.1016/S1474‑4422(16)30246‑027839653
    [Google Scholar]
  152. KobowK. BlümckeI. Epigenetics in epilepsy.Neurosci. Lett.2018667404610.1016/j.neulet.2017.01.01228111355
    [Google Scholar]
  153. Miller-DelaneyS.F.C. BryanK. DasS. McKiernanR.C. BrayI.M. ReynoldsJ.P. GwinnR. StallingsR.L. HenshallD.C. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy.Brain2015138361663110.1093/brain/awu37325552301
    [Google Scholar]
  154. ZhuQ. WangL. ZhangY. ZhaoF. LuoJ. XiaoZ. ChenG. WangX. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy.J. Mol. Neurosci.201246242042610.1007/s12031‑011‑9602‑721826395
    [Google Scholar]
  155. WangL. FuX. PengX. XiaoZ. LiZ. ChenG. WangX. DNA methylation profiling reveals correlation of differential methylation patterns with gene expression in human epilepsy.J. Mol. Neurosci.2016591687710.1007/s12031‑016‑0735‑627067309
    [Google Scholar]
  156. KobowK. KaspiA. HarikrishnanK.N. KieseK. ZiemannM. KhuranaI. FritzscheI. HaukeJ. HahnenE. CorasR. MühlebnerA. El-OstaA. BlümckeI. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy.Acta Neuropathol.2013126574175610.1007/s00401‑013‑1168‑824005891
    [Google Scholar]
  157. DębskiK.J. PitkanenA. PuhakkaN. BotA.M. KhuranaI. HarikrishnanK.N. ZiemannM. KaspiA. El-OstaA. LukasiukK. KobowK. Etiology matters – Genomic DNA methylation patterns in three rat models of acquired epilepsy.Sci. Rep.2016612566810.1038/srep2566827157830
    [Google Scholar]
  158. StresemannC. LykoF. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.Int. J. Cancer2008123181310.1002/ijc.2360718425818
    [Google Scholar]
  159. SinghS. VirmaniR. VirmaniT. Geeta Vitamin-B-17: An alternative treatment of cancer - A myth or truth.J. Mol. Pharmaceuticals Regulat. Affairs2018111510.5281/ZENODO.1475522
    [Google Scholar]
  160. BruecknerB. Garcia BoyR. SiedleckiP. MuschT. KliemH.C. ZielenkiewiczP. SuhaiS. WiesslerM. LykoF. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases.Cancer Res.200565146305631110.1158/0008‑5472.CAN‑04‑295716024632
    [Google Scholar]
  161. SchneebergerY. StenzigJ. HübnerF. SchaeferA. ReichenspurnerH. EschenhagenT. Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N-phthalyl-1-tryptophan (RG 108) in rats.Basic Clin. Pharmacol. Toxicol.2016118532733210.1111/bcpt.1251426525153
    [Google Scholar]
  162. Castillo-AguileraO. DepreuxP. HalbyL. ArimondoP. GoossensL. DNA methylation targeting: The DNMT/HMT crosstalk challenge.Biomolecules201771310.3390/biom701000328067760
    [Google Scholar]
  163. HuH. QianK. HoM.C. ZhengY.G. Small molecule inhibitors of protein arginine methyltransferases.Expert Opin. Investig. Drugs201625333535810.1517/13543784.2016.114474726789238
    [Google Scholar]
  164. Chan-PenebreE. KuplastK.G. MajerC.R. Boriack-SjodinP.A. WigleT.J. JohnstonL.D. RiouxN. MunchhofM.J. JinL. JacquesS.L. WestK.A. LingarajT. SticklandK. RibichS.A. RaimondiA. ScottM.P. WatersN.J. PollockR.M. SmithJ.J. BarbashO. PappalardiM. HoT.F. NurseK. OzaK.P. GallagherK.T. KrugerR. MoyerM.P. CopelandR.A. ChesworthR. DuncanK.W. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models.Nat. Chem. Biol.201511643243710.1038/nchembio.181025915199
    [Google Scholar]
  165. GhizzoniM. WuJ. GaoT. HaismaH.J. DekkerF.J. George ZhengY. 6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site.Eur. J. Med. Chem.201247133734410.1016/j.ejmech.2011.11.00122100137
    [Google Scholar]
  166. ModakR. BashaJ. BharathyN. MaityK. MizarP. BhatA.V. VasudevanM. RaoV.K. KokW.K. NateshN. TanejaR. KunduT.K. Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor.ACS Chem. Biol.2013861311132310.1021/cb400059723570531
    [Google Scholar]
  167. ShiM. LuX.J. ZhangJ. DiaoH. LiG. XuL. WangT. WeiJ. MengW. MaJ.L. YuH. WangY.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms.Oncotarget2016716226232263110.18632/oncotarget.803326980707
    [Google Scholar]
  168. ChestnutB.A. ChangQ. PriceA. LesuisseC. WongM. MartinL.J. Epigenetic regulation of motor neuron cell death through DNA methylation.J. Neurosci.20113146166191663610.1523/JNEUROSCI.1639‑11.201122090490
    [Google Scholar]
  169. HuQ.P. MaoD.A. Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation.BMC Neurosci.20161712210.1186/s12868‑016‑0264‑927193049
    [Google Scholar]
  170. YooY.E. KoC.P. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis.Exp. Neurol.2011231114715910.1016/j.expneurol.2011.06.00321712032
    [Google Scholar]
  171. JiaH. WangY. MorrisC.D. JacquesV. GottesfeldJ.M. RuscheJ.R. ThomasE.A. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice.PLoS One2016113e015249810.1371/journal.pone.015249827031333
    [Google Scholar]
  172. ZádoriD. GeiszA. VámosE. VécseiL. KlivényiP. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease.Pharmacol. Biochem. Behav.200994114815310.1016/j.pbb.2009.08.00119698736
    [Google Scholar]
  173. RajanK.E. PreethiJ. SinghH.K. Molecular and functional characterization of Bacopa monniera: A retrospective review.Evid. Based Complement. Alternat. Med.2015201511210.1155/2015/94521726413131
    [Google Scholar]
  174. ToddP.K. OhS.Y. KransA. PandeyU.B. Di ProsperoN.A. MinK.T. TaylorJ.P. PaulsonH.L. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome.PLoS Genet.2010612e100124010.1371/journal.pgen.100124021170301
    [Google Scholar]
  175. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M40475120015590663
    [Google Scholar]
  176. PatilS.P. JainP.D. SanchetiJ.S. GhumatkarP.J. TambeR. SathayeS. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice.Neuropharmacology20148619220210.1016/j.neuropharm.2014.07.01225087727
    [Google Scholar]
  177. ChatterjeeS. MizarP. CasselR. NeidlR. SelviB.R. MohankrishnaD.V. VedamurthyB.M. SchneiderA. BousigesO. MathisC. CasselJ.C. EswaramoorthyM. KunduT.K. BoutillierA.L. A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice.J. Neurosci.20133326106981071210.1523/JNEUROSCI.5772‑12.201323804093
    [Google Scholar]
  178. OhnoK. SamaranchL. HadaczekP. BringasJ.R. AllenP.C. SudhakarV. StockingerD.E. SnieckusC. CampagnaM.V. San SebastianW. NaidooJ. ChenH. ForsayethJ. SalegioE.A. HwaG.G.C. BankiewiczK.S. Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates.Mol. Ther. Methods Clin. Dev.201913475410.1016/j.omtm.2018.12.00130666308
    [Google Scholar]
  179. KumarM. VirmaniT. KumarG. DeshmukhR. SharmaA. DuarteS. BrandãoP. FonteP. Nanocarriers in tuberculosis treatment: Challenges and delivery strategies.Pharmaceuticals (Basel)20231610136010.3390/ph1610136037895831
    [Google Scholar]
  180. AdamsD. Gonzalez-DuarteA. O’RiordanW.D. YangC.C. UedaM. KristenA.V. TournevI. SchmidtH.H. CoelhoT. BerkJ.L. LinK.P. VitaG. AttarianS. Planté-BordeneuveV. MezeiM.M. CampistolJ.M. BuadesJ. BrannaganT.H. KimB.J. OhJ. ParmanY. SekijimaY. HawkinsP.N. SolomonS.D. PolydefkisM. DyckP.J. GandhiP.J. GoyalS. ChenJ. StrahsA.L. NochurS.V. SweetserM.T. GargP.P. VaishnawA.K. GollobJ.A. SuhrO.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N. Engl. J. Med.20183791112110.1056/NEJMoa171615329972753
    [Google Scholar]
  181. FinnJ.D. SmithA.R. PatelM.C. ShawL. YounissM.R. van HeterenJ. DirstineT. CiulloC. LescarbeauR. SeitzerJ. ShahR.R. ShahA. LingD. GroweJ. PinkM. RohdeE. WoodK.M. SalomonW.E. HarringtonW.F. DombrowskiC. StrappsW.R. ChangY. MorrisseyD.V. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing.Cell Rep.20182292227223510.1016/j.celrep.2018.02.01429490262
    [Google Scholar]
  182. VirmaniR. VirmaniT. PathakK. Nanovesicles for delivery of central nervous system drugs.Applications of Nanovesicular Drug Delivery.Academic Press202231533910.1016/B978‑0‑323‑91865‑7.00004‑3
    [Google Scholar]
  183. HendryA.P. KinnisonM.T. HeinoM. DayT. SmithT.B. FittG. BergstromC.T. OakeshottJ. JørgensenP.S. ZaluckiM.P. GilchristG. SouthertonS. SihA. StraussS. DenisonR.F. CarrollS.P. Evolutionary principles and their practical application.Evol. Appl.20114215918310.1111/j.1752‑4571.2010.00165.x25567966
    [Google Scholar]
  184. ReltonC.L. Davey SmithG. Two-step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease.Int. J. Epidemiol.201241116117610.1093/ije/dyr23322422451
    [Google Scholar]
  185. VaisermanA. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: A potential link to disease susceptibility?Clin. Epigenetics2015719610.1186/s13148‑015‑0130‑026366233
    [Google Scholar]
  186. FeinbergA.P. The key role of epigenetics in human disease prevention and mitigation.N. Engl. J. Med.2018378141323133410.1056/NEJMra140251329617578
    [Google Scholar]
  187. MillJ. HeijmansB.T. From promises to practical strategies in epigenetic epidemiology.Nat. Rev. Genet.201314858559410.1038/nrg340523817309
    [Google Scholar]
  188. NebbiosoA. TambaroF.P. Dell’AversanaC. AltucciL. Cancer epigenetics: Moving forward.PLoS Genet.2018146e100736210.1371/journal.pgen.100736229879107
    [Google Scholar]
  189. SantalóJ. BerdascoM. Ethical implications of epigenetics in the era of personalized medicine.Clin. Epigenetics20221414410.1186/s13148‑022‑01263‑135337378
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330087241030093112
Loading
/content/journals/cpd/10.2174/0113816128330087241030093112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test