Skip to content
2000
Volume 31, Issue 26
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The well-known histamine H receptor antagonists are based on an imidazole scaffold. However, the interaction between hepatic CYP450 and imidazole-based drugs leads to some side effects, such as low potential, physicochemical problems, . Therefore, another category of chemical class, benzimidazolone has been explored as an antihistaminic H agent.

Objectives

In this study, the histamine H binding affinity of benzimidazolone derivatives has been quantitatively investigated using Dragon descriptors.

Methods

The models were developed from statistically corroborated quantitative structure-activity relationship (QSAR) models that delivered rationales for the description of the binding affinity of benzimidazolone-based derivatives. In addition, the identified descriptors through CP-MLR analysis for the histamine H binding affinity highlighted the role of symmetry, atomic mass, information content, electrostaticity, rings in the structures, number of chlorine atoms (nCL), and average valence connectivity index chi-3 (X3Av).

Results

The PLS assessment validated the power of CP-MLR-identified descriptors. The applicability domain suggested that the model fulfills the superior feature parameters with good fit and predictive power.

Conclusion

All the compounds were found to be within the applicability domain of the recommended models.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330939250313060926
2025-04-09
2025-10-22
Loading full text...

Full text loading...

References

  1. ArrangJ.M. GarbargM. SchwartzJ.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature1983302591183283710.1038/302832a06188956
    [Google Scholar]
  2. ArrangJ.M. GarbargM. LanceloJ-C. LecomteJ.M. PollardH. RobbaM. SchunackW. SchwartzJ.C. Highly potent and selective ligands for histamine H3-receptors.Nature1987327611811712310.1038/327117a03033516
    [Google Scholar]
  3. SchlickerE. FinkK. DetznerM. GöthertM. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J. Neural Transm.199393111010.1007/BF012449338396945
    [Google Scholar]
  4. FinkK. SchlickerE. NeiseA. GöthertM. Involvement of presynaptic H3 receptors in the inhibitory effect of histamine on serotonin release in the rat brain cortex.Naunyn Schmiedebergs Arch. Pharmacol.1990342551351910.1007/BF001690381965326
    [Google Scholar]
  5. SchlickerE. FinkK. HinterthanerM. GöthertM. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors.Naunyn Schmiedebergs Arch. Pharmacol.1989340663363810.1007/BF007177382615855
    [Google Scholar]
  6. MolderingsG.J. WeissenbornG. SchlickerE. LikunguJ. GöthertM. Inhibition of noradrenaline release from the sympathetic nerves of the human saphenous vein by presynaptic histamine H3 receptors. Naunyn Schmiedebergs Arch. Pharmacol.19923461465010.1007/BF001675691328894
    [Google Scholar]
  7. GarciaM. FloranB. Arias-MontañoJ.A. YoungJ.M. AcevesJ. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat Substantia nigra pars reticulata.Neuroscience199780124124910.1016/S0306‑4522(97)00100‑09252235
    [Google Scholar]
  8. ClaphamJ. KilpatrickG.J. Histamine H 3 receptors modulate the release of [ 3 H]‐acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H 3 receptor subtypes.Br. J. Pharmacol.1992107491992310.1111/j.1476‑5381.1992.tb13386.x1334753
    [Google Scholar]
  9. StarkH. SchlickerE. SchunackW. Developments of histamine H3-receptor antagonists. Drugs Future199621507520
    [Google Scholar]
  10. LeursR. BlandinaP. TedfordC. TimmermanH. Therapeutic potential of histamine H3 receptor agonists and antagonists.Trends Pharmacol. Sci.199819517718410.1016/S0165‑6147(98)01201‑29652190
    [Google Scholar]
  11. McleodR.L. EganR.W. CussF.M. BolserD.C. HeyJ.A. Histamine H3 antagonists.In: New Drugs for Asthma, Allergy and COPDBasel SwitzerlandKarger200131133136
    [Google Scholar]
  12. BerlinM. BoyceC.W. de Lera RuizM. Histamine H3 receptor as a drug discovery target.J. Med. Chem.2011541265310.1021/jm100064d21062081
    [Google Scholar]
  13. TedfordC.E. HoffmannM. SeyediN. MaruyamaR. LeviR. YatesS.L. AliS.M. PhillipsJ.G. High antagonist potency of GT-2227 and GT-2331, new histamine H3 receptor antagonists, in two functional models.Eur. J. Pharmacol.1998351330731110.1016/S0014‑2999(98)00396‑39721022
    [Google Scholar]
  14. GanellinCR LeurquinF PiripitsiA ArrangJM GarbargM LigneauX SchunackW Synthesis of potent non-imidazole histamine H3-receptor antagonists.Arch. Pharm.199833112395404
    [Google Scholar]
  15. McleodR.L. RizzoC.A. WestR.E.Jr AslanianR. MccormickK. BryantM. HsiehY. KorfmacherW. MingoG.G. VartyL. WilliamsS.M. ShihN.Y. EganR.W. HeyJ.A. Pharmacological characterization of the novel histamine H3-receptor antagonist N-(3,5-dichlorophenyl)-N′-[[4-(1H-imidazol-4-ylmethyl)phenyl]-methyl]-urea (SCH 79687).J. Pharmacol. Exp. Ther.200330531037104410.1124/jpet.103.04925412649305
    [Google Scholar]
  16. (a TingP.C. LeeJ.F. AlbaneseM.M. WuJ. AslanianR. FavreauL. NardoC. KorfmacherW.A. WestR.E. WilliamsS.M. AnthesJ.C. RivelliM.A. CorbozM.R. HeyJ.A. The synthesis and structure–activity relationship of 4-benzimidazolyl-piperidinylcarbonyl-piperidine analogs as histamine H3 antagonists.Bioorg. Med. Chem. Lett.201020175004500810.1016/j.bmcl.2010.07.05220685118
    [Google Scholar]
  17. (b ZengQ. RosenblumS.B. YangZ. JiangY. McCormickK.D. AslanianR.G. DugumaL. KozlowskiJ.A. ShihN.Y. HeyJ.A. WestR.E.Jr KorfmacherW.A. BerlinM. BoyceC.W. Synthesis and SAR studies of benzimidazolone derivatives as histamine H3-receptor antagonists.Bioorg. Med. Chem. Lett.201323216001600310.1016/j.bmcl.2013.08.01224050887
    [Google Scholar]
  18. Chemdraw ultra 6.0 and Chem3D ultraAvailable from: https://www.researchgate.net/publication/298250618_ChemDraw_Ultra_60 2020
  19. Dragon software (version 1.11-2001)Available from: http//www.talete.mi.it/dragon.htm 2013
  20. PrabhakarY.S. A combinatorial approach to the variable selection in multiple linear regression: Analysis of Selwood Data Set-a case study.QSAR Comb. Sci.200322583595
    [Google Scholar]
  21. SharmaS. PrabhakarY.S. SinghP. SharmaB.K. QSAR study about ATP-sensitive potassium channel activation of cromakalim analogues using CP-MLR approach.Eur. J. Med. Chem.200843112354236010.1016/j.ejmech.2008.01.02018353509
    [Google Scholar]
  22. SharmaS. SharmaB.K. SharmaS.K. SinghP. PrabhakarY.S. Topological descriptors in modeling the agonistic activity of human A3 adenosine receptor ligands: The derivatives of 2-chloro-N6-substituted-4′-thioadenosine-5′-uronamide.Eur. J. Med. Chem.20094441377138210.1016/j.ejmech.2008.09.02218973967
    [Google Scholar]
  23. SharmaB.K. PilaniaP. SinghP. PrabhakarY.S. Combinatorial protocol in multiple linear regression/partial least-squares directed rationale for the caspase-3 inhibition activity of isoquinoline-1,3,4-trione derivatives.SAR QSAR Environ. Res.2010211-216918510.1080/1062936090357054520373219
    [Google Scholar]
  24. SharmaB.K. SinghP. SarbhaiK. PrabhakarY.S. A quantitative structure-activity relationship study on serotonin 5-HT 6 receptor ligands: indolyl and piperidinyl sulphonamides.SAR QSAR Environ. Res.2010213-436938810.1080/1062936100377399720544556
    [Google Scholar]
  25. WoldS. Cross-validatory estimation of the number of components in factor and principal components models.Technometrics197820439740510.1080/00401706.1978.10489693
    [Google Scholar]
  26. KettanehN. BerglundA. WoldS. PCA and PLS with very large data sets.Comput. Stat. Data Anal.2005481698510.1016/j.csda.2003.11.027
    [Google Scholar]
  27. StahleL. WoldS. Multivariate data analysis and experimental design in biomedical research.Prog. Med. Chem.198825291338
    [Google Scholar]
  28. ToplissJ.G. EdwardsR.P. Chance factors in studies of quantitative structure-activity relationships.J. Med. Chem.197922101238124410.1021/jm00196a017513071
    [Google Scholar]
  29. KatritzkyA.R. DobchevD.A. SlavovS. KarelsonM. Legitimate utilization of large descriptor pools for QSPR/QSAR models.J. Chem. Inf. Model.200848112207221310.1021/ci800207318956833
    [Google Scholar]
  30. SoS.S. KarplusM. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations.J. Med. Chem.199740264347435910.1021/jm970487v9435904
    [Google Scholar]
  31. PrabhakarY.S. SolomonV.R. RawalR.K. GuptaM.K. KattiS.B. CP-MLR/PLS directed structure–activity modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3- thiaz olidin-4-ones.QSAR Comb. Sci.200423423424410.1002/qsar.200330854
    [Google Scholar]
  32. GramaticaP. Principles of QSAR models validation: Internal and external.QSAR Comb. Sci.200726569470110.1002/qsar.200610151
    [Google Scholar]
  33. GolbraikhA. TropshaA. Beware of q2!J. Mol. Graph. Model.200220426927610.1016/S1093‑3263(01)00123‑111858635
    [Google Scholar]
  34. PrabhakarY. A combinatorial protocol in multiple linear regression to model gas chromatographic response factor of organophosphonate esters.Internet Electron. J. Mol. Des.20043150162
    [Google Scholar]
  35. SharmaS. SharmaB.K. JainS. RanaA. 2D-QSAR and molecular docking study on nitrofuran analogues as antitubercular agents.AIMS Mol. Sci.202411112010.3934/molsci.2024001
    [Google Scholar]
  36. ChatterjeeM. RoyK. Quantitative structure-activity relationships (QSARs) in medicinal chemistry.In: Cheminformatics, QSAR and machine learning applications for novel drug developmentAcademic Press202333810.1016/B978‑0‑443‑18638‑7.00029‑3
    [Google Scholar]
  37. ChauhannS SharmaBK CP-MLR/PLS directed quantitative structure-activity relationship study on the histamine H3 receptor binding affinity: The cyclohexylamine based series.World J. Biol. Pharm. Health Sci.202313289104
    [Google Scholar]
  38. PariharR. Quantitative structure-activity relationship studies on antidiabetic agents.A thesis submitted for the award of Ph.D. degree in Chemistry (Faculty of Science) to the University of Kota, Kota2020
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330939250313060926
Loading
/content/journals/cpd/10.2174/0113816128330939250313060926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test