Skip to content
2000
Volume 31, Issue 26
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Ritonavir (RTV) is an antiviral drug that prevents human immunodeficiency virus (HIV). However, it has low bioavailability, which can be improved with the assistance of Solid Lipid Nanoparticles (SLNs).

Objective

The present work aimed to formulate and optimize RTV-loaded SLNs using Box–Behnken design and evaluate the permeability coefficient using permeation studies.

Methods

RTV-SLNs were prepared using the ultrasonication technique. The SLN formulation was optimized based on particle size, % entrapment efficiency, and % cumulative drug release using response surface methodology resulting from Box-Behnken design. The Fourier-Transform Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and transmission Electron Microscopy (TEM) studies were carried out for the characterization of optimized SLN formulation. permeation studies were also performed using chicken ileum.

Results

The optimized RTV-SLNs had a particle size of 270.34 nm, polydispersity index of 0.157, and zeta potential of -25.2 mV. The % entrapment efficiency and % cumulative drug release were found to be 94.33% and 67.13%, respectively. The FT-IR study revealed that SLNs showed no significant interactions between the drug and lipid in the formulation. The % crystalline index of the RTV-loaded SLN formulation was found to be 44.31% compared to the reference value of 100% for lipids. TEM analysis showed spherical nanoparticles that were uniform in shape. The release kinetics data demonstrated the drug release behavior, followed by the Korsmeyer-Peppas model, and suggested that the release from SLNs followed the non-fiction diffusion. The permeability coefficient of optimized SLN formulation was found to be significantly ( < 0.05) more compared to free RTV suspension. The enhancement ratio results suggested that RTV-SLNs permeated significantly ( < 0.05) faster (approximately 3.5 times) as compared to free RTV suspension.

Conclusion

The optimized RTV-SLNs could be a promising carrier for improving the oral bioavailability of RTV.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128329768241230071303
2025-02-25
2025-09-02
Loading full text...

Full text loading...

References

  1. KumarS. NarayanR. AhammedV. NayakY. NahaA. NayakU.Y. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting.J. Drug Deliv. Sci. Technol.20184418118910.1016/j.jddst.2017.12.014
    [Google Scholar]
  2. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  3. MehtaM. BuiT.A. YangX. AksoyY. GoldysE.M. DengW. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development.ACS Mater. Au20233660061910.1021/acsmaterialsau.3c0003238089666
    [Google Scholar]
  4. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  5. FangJ.Y. FangC.L. LiuC.H. SuY.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC).Eur. J. Pharm. Biopharm.200870263364010.1016/j.ejpb.2008.05.00818577447
    [Google Scholar]
  6. HoosainFG ChoonaraYE TomarLK Bypassing P-glycoprotein drug efflux mechanisms: possible applications in Pharmacoresistant schizophrenia therapy.BioMed Res research Int201520151484963
    [Google Scholar]
  7. BhalekarM. UpadhayaP. MadgulkarA. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir.Appl. Nanosci.201771-2475710.1007/s13204‑017‑0547‑1
    [Google Scholar]
  8. ShiL.L. XieH. LuJ. CaoY. LiuJ.Y. ZhangX.X. ZhangH. CuiJ.H. CaoQ.R. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats.Mol. Pharm.20161382667267610.1021/acs.molpharmaceut.6b0022627379550
    [Google Scholar]
  9. KhatriH. ChokshiN. RawalS. PatelB.M. BadanthadkaM. PatelM.M. Fabrication and in vivo evaluation of ligand appended paclitaxel and artemether loaded lipid nanoparticulate systems for the treatment of NSCLC: A nanoparticle assisted combination oncotherapy.Int. J. Pharm.202058311938610.1016/j.ijpharm.2020.11938632376440
    [Google Scholar]
  10. CavacoM.C. PereiraC. KreutzerB. GouveiaL.F. Silva-LimaB. BritoA.M. VideiraM. Evading P-glycoprotein mediated-efflux chemoresistance using solid lipid nanoparticles.Eur. J. Pharm. Biopharm.2017110768410.1016/j.ejpb.2016.10.02427810470
    [Google Scholar]
  11. ZhangZ. LuY. QiJ. WuW. An update on oral drug delivery via intestinal lymphatic transport.Acta Pharm. Sin. B20211182449246810.1016/j.apsb.2020.12.02234522594
    [Google Scholar]
  12. GargA. BhalalaK. TomarD.S. Wahajuddin In situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles.Int. J. Pharm.20175161-212013010.1016/j.ijpharm.2016.10.06427989820
    [Google Scholar]
  13. TalegaonkarS. BhattacharyyaA. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability.AAPS PharmSciTech201920312110.1208/s12249‑019‑1337‑830805893
    [Google Scholar]
  14. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  15. GaoY. KraftJ.C. YuD. HoR.J.Y. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy.Eur. J. Pharm. Biopharm.2019138759110.1016/j.ejpb.2018.04.01429678735
    [Google Scholar]
  16. QinC. ChuY. FengW. FromontC. HeS. AliJ. LeeJ.B. ZgairA. BertonM. BettonteS. LiuR. YangL. MonmaturapojT. Medrano-PadialC. UgaldeA.A.R. VetrugnoD. EeS.Y. SheristonC. WuY. StocksM.J. FischerP.M. GershkovichP. Targeted delivery of lopinavir to HIV reservoirs in the mesenteric lymphatic system by lipophilic ester prodrug approach.J. Control. Release20213291077108910.1016/j.jconrel.2020.10.03633091528
    [Google Scholar]
  17. CohanD. NatureebaP. KossC.A. PlentyA. LuweddeF. MwesigwaJ. AdesV. CharleboisE.D. GandhiM. ClarkT.D. NzarubaraB. AchanJ. RuelT. KamyaM.R. HavlirD.V. Efficacy and safety of lopinavir/ritonavir versus efavirenz-based antiretroviral therapy in HIV-infected pregnant Ugandan women.AIDS201529218319110.1097/QAD.000000000000053125426808
    [Google Scholar]
  18. PaleiN.N. MohantaB.C. DasM.K. SabapathiM.L. Lornoxicam loaded nanostructured lipid carriers for topical delivery: Optimization, skin uptake and in vivo studies.J. Drug Deliv. Sci. Technol.20173949050010.1016/j.jddst.2017.05.001
    [Google Scholar]
  19. JavanF. VatanaraA. AzadmaneshK. Nabi-MeibodiM. shakouriM. Encapsulation of ritonavir in solid lipid nanoparticles: in vitro anti-HIV-1 activity using lentiviral particles.J. Pharm. Pharmacol.20176981002100910.1111/jphp.1273728471000
    [Google Scholar]
  20. SabapatiM. PaleiN.N. CKA.K. MolakpoguR.B. Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies.Drug Dev. Ind. Pharm.201945457758610.1080/03639045.2019.156902730663427
    [Google Scholar]
  21. AlhalmiA. AminS. BegS. Al-SalahiR. MirS.R. KohliK. Formulation and optimization of naringin loaded nanostructured lipid carriers using Box-Behnken based design: In vitro and ex vivo evaluation.J. Drug Deliv. Sci. Technol.20227410359010.1016/j.jddst.2022.103590
    [Google Scholar]
  22. SurendranV. MadheswaragupthaP. RavulaP. RajavelP. Prabahar AE. Chemometrics assisted formulation of glimepiride nanosuspension for solubility enhancement in diabetic therapy-A systematic approach.Macromol. Symp.20244131230011410.1002/masy.202300114
    [Google Scholar]
  23. PaleiN.N. SurendranV. Formulation and characterization of rutin loaded chitosan-alginate nanoparticles: antidiabetic and cytotoxicity studies.Curr. Drug Deliv.202219337939410.2174/156720181866621100509065634636298
    [Google Scholar]
  24. SinghS. KamalS.S. SharmaA. KaurD. KatualM.K. KumarR. Formulation and in vitro evaluation of solid lipid nanoparticles containing Levosulpiride.Open Nanomed. J.201741172910.2174/1875933501704010017
    [Google Scholar]
  25. MehmoodT. AhmedA. AhmedZ. AhmadM.S. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology.Food Chem.201928966467010.1016/j.foodchem.2019.03.11230955662
    [Google Scholar]
  26. WolskaE. SznitowskaM. KrzemińskaK. Ferreira MonteiroM. Analytical techniques for the assessment of drug-lipid interactions and the active substance distribution in liquid dispersions of solid lipid microparticles (SLM) produced de novo and reconstituted from spray-dried powders.Pharmaceutics202012766410.3390/pharmaceutics1207066432679745
    [Google Scholar]
  27. Al-mahallawiA.M. KhowessahO.M. ShoukriR.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In vitro optimization, ex vivo permeation studies, and in vivo assessment.Int. J. Pharm.20144721-230431410.1016/j.ijpharm.2014.06.04124971692
    [Google Scholar]
  28. ZainolS. BasriM. BasriH.B. ShamsuddinA.F. Abdul-GaniS.S. KarjibanR.A. Abdul-MalekE. Formulation optimization of a palm-based nanoemulsion system containing levodopa.Int. J. Mol. Sci.20121310130491306410.3390/ijms13101304923202937
    [Google Scholar]
  29. HassanH. BelloR.O. AdamS.K. AliasE. Meor Mohd AffandiM.M.R. ShamsuddinA.F. BasirR. Acyclovir-loaded solid lipid nanoparticles: optimization, characterization and evaluation of its pharmacokinetic profile.Nanomaterials2020109178510.3390/nano1009178532916823
    [Google Scholar]
  30. PadhyeS.G. NagarsenkerM.S. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation.Indian J. Pharm. Sci.201375559159824403661
    [Google Scholar]
  31. RaviP.R. AdityaN. KathuriaH. MalekarS. VatsR. Lipid nanoparticles for oral delivery of raloxifene: Optimization, stability, in vivo evaluation and uptake mechanism.Eur. J. Pharm. Biopharm.201487111412410.1016/j.ejpb.2013.12.01524378615
    [Google Scholar]
  32. RachmawatiH. RahmaA. Al ShaalL. MüllerR. KeckC. Destabilization mechanism of ionic surfactant on curcumin nanocrystal against electrolytes.Sci. Pharm.201684468569310.3390/scipharm8404068527763572
    [Google Scholar]
  33. KocbekP. BaumgartnerS. KristlJ. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs.Int. J. Pharm.20063121-217918610.1016/j.ijpharm.2006.01.00816469459
    [Google Scholar]
  34. RahmanM.A. AliA. RahamathullaM. SalamS. HaniU. WahabS. WarsiM.H. YusufM. AliA. MittalV. HarwanshR.K. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation.Polymers (Basel)202315354210.3390/polym1503054236771843
    [Google Scholar]
  35. KushwahaA.K. VuddandaP.R. KarunanidhiP. SinghS.K. SinghS. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.BioMed Res. Int.2013201311910.1155/2013/58454924228255
    [Google Scholar]
  36. SinghH. BhandariR. KaurI.P. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH.Int. J. Pharm.20134461-210611110.1016/j.ijpharm.2013.02.01223410991
    [Google Scholar]
  37. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  38. Rahmanian-DevinP. AskariV.R. Sanei-FarZ. Baradaran RahimiV. KamaliH. JaafariM.R. GolmohammadzadehS. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod- induced psoriasis-like skin lesions.Biomed. Pharmacother.202316811582310.1016/j.biopha.2023.11582337924792
    [Google Scholar]
  39. PandeyP. RahmanM. BhattP.C. BegS. PaulB. HafeezA. Al-AbbasiF.A. NadeemM.S. BaothmanO. AnwarF. KumarV. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin.Nanomedicine (Lond.)201813884987010.2217/nnm‑2017‑030629565220
    [Google Scholar]
  40. BegS. MalikA.K. AnsariM.J. MalikA.A. AliA.M.A. TheyabA. AlgahtaniM. AlmalkiW.H. AlharbiK.S. AleneziS.K. BarkatM.A. RahmanM. ChoudhryH. Systematic development of solid lipid nanoparticles of abiraterone acetate with improved oral bioavailability and anticancer activity for prostate carcinoma treatment.ACS Omega2022720169681697910.1021/acsomega.1c0725435647451
    [Google Scholar]
  41. DahanA. HoffmanA. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats.Eur. J. Pharm. Biopharm.20076719610510.1016/j.ejpb.2007.01.01717329087
    [Google Scholar]
  42. NagarajB. TirumaleshC. DineshS. NarendarD. Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies.Future J. Pharm. Sci.20206111
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128329768241230071303
Loading
/content/journals/cpd/10.2174/0113816128329768241230071303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test