Skip to content
2000
Volume 2, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

The use of surface resistance changes as an alternative method to study the metal|polymer interface is reviewed considering both experimental and theoretical aspects. The experimental arrangement in these investigations is, in general, one in which a polymer film is supported on a thin gold film, whose thickness is of the order of the mean free path of the conduction electrons (gold film thickness, φm ∼30 nm). Particular emphasis is laid on the effects of polymer thickness, electrolyte composition, degree of oxidation, and deactivation and reactivation processes of the polymer film on the metal film conductance. Relevant experiments, where the technique was employed to study the redox site distributions at the metal|polymer interface, during oxidation, deactivation and degradation of the polymer, were specially considered. The simple scattering model to explain surface resistance changes of a thin metal film coated with a poly(o-aminophenol) film is outlined on the basis of the specularity parameter, which represents the probability of an electron being reflected specularly or diffusely at the metal film surface. Information obtained by means of surface resistance is compared with that obtained by employing more traditional techniques such as cyclic voltammetry and rotating disc electrode voltammetry.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946811202030265
2012-08-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946811202030265
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test