Current Pharmaceutical Biotechnology - Volume 23, Issue 7, 2022
Volume 23, Issue 7, 2022
-
-
Recent Advancements in Green Synthesis of Nanoparticles for Improvement of Bioactivities: A Review
Authors: Vinay D. Punetha, Sunil Dhali, Anita Rana, Neha Karki, Himani Tiwari, Pushpa Negi, Souvik Basak and Nanda Gopal SahooNatural products have widely been used in applications ranging from antibacterial, antiviral, antifungal, and various other medicinal applications. The use of these natural products was recognized way before the establishment of basic chemistry behind the disease and the chemistry of plant metabo-lites. After the establishment of plant chemistry, various new horizons evolved, and the application of natural products breached the orthodox limitations. In one such interdisciplinary area, the use of plant materials in the synthesis of nanoparticles (NPs) has exponentially emerged. This advancement has offered various environment-friendly methods where hazardous chemicals are completely replaced by natural products in the sophisticated and hectic synthesis processes. This review is an attempt to under-stand the mechanism of metal nanoparticles synthesis using plant materials. It includes details on the role of the plant’s secondary metabolites in the synthesis of nanoparticles including the mechanism of action. In addition, the use of these nanomaterials has widely been discussed along with the possible mechanism behind their antimicrobial and catalytic action.
-
-
-
Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti-Cancer Drug Target
Authors: Archanalakshmi Kambaru and Nidhee ChaudharyProtein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways, and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
-
-
-
Cancer Risk and Nullity of Glutathione-S-Transferase Mu and Theta 1 in Occupational Pesticide Workers
Authors: Muhammad B. Usman, Kanu Priya, Soumya Pandit and Piyush Kumar GuptaOccupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells – that are devoid of GSTT1/GSTM1 – from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.
-
-
-
The Prognostic Value of Long Non-Coding RNA SNHG7 in Human Cancer: A Meta-Analysis
Authors: Kexun Yu, Weijie Yuan, Changhao Huang, Lei Xiao, Runsha Xiao, Pengwei Zeng, Lu Chen and Zihua ChenBackground: The long non-coding RNA SNHG7 is upregulated in many types of cancer and plays a role as an oncogene. However, its overall predictive ability in human cancer prognosis has not been assessed using existing databases. Therefore, further study of its prognostic value and clinical significance in human malignancies is warranted. Methods: We systematically collected relevant literature from multiple electronic document databases about the relationship between SNHG7 expression level and prognosis in patients with solid cancers. We further screenped them for eligibility. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to assess the prognostic value. Odds ratios (ORs) and their 95% CIs were collected to evaluate the relationship between the expression of SNHG7 and clinicopathological features, including lymph node metastasis (LNM), tumour size, tumour node metastasis (TNM) stage and histological grade. Results: Fourteen original studies involving 971 patients were enrolled strictly following the inclusion and exclusion criteria. The meta-analysis showed that SNHG7 expression significantly correlated with poor overall survival (HR = 1.93, 95% CI: 1.64–2.26, p<0.001) in human cancer patients. In addition, the pooled OR indicated that overexpression of SNHG7 was associated with earlier LNM (OR = 1.83, 95% CI: 1.44–2.32; P <0.001), and advanced TNM stage (OR = 1.82, 95% CI: 1.44–2.30; P <0.001). Meanwhile, there was no significant heterogeneity between the selected studies, proving the reliability of the meta-analysis results. Conclusion: High SNHG7 expression may predict poor oncological outcomes in patients with multiple human cancers, which could be a novel prognostic biomarker of unfulfilled clinicopathological features. However, further high-quality studies are needed to verify and strengthen the clinical value of SNHG7 in different types of cancer.
-
-
-
Identification of Novel Drug Candidates for the Inhibition of Catalytic Cleavage Activity of Coronavirus 3CL-like Protease Enzyme
Background: There has been tremendous pressure on healthcare facilities globally due to the recent emergence of novel coronavirus infection known as COVID-19 and its rapid spread across the continents. The lack of effective therapeutics for the management of the pandemic calls for the discovery of new drugs and vaccines. Objective: In the present study, a chemical library was screened for molecules against three coronavirus 3CL-like protease enzymes (SARS-CoV-2 3CLpro, SARS-CoV 3CLpro and MERS-CoV 3CLpro), which are a key player in the viral replication cycle. Methods: Extensive computational methods such as virtual screening and molecular docking were employed in this study. Results: Two lead molecules, ZINC08825480 (4-bromo-N'-{(E)-[1-phenyl-3-(pyridin-3-yl)-1H-pyrazol- 4-yl]methylidene}benzene-1-sulfonohydrazide) and ZINC72009942 (N-[[2-[[(3S)-3-methyl-1-piperidyl] methyl]phenyl]methyl]-6-oxo-1-(p-tolyl)-4,5-dihydro-1,2,4-triazine-3-carboxamide), were identified with better affinity with the three target enzymes as compared to the approved antiviral drugs. Both the lead molecules possessed favorable drug-like properties, fit well into the active site pocket close to His- Cys dyad and showed a good number of hydrogen bonds with the backbone as well as side chains of key amino acid residues. Conclusion: Thus, the present study offers two novel chemical entities against coronavirus infections which can be validated through various biological assays.
-
-
-
Amelioration of Cisplatin-induced Renal Inflammation by Recombinant Human Golimumab in Mice
Authors: Vishal Pavitrakar, Rustom Mody and Selvan RavindranBackground: One of the most commonly used anti-cancer agents, Cisplatin (CDDP) often causes nephrotoxicity by eliciting inflammation and oxidative stress. Golimumab, an anti-TNF biologic, is prescribed for the management of numerous inflammatory ailments like psoriatic and rheumatoid arthritis, ulcerative colitis and ankylosing spondylitis. Objective: Current study has explored the effects of anti-TNF biologics golimumab on mice due to cisplatin-induced nephrotoxicity. Method: Renal toxicity was caused by administration of single cisplatin injection at 22 mg/kg by intraperitoneal (i/p) route. Golimumab (24 mg/kg, s.c.) was administered consecutively for 7 days. The parameters such as renal functions, oxidative stress, inflammation, and renal damage were evaluated on the 7th day of experiments. Results: Cisplatin administration caused nephrotoxicity as shown by a significant elevation of various parameters viz; serum creatinine, neutrophil gelatinase-associated lipocalin (NGAL), urea nitrogen (BUN), and cystatin C. There was a significant rise in urinary clusterin, kidney injury molecule 1 (KIM-1), and β-N-acetylglucosaminidase (NAG) concentrations in the animals treated with cisplatin. The markers of oxidative stress (malondialdehyde, reduced glutathione, and catalase), inflammation (IL-6, TNF-α, IL-10, IL-1β, MCP-1, ICAM-1, and TGF-β1), and apoptosis (caspase-3) were also altered in serum and/or kidneys of cisplatin animals. Further, cisplatin-caused histopathological changes in proximal tubular cells as observed in the H staining of renal tissue. Golimumab treatment reduced all markers of kidney injury and attenuated cell death. Golimumab significantly reduced inflammatory cytokines TNFα, IL- 6, MCP-1, IL- 1β, ICAM-1, and TGF-β1 and increased anti-inflammatory cytokine IL-10 in cisplatin-intoxicated mice. Conclusion: The study’s results suggest that golimumab prevented nephrotoxicity induced by cisplatin- through inhibition of oxidative stress, apoptotic cell death inflammatory response, thus improving renal function.
-
-
-
Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Na-noparticles with Sustained Release Property: Intracellular Uptake, Phar-macokinetics and Biodistribution Study
Authors: Houli Li, Zhiyi Luo, Mingli Peng, Lili Guo, Fuqiang Li, Weiyi Feng and Yali CuiBackground: Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared. Objective: The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties. Method: Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox. Results: Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney. Conclusion: Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.
-
-
-
Sulfated Extract of Abelmoschus Esculentus: A Potential Cancer Chemo-preventive Agent
Background: Abelmoschus esculentus (AE) (okra), is an edible plant used in many food applications. Objective: This study explored whether sulfated AE (SAE) has promising cancer chemopreventive activities that may recommend it as a functional food supplement instead of (or in addition to) AE for the population at risk of cancer and in the health food industry. Methods: Cytochrome P450-1A (CYP1A) was estimated by fluorescence enzymatic reaction, using β-naphthoflavone-treated cells (CYP1A inducer). Peroxyl and hydroxyl radical scavenging was assayed by oxygen radical absorbance capacity assay. Flow cytometry was used to analyze apoptosis/necrosis in MCF-7 cells, cell cycle phases in MCF-7 cells, and macrophage binding to fluorescein isothiocyanate-lipopolysaccharide (FITC-LPS). Nitric oxide was determined by Griess assay in LPS-stimulated macrophages, and cytotoxicity was determined by MTT assay. Diethylnitrosamine (DEN) was used to induce hepatic tumor initiation in rats. Placental glutathione-S-transferase (GSTP; an initiation marker) was stained in a fluorescence immunohistochemical analysis of liver sections, and histopathological changes were examined. Results: SAE exhibited strong antitumor initiation and antitumor promotion activities. It suppressed CYP1A, scavenged peroxyl and hydroxyl radicals, induced macrophage proliferation, suppressed macrophage binding to FITC-LPS, inhibited nitric oxide generation, showed specific cytotoxicity to human breast MCF-7 adenocarcinoma cells, and disturbed the cell cycle phases (S and G2/M phases) in association with an increased percentage of apoptotic/necrotic MCF-7 cells. Over a short time period, DEN stimulated liver cancer initiation, but SAE treatment reduced the DEN-induced histopathological alterations and inhibited CYP1A and GSTP. Conclusion: SAE extract has the potential for use as an alternative to AE in health foods to provide cancer chemoprevention in populations at risk for cancer.
-
-
-
Rapid Screening of Active Components with Topoisomerase I Inhibitory Activity in Sophora alopecuroides L. Based on Ultrafiltration Coupled with UPLC-QTOF-MS
Authors: Lin Zhang, Xiaoying Yin, Xi Wan, Yun Sun, Menghui Cao and Sheng OuyangBackground: Topoisomerase I (Topo I) is a key target of many antitumor drugs in vivo. Alkaloids in Sophora alopecuroides L. can reportedly inhibit Topo I activity, but the pharmacodynamic material basis has not yet been determined. Objective: This study aimed to rapidly identify active components which inhibit Topo I in S. alopecuroides L. Methods: Affinity ultrafiltration coupled with ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UF-UPLC-QTOF-MS) screening system based on Topo I protein was established to screen and isolate a total alkaloid fraction in S. alopecuroides L. Topo I inhibitory activity and anti-tumor proliferation activity of the screened components were evaluated, and their molecular mechanisms were studied. Results: Six compounds that bound specifically to Topo I were obtained. Further screening showed that matrine, cytisine, and sophoridine presented higher inhibitory activity on Topo I and were able to inhibit the proliferation of breast cancer MDA-MB-468 cells with IC50 values of 9.40 ± 1.12 mM, 17.4 ± 2.20 mM, and 10.4 ± 1.37 mM, respectively. To the best of our knowledge, their dual molecular mechanisms against Topo I have not discussed to date. In this study, the following dual mechanisms are reviewed for the first time: (1) stabilization of the Topo I-DNA complex and (2) inhibition or blocking of Topo I binding to DNA. Conclusion: Matrine, cytisine, and sophoridine from S. alopecuroides L. were defined as the active components possessing Topo I inhibitory activity, and their pharmacological mechanism was confirmed, which provided an important base for further research and development of antitumor components from S. alopecuroides L.
-
-
-
Foldable/Expandable Gastro-retentive Films Based on Starch and Chitosan as a Carrier For Prolonged Release of Resveratrol
More LessBackground: Resveratrol exerts a number of therapeutic effects, notably antiinflammatory, antioxidant and anti-cancer activities which are beneficial for the treatment of gastric diseases. However, the efficacy of resveratrol is severely limited due to the poor aqueous solubility and rapid metabolism following oral administration. As a result, foldable/expandable devices based on natural polymers merging with solid dispersion technology have been developed to increase the solubility, prolong the gastric residence time, and provide a controlled release therapy of resveratrol. Objectives: This research aimed to invent foldable/expandable films based on natural polymers, including starch and chitosan, for stomach-specific delivery and prolonged release of resveratrol. Methods: The films were prepared by solvent casting using either rice, tapioca, corn starch or pregelatinized corn starch combined with chitosan in different weight to weight ratios. Glycerol was included as a plasticizer. Resveratrol solid dispersions (Res-SD) prepared by solvent evaporation and employing PVP-K30 as a hydrophilic polymer were loaded into the polymeric film, which was subsequently folded prior to insertion in a hard gelatin capsule. Results: The solid dispersions improved the solubility of resveratrol by a factor of 500. All Res-SD loaded film formulations completely unfolded in simulated gastric fluid at 37oC within 10 min. Fluid absorption by the films was influenced by the ratio of amylose and amylopectin in the starch granules, with tapioca starch formulations displaying the highest fluid uptake. Films prepared from pregelatinized corn starch and chitosan resulted in highly efficient delivery of resveratrol, with more than 80%of the content released over a period of 12 hrs. Furthermore, the released polyphenol exhibited cytotoxic activity against human gastric adenocarcinoma cells and anti-inflammatory effects against lipopolysaccharide-stimulated murine, macrophage-like cells. Conclusions: These findings demonstrate the potential of foldable/expandable films based on natural polymers as a promising stomach-specific carrier for improving the treatment of gastric disorders.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
