Current Pharmaceutical Biotechnology - Volume 21, Issue 4, 2020
Volume 21, Issue 4, 2020
-
-
Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria
Authors: Fazlurrahman Khan, Dung T.N. Pham, Sandra F. Oloketuyi and Young-Mog KimBackground: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
-
-
-
Classical and New Pharmaceutical Uses of Bacterial Penicillin G Acylase
Background: β-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst. Objective: This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application. Results: Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified. Conclusion: PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.
-
-
-
Gel-based Microemulsion Design and Evaluation for Topical Application of Rivastigmine
Authors: Chih-Wen Fang, Ling-Chun Tsai, Yaw-Syan Fu, Ting-Yu Cheng and Pao-Chu WuObjective: The aim of the present study was to design nanocarriers for the topical application of rivastigmine. Methods: The effect of cosurfactants, hydrophilic gel and loading amount on the permeability of rivastigmine through rat skin was evaluated. Skin irritation tests and stability tests were performed to evaluate the utility of tested formulations. Results: The results showed that the microemulsion formation and characteristics of drug-loaded formulations were related to many parameters of the components. When using microemulsion systems as a vehicle, the permeation rate remarkably increased about 13.2~24.3-fold and the lag time was significantly shortened from 24 h to 4.7 h. Formulations containing a cosurfactant of Diethylene Glycol Monobutyl Ether (DEGBE) showed higher enhancement effect, while increasing the loading dose from 0.5% to 5% further increased the flux about 2.1-fold and shortened the lag time. Conclusion: The drug-loaded experimental formulation did not cause skin irritation and had good stability at 20ºC and 40ºC storage for at least 3 months. The result showed that gel-based microemulsion formulation could be a promising approach for topical administration.
-
-
-
New Folate-Modified Human Serum Albumin Conjugated to Cationic Lipid Carriers for Dual Targeting of Mitoxantrone against Breast Cancer
Authors: Abbas A. Ridha, Soheila Kashanian, Abbas H. Azandaryani, Ronak Rafipour and Elahe MahdavianAims: In the present work, folic acid-modified human serum albumin conjugated to cationic solid lipid nanoparticles were synthesized as nanocarriers of mitoxantrone for the treatment of breast cancer. Background: Dual-targeted drug delivery is a new drug dosing strategy that is frequently used to enhance the therapeutic efficacy of anticancer drugs. Objective: Dual targeting of the cancer cells was achieved by dual tagging of human serum albumin and folic acid on the surface of the lipid nanoparticles. Methods: The targeted drug-loaded nanocomplexes were synthesized and characterized using transmission electron microscopy along with photon-correlation and Fourier-transform infrared spectroscopic techniques. The anti-cancer activity of the nanocomplexes was screened against an in-vitro model of MCF-7 and MDA-MB-231 breast cancer cell lines to examine drug efficacy. Results: The entrapment efficiency and drug loading values for mitoxantrone were calculated to be 97 and 8.84%, respectively. The data from the drug release studies for the system indicated the release profile did not significantly change within a pH range of 5.5-7.4. The hemolysis ratio of the hybrid carrier was less than 5% even at the upper doses of 3 mg/mL, demonstrating its safety for intravenous injection with limited hemolysis and a long blood circulation time. Conclusion: The cell cytotoxicity results confirmed that the drug hybrid nanocomplex was more toxic to breast cancer cells compared with the free drug. Furthermore, the weakly cationic and small size particles prevented opsonin binding of nanocomplexes, improving blood circulation time and cancer tissue uptake.
-
-
-
Production and Preliminary In Vivo Evaluations of a Novel in silico-designed L2-based Potential HPV Vaccine
Background: L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. Methods: The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. Results: Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund’s adjuvant group. Conclusion: The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.
-
-
-
Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach
Authors: Saeed Anwar, Jarin T. Mourosi, Md. F. Khan and Mohammad J. HosenBackground: Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe. Methods: Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections. Results: A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them “NTQLSEAHVEKS” was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope “KTEFASAYR” as a vaccine candidate for this virus. Conclusion: A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.
-
-
-
Ecofriendly Ethyl Cellulose Microsponges of Citronella Oil: Preparation, Characterization and Evaluation of Cytotoxicity and Larvicidal assay
Authors: Ruchi Sharma, Nitish Kumar, Sompal P. Singh, Sunil Kumar and Rekha RaoBackground: Citronella Oil (CO) was used by the Indian army as mosquito repellant to repel mosquitoes at the beginning of the 20th century and later in 1948, it was registered in the USA for commercial purposes. Due to its ecofriendly nature, CO possesses immense potential as a mosquito repellent. Methods: Citronella oil is a valuable alternative to synthetic mosquito repellents commonly used nowadays. However, its volatile nature, poor stability in air and high temperature restrict its application. Its direct application on skin may lead to skin irritation. To surmount the above-mentioned issues, the present research aims to develop Microsponge (MS), a novel dosage form for enhancing the utility and safety of CO. Quasi emulsion solvent diffusion method was chosen for crafting MS using ethyl cellulose with various drug-polymer ratios and characterized. In vitro cytotoxicity evaluation was also carried out to check the dermal safety of COMS. Results: The present results revealed that the size of all prepared formulation lies in the micro range (20 ± 3 to 41 ± 4 μm), with good payload (42.09± 3.24 to 67.08± 6.43%). The results of FE-SEM depicted that MS were spherical in shape with porous nature. Cytotoxicity results indicated that COMS were safe on skin cells, when compared to pure CO. The optimized MS were also assessed for larvicidal assay against larvae of Anopheles culicifacies. Conclusion: The CO micro-formulations were found to possess enhanced stability of this oil. Entrapment of CO in MS resulted in a better vehicle system in terms of safety, stability and handling benefits of this oil.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
