Current Pharmaceutical Biotechnology - Volume 20, Issue 13, 2019
Volume 20, Issue 13, 2019
-
-
Nanoparticles and Zeolites: Antibacterial Effects and their Mechanism against Pathogens
Nowadays, distribution and microorganism resistance against antimicrobial compounds have caused crucial food safety problems. Hence, nanotechnology and zeolite are recognized as new approaches to manage this problem due to their inherent antimicrobial activity. Different studies have confirmed antimicrobial effects of Nano particles (NPs) (metal and metal oxide) and zeolite, by using various techniques to determine antimicrobial mechanism. This review includes an overview of research with the results of studies about antimicrobial mechanisms of nanoparticles and zeolite. Many researches have shown that type, particle size and shape of NPs and zeolite are important factors showing antimicrobial effectiveness. The use of NPs and zeolite as antimicrobial components especially in food technology and medical application can be considered as prominent strategies to overcome pathogenic microorganisms. Nevertheless, further studies are required to minimize the possible toxicity of NPs in order to apply suitable alternatives for disinfectants and antibacterial agents in food applications.
-
-
-
A Review on Targeting Nanoparticles for Breast Cancer
Authors: Hasanain Gomhor J. Alqaraghuli, Soheila Kashanian and Ronak RafipourChemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
-
-
-
Antibody Therapy for the Control of Viral Diseases: An Update
The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.
-
-
-
Fabrication and in-vitro Investigation of Polycaprolactone - (Polyvinyl Alcohol/Collagen) Hybrid Nanofiber as Anti-Inflammatory Guided Tissue Regeneration Membrane
Authors: Mazdak Limoee, Pouran Moradipour, Mahnaz Godarzi, Elham Arkan and Leila BehboodBackground: Periodontal disease is the most common oral condition that affects the tissue surrounding the teeth. The oral cavity is colonized by an impressive array of micro-organisms, many of which can colonize the implants such as Guided Tissue Regeneration (GTR) often utilized in recovering procedures that result in inflammation interfering with the bone regeneration. Methods: In the current study, a nano-hybrid GTR membrane is developed as a heliacal structure scaffold with localized drug delivery function (Ibuprofen) as an anti-inflammatory agent. Polycaprolactone (PCL) and a blend of Polyvinyl alcohol (PVA)/collagen (Col) (50/50) were electrospun by electrospinning. Ibuprofen (Ibu) was loaded once in the PCL context and once in the hydrophilic portion (PVA/Col). Results: The in vitro release behavior was investigated in each case. Chemical and physical properties were studied for each item. Morphology investigation indicated a heliacal structure with the total average diameter of 1266 nm consististing of porous pores with the average diameter of 256nm. Conclusion: The membranes indicated proper mechanical properties and appropriate biodegradation rate as a potential GTR membrane. The controlled and sustained release of Ibu was obtained from both PCL and PVA/COL loaded membranes. Kinetic model study indicated the following zero-order and Higuchi models for the optimum case of PCL loaded and PVA/Col Ibu loaded scaffolds respectively.
-
-
-
Genetic Diversity Among Saudi Peganum harmala and Rhazya stricta Populations Using Chemical and ISSR Markers
Authors: Magda E. Abd-Elgawad and Modhi O. AlotaibiBackground: The vernacular name 'Harmal' is used for two plant species in Saudi Arabia, i.e. Peganum harmala L. and Rhazya stricta Decne. Both are important medicinal plants which offer interesting pharmacological properties. Objective: This study aimed to evaluate the genetic diversity among different populations of harmal based on chemical variations of alkaloids and molecular polymorphism. Methods: Total alkaloids were extracted from plants of three populations of each species and estimated by using spectrophotometer and the chemical compounds were analyzed by Gas chromatography mass spectrometry (GC-MS). Molecular polymorphism was estimated by using the Inter Simple Sequence Repeat (ISSR) fingerprints. Results: The results showed that the alkaloids content of R. stricta was higher than P. harmala populations. The GC-MS analysis revealed the presence of (65-53) compounds in R. stricta and P. harmala, and the percentage of polymorphism was found to be 93.2%. Sixteen ISSR primers produced 170 scorable bands with an average of 9.6 bands per primer and 75%-100% polymorphism. The cluster analysis using the unweighted pair-group method of the arithmetic average (UPGMA) method based on combined data of GC-MS and ISSR markers divided the six harmal genotypes into two major groups. Conclusion: The existence of variations in chemical and genetic markers is useful for the selection of potential genotypes for medicinal use, and for breeding lines for medicinal substances production to spare wild plants from uncontrolled harvesting for folk medicine.
-
-
-
Overexpression of miR-340-5p Inhibits Skin Fibroblast Proliferation by Targeting Kruppel-like Factor 2
Authors: Ling Chen, Qian Li, Xun Lu, Xiaohua Dong and Jingyun LiObjective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers. However, the function of miR-340-5p in skin fibroblasts remains largely unknown. Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p with the 3'UTR of Kruppel-like factor 2 (KLF2). Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19 downregulated transcripts in the miR-340-5p overexpression group compared with those in the control group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process, membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays showed that miR-340-5p binds to the 3'UTR of KLF2. Forced expression of miR-340-5p decreased the expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation in the miR-340-5p overexpression group. Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly through targeting KLF2. These findings could help us understand the function of miR-340-5p in skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
