Current Pharmaceutical Biotechnology - Volume 20, Issue 1, 2019
Volume 20, Issue 1, 2019
-
-
Ginger: A Novel Strategy to Battle Cancer through Modulating Cell Signalling Pathways: A Review
Numerous studies have been performed in understanding the development of cancer. Though, the mechanism of action of genes in the development of cancer remains to be explained. The current mode of treatment of cancer shows adverse effects on normal cells and also alter the cell signalling pathways. However, ginger and its active compound have fascinated research based on animal model and laboratories during the past decade due to its potentiality in killing cancer cells. Ginger is a mixture of various compounds including gingerol, paradol, zingiberene and shogaol and such compounds are the main players in diseases management. Most of the health-promoting effects of ginger and its active compound can be attributed due to its antioxidant and anti-tumour activity. Besides, the active compound of ginger has proven its role in cancer management through its modulatory effect on tumour suppressor genes, cell cycle, apoptosis, transcription factors, angiogenesis and growth factor. In this review, the role of ginger and its active compound in the inhibition of cancer growth through modulating cell signalling pathways will be reviewed and discussed.
-
-
-
Regulation of Vaginal Microbiome by Nitric Oxide
Authors: Taj Yeruva and Chi H. LeeIn this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
-
-
-
Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration
Osteoarthritis (OA) is a common degenerative disease which involves articular cartilage, and leads to total joint disability in the advanced stages. Due to its avascular and aneural nature, damaged cartilage cannot regenerate itself. Stem cell therapy and tissue engineering represent a promising route in OA therapy, in which cooperation of mesenchymal stem cells (MSCs) and three-dimensional (3D) scaffolds contribute to cartilage regeneration. However, this approach still presents some limits such as poor mechanical properties of the engineered cartilage. The natural dynamic environment of the tissue repair process involves a collaboration of several signals expressed in the biological system in response to injury. For this reason, tissue engineering involving exogenous “influencers” such as mechanostimulation and functional biomolecule delivery systems (BDS), represent a promising innovative approach to improve the regeneration process. BDS provide a controlled release of biomolecules able to interact between them and with the injured tissue. Nano-dimensional BDS is the future hope for the design of personalized scaffolds, able to overcome the delivery problems. MSC-derived extracellular vesicles (EVs) represent an attractive alternative to BDS, due to their innate targeting abilities, immunomodulatory potential and biocompatibility. Future advances in cartilage regeneration should focus on multidisciplinary strategies such as modular assembly strategies, EVs, nanotechnology, 3D biomaterials, BDS, mechanobiology aimed at constructing the functional scaffolds for actively targeted biomolecule delivery. The aim of this review is to run through the different approaches adopted for cartilage regeneration, with a special focus on biomaterials, BDS and EVs explored in terms of their delivery potential, healing capabilities and mechanical features.
-
-
-
Establishment of Novel Cells Stably Secreting Various Human IL-18 Recombinant Proteins
Background: The immunotherapies against cancer, autoinmmune diseases or infection are remarkable development. These days programmed cell death (PD)-1 antibody-induced immune checkpoint blockade or chimeric antigen receptor-T cells (CAR-T) have been shown to have eminent therapeutic effects on tumor development. We have focused on adoptive transfer with human gamma delta T cells for novel immunotherapies. Additionally, IL-18 is one of the cytokines that enhances cytokine secretion and cytotoxicity of human gamma delta T cells. Method: Thus, we established novel cell lines stably expressing and secreting various types of human recombinant IL-18 proteins to their culture supernatants using episomal vector. We also differentiated primary cultured human gamma delta T cells from peripheral blood mononuclear leukocytes to validate biological activity of the IL-18 proteins using measuring IFN-γ by ELISA. Results and Conclusion: Finally, we demonstrated that the supernatant could activate human gamma delta T cells using monitoring interferon gamma in culture medium.
-
-
-
In vivo Evaluation and Alzheimer's Disease Treatment Outcome of siRNA Loaded Dual Targeting Drug Delivery System
Authors: Chi Zhang, Zhichun Gu, Long Shen, Xianyan Liu and Houwen LinBackground: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.
-
-
-
Effect of Powdered Activated Carbon as Advanced Step in Wastewater Treatments on Antibiotic Resistant Microorganisms
Authors: Damiana Ravasi, Roger König, Pamela Principi, Giuseppe Perale and Antonella DemartaBackground: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria. Methods: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling. Results: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent. Conclusion: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.
-
-
-
Evaluation of Activity Kinetic Parameters of SK319cys, As a New Cysteine Variant of Streptokinase: A Comparative Study
Background: Despite the extensive use of streptokinase in thrombolytic therapy, its administration may have some shortcomings like allergic reactions and relatively low half life. Specific PEGylation on cysteine at desired sites of streptokinase may alleviate these deficiencies and improve the quality of treatment. Objective: This study was carried out to create a new cystein variant of streptokinase and compare its activity with formerly mutated SK263cys, SK45cys and intact streptokinase (Ski) to introduce superior candidates for specific PEGylation. Method: In silico study was carried out to select appropriate amino acid for cysteine substitution and accordingly mutagenesis was carried out by SOEing PCR. The mutated gene was cloned in E. coli, expressed, and purified by affinity chromatography. Activity of the purified proteins was assayed and kinetic parameters of enzymatic reaction were analyzed. Results: According to in silico data, Arginine319 was selected for substitution with cysteine. SK319cys was achieved with 98% purity after cloning, expression and purification. It was shown that the enzymatic efficiency of SK319Cys and SK263cys was increased 18 and 21%, respectively, when compared to SKi (79.4 and 81.3 vs. 67.1μM-1min-1), while SK45cys showed 7% activity decrease (62.47μM-1min-1) compared to SKi. According to time-based activity assay, SK319Cys and SK263cys exhibited higher activity at lower substrate concentrations (100 and 200 μM), but at higher concentrations of substrate (400 and 800 μM), the proteins showed a very close trend of activity. Conclusion: SK319cys, as the new cysteine variant of streptokinase, together with SK263cys and SK45cys can be considered as appropriate molecules for specific PEGylation.
-
-
-
Chemical Composition, Antioxidant and Anti-inflammatory Activity Evaluation of the Lebanese Propolis Extract
Background: Propolis is a resinous substance produced by bees and known to possess antioxidant, antimicrobial, antiproliferative and anti-inflammatory activities. Objective: This study is aimed at evaluating the in vivo and in vitro anti-inflammatory potential of the Crude Ethanolic Extract (CE) of Lebanese propolis and its Ethyl Acetate Fraction (EAF). Method: Chemical content of propolis was characterized using high-performance liquid chromatography and LC-MS/MS. COX-2 and iNOS protein expression, nitric oxide (NO) and prostaglandin (PGE2) release in LPS-activated RAW monocytes were achieved respectively by western blot and spectrophotometry. Antioxidant activity was evaluated by DPPH free radical scavenging assay. Measurement of paw thickness in carrageenan-induced paw edema in mice and pathologic assessment of inflammation in paw sections were used to judge the anti-inflammatory properties of propolis. Results: Pathology analysis revealed in the treated group significant reduction of immune cell infiltration and edema. Both extract and ethyl acetate fraction showed significant anti-inflammatory and antioxidant effects in LPS-treated RAW cells characterized by the inhibition of COX-2 and iNOS protein expression, as well as PGE2 and NO release. Chemical analysis of the crude extract and its ethyl acetate fraction identified 28 different compounds of which two phenolic acids and nine other flavonoids were also quantified. Ferulic acid, caffeic acid, chrysin, galangin, quercetin, and pinocembrin were among the most representative compounds. Conclusion: Lebanese propolis is rich in a various amount of flavonoids which showed promising antiinflammatory and antioxidant properties. Additionally, chemical analysis showed unique chemical compositions with the potential of identifying ingredients with interesting anti-inflammatory activities.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
