Current Pharmaceutical Biotechnology - Volume 19, Issue 6, 2018
Volume 19, Issue 6, 2018
-
-
Diagnostic Biomarkers of Epilepsy
Background: Diagnostic biomarkers of epilepsy are objectively measurable variables associated with the development of epilepsy or the propensity to generate seizures. Identification of biomarkers could be helpful for differential diagnosis and for tailored therapeutic approaches. Objective: This review focuses on diagnostic biomarkers of epilepsy, including genetic, serological, neuroimaging and electrophysiological variables. Methods: References were mainly identified through PubMed search until December 2017 and backtracking of references in pertinent studies. Results: Several promising diagnostic biomarkers of epilepsy exist, with causative value or predicting liability to develop seizures after acquired brain injuries. Short non-coding RNAs are deregulated in serum and cerebral tissue of epilepsy subjects: these molecules are promising diagnostic biomarkers, being easy to assess and reproducible. Advanced imaging techniques may allow identification of subtle epileptogenic lesions, often with prognostic value. Novel electrophysiological biomarkers of epilepsy include perturbed cortical connectivity and excitability induced by transcranial magnetic stimulation, as well as high-frequency oscillations detected by intracranial and scalp electroencephalographic recordings. Finally, serological biomarkers may support the differential diagnosis between epileptic seizures and non-epileptic events. Conclusion: Ongoing research on diagnostic biomarkers of epilepsy is promising and future preclinical and clinical studies are warranted.
-
-
-
New Developments in Pichia pastoris Expression System, Review and Update
Background: Although Pichia pastoris is an outstanding host among conventional expression systems for production of recombinant proteins, a new interest has been emerged to this system due to the inherent advantages and new developments in this expression host. The potential for secretory and soluble expression of heterologous glycoproteins in P. pastoris proposed this system as a candidate for the production of complex eukaryotic proteins. Methods: Several new developments have occurred in different areas related to P. pastoris expression system including hosts, vectors, glycosylation pattern and fermentation technology. Strain engineering using Crispr/Cas9 technology to produce human-like glycoproteins and protease deficient strains are two new areas of development with high importance. Results: This review is dedicated to discuss the most important characteristics of P. pastoris with emphasis on new developments, especially in the field of glycoengineering, efficient expression vectors and promoters. Conclusion: New developments that occurred in the P. pastoris expression system converted this system to a versatile host for the production of complex proteins. This progress paved the way for several proteins to enter the clinical trials or industrial processes with this valuable expression host.
-
-
-
3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one, a Novel Curcumin Analogue, Inhibits Cellular and Humoral Immune Responses in Male Balb/c Mice
Authors: Laiba Arshad, Ibrahim Jantan, Syed N.A. Bukhari and Mh B. FauziBackground: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has previously been shown to manifest potent immunosuppressive effects on the in vitro phagocytosis process of human neutrophils. Objective: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors. Methods: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction. Results: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH. Conclusion: These findings suggest the potential of BBP as a potent immunosuppressive agent.
-
-
-
Beneficial Morphofunctional Changes Promoted by Sildenafil in Resistance Vessels in the Angiotensin II-Induced Hypertension Model
Background: By acting on multiple targets and promoting diverse actions, angiotensin II (Ang II) plays a pivotal role in vascular function. Recent studies suggested that phosphodiesterase-5 (PDE-5) inhibitors exhibit therapeutic effects in cardiovascular diseases. Here, the effects of sildenafil on vascular disturbances were analyzed in a mouse model of Ang II-induced hypertension. Methods and Results: Male C57BL/6 mice were used as untreated animals (control) or infused with Ang II (1000 ηg/kg/min) for 28 days and treated with sildenafil (40 mg/kg/min) or vehicle (Ang II) during the last two weeks. After 4 weeks, the Ang II animals exhibited a high systolic blood pressure (186±3 mmHg vs. 127±3 mmHg for control mice), which was attenuated by sildenafil (163±7 mmHg). The mesenteric vessels from the Ang II animals revealed damage to the endothelial layer, an increase in the cross-section area (1.9-fold) and vascular cell production of peroxynitrite (512±13 a.u.), which was ameliorated in the Ang II-Sil group (1.2-fold and 400±17 a.u.). Analysis of the vascular responsiveness showed an increased contractility response to norepinephrine in Ang II animals (Rmax: 70%), which was abolished by sildenafil through increased nitric oxide (NO) bioavailability and decreased reactive oxygen species (ROS) and vasoconstrictor prostanoids. Conclusion: Sildenafil attenuates the morphofunctional deleterious effects of Ang II on resistance vessels. The benefits of sildenafil seem to occur through restoring the balance of ROS/NO/eicosanoids. Therefore, this study opened new avenues for further clinical targeting of the treatment of cardiovascular diseases related to activation of the renin-angiotensin system.
-
-
-
Verification between Original and Biosimilar Therapeutic Antibody Infliximab Using nSMOL Coupled LC-MS Bioanalysis in Human Serum
Background: Infliximab (IFX) is a chimeric therapeutic monoclonal antibody targeting tumor necrosis factor alpha (TNFα)-mediated inflammatory immune diseases. However, despite of an initial good clinical response, decrease in response to long-term treatment is a common observation. Objective: Recent studies suggest that IFX level in circulation has a correlation with clinical bioavailability. Therefore, the management of IFX dosage for individual manifestation by IFX monitoring may be valuable for the improvement of therapeutic response and outcomes. Method: In order to develop a broad IFX therapeutic monitoring in human serum, we have developed the validated IFX bioanalysis for RemicadeTM and its biosimilar product using our nano-surface and molecular-orientation limited proteolysis (nSMOL) technology coupled with liquid chromatographytandem mass spectrometry (LC-MS/MS). The nSMOL chemistry has a unique property of Fabselective proteolysis, and makes it possible a global bioanalysis for many monoclonal antibodies. Results: The quantitation range of IFX in serum was from 0.293 to 300 μg/ml with good linearity. Quantitation verification at the concentrations of 0.293, 0.879, 14.1 and 240 μg/ml was within 1.56- 7.53% of precision and 98.9-111% of accuracy using H-chain signature peptide SINSATHYAESVK. Moreover, cross-verified bioanalysis of Remicade quantitation using biosimilar standard, and its opposite combination, obtained an identical and inter-comparative results. Conclusion: The nSMOL strategy has the potential as a practical therapeutic monitoring technology in IFX therapeutic applications.
-
-
-
The Drug Combination of SB202190 and SP600125 Significantly Inhibit the Growth and Metastasis of Olaparib-resistant Ovarian Cancer Cell
Authors: Xinyan Chen, Yumei Chen, Xueyan Lin, Shan Su, Xiaoman Hou, Qian Zhang and Yongjie TianBackground & Objective: Many targeted ovarian cancer patients are resistant to olaparib treatment. Here we seek to understand the underlying molecular events and search for potential combinational therapeutics to surmount the intrinsic olaparib resistance in human ovarian cancer. Methods: The cytotoxicity was determined by the MTT assay and cell viability was measured using Cell Counting Kit-8 (CCK-8). Protein expressions of ERK, P38, JNK, ERK5, LC3, N-CADHERIN, α-SMA were determined by western blotting. The invasion capacity was evaluated by the transwell chamber. Autophagy flux was monitored by the LC3 puncta formation. The epithelial-mesenchymal transition (EMT) markers were profiled by immunoblotting detection. The in vivo tumor progression was determined by xenograft mice model. Results: The olaparib-resistant cell lines were successfully generated in both SKOV3 and A2780 cells. The proliferative index was significantly higher in resistant cells in comparison with sensitive counterparts in the presence of olaparib. Both P38 and JNK were up-regulated in olaparib-resistant cells. The combinational treatment with P38-specific inhibitor SB202190 and JUN-specific inhibitor SP600125 significantly suppressed cell growth and migration, which was further attributed to the induction of autophagy flux and inhibition of EMT processing. We further consolidated the anti-tumor activities of SB202190 and SP600125 in xenograft mice. Conclusion: Our data suggested that aberrant over-expression of P38 and JNK is causally linked to the olaparib resistance in ovarian cancer. Combination of P38 and JUN inhibitors demonstrated significant anti-tumor activity both in vitro and in vivo. Our study highlighted the potential therapeutic value of Mitogen-Activated Protein Kinase (MAPK) inhibitors in olaparib-resistant human ovarian cancer.
-
-
-
Low Doses of G-CSF Prevent Cerebral Infarction and Maintain Muscle Strength in an Experimental Model of Global Ischemic Stroke
Background: Stroke is a major cause of severe and long-term disability in adult individuals. Treatment of this disease is limited by the narrow therapeutic window in which intervention is crucial. An alternative therapy for stroke could be cellular growth factors, which participate in several pathways that mediate neuronal cell death. Methods: We evaluated the neuroprotective ability of different doses of granulocyte colonystimulating factor (G-CSF; 5, 50 and 100 μg/kg/day) in the mouse model of global cerebral ischemia induced by bilateral occlusion of the common carotid arteries for 80 minutes. The control group received vehicle (5% glucose solution) and the treated group was administered with G-CSF at two postsurgery time-points: immediately after and 24 hours after. Subsequently, muscle strength, leukocyte count, infarcted cortical area, and apoptosis/TUNEL were evaluated. Results: The global ischemia promoted an impairment of the strength (16%) and a cerebral infarction (0.437±0.08 cm2) which were accompanied by apoptosis evaluated by TUNEL in control mice. In mice treated with G-CSF the strength function was maintained, the infarcted area (~70%) and apoptosis were decreased in a similar magnitude in all treated groups. Accordingly, the cytokine activities were confirmed by blood leukocyte count that was increased approximately 2-fold than that observed in the control group. Conclusion: The results indicate a neuroprotective effect of G-CSF, even in small doses, in mice subjected to global cerebral ischemia, thereby reducing the neurofunctional impairment caused by stroke, when considering the maintenance of muscle strength in the treated animals.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
