Current Pharmaceutical Biotechnology - Volume 18, Issue 1, 2017
Volume 18, Issue 1, 2017
-
-
Molecular, Cellular and Pharmaceutical Aspects of Biomaterials in Dentistry and Oral and Maxillofacial Surgery. An Internationalization of Higher Education and Research Perspective
In dentistry and oral and maxillofacial surgery, the development of implantable biomaterials and the understanding of their molecular, cellular and pharmaceutical aspects are currently major fields of research and education, with a considerable impact on the daily clinical practice and the evolution of therapeutic strategies. In the era of globalized economy of knowledge and science, this scientific domain needs the development of global cooperation and a paradigm evolution in the organizational culture of the dental sciences and related dental industry. Despite political pressure and theoretical efforts, the internationalization of higher education and research today in dentistry and biomaterials remains in general quite superficial and mostly dependent on the efforts of a few leaders of internationalization working through their personal networks, as it was assessed through the FAST scores (Fast Assessment Screening Test) calculated in various dental schools and groups worldwide through the ISAIAS program (Intercultural Sensitivity Academic Index & Advanced Standards). Cooperation in a multipolar multicultural community requires the development of strong intercultural competences, and this process remains limited in most institutions. These limits of international scientific cooperation can be observed through different markers, particularly the difficult and limited production of ISO standards (International Organization for Standardization) and the relatively low SCIENTI scores (Scientific Cooperation Internationalization Effort & Network Test & Index) of the specialized dental literature, particularly in comparison to the most significant medical literature. However, as an analytical tool to assess the scientific international cooperation effort between fields and periods, the SCIENTI screening system also highlighted a significant increase of the internationalization effort in the last years in the best dental biomaterials publications. Finally, an internationalization of higher education and research perspective is a very important approach to assess the evolution of the dental biomaterial science and highlights very clearly the future endeavors of this field, particularly the impact and interferences of private entities and companies in the development of this corpus of knowledge. It also reveals that the concept of independent not-for-profit Cooperation Internationalization Effort Literature (CIEL), in the various informal models that can be found worldwide around diverse leaderships, is the best perspective for a better science and understanding of molecular, cellular and pharmaceutical aspects of biomaterials in dentistry and oral and maxillofacial surgery.
-
-
-
Molecular, Cellular and Pharmaceutical Aspects of Bone Grafting Materials and Membranes During Maxillary Sinus-lift Procedures. Part 1: A General Overview
Sinus augmentation procedure has been demonstrated to be a highly predictable treatment in posterior maxilla atrophy. All the surgical interventions in the maxillary region require deep knowledge of anatomy and possible anatomical variations. In this article, pre-operative and post- operative assessments of sinus cavity as well as novel approaches to deepen our knowledge of the behavior of bone substitute materials are described. The awareness of the patient’s morphologic conditions enables exact planning of invasive surgery and aids to avoid complications. Pre- operative radiologic evaluation of the region before sinus lift is advisable both for a planning of the sinus augmentation and for selection and alignment of the optimum placement of implants. On the orthopantomography it is possible to measure the vertical dimension of graft, but not the volume and 3D changes. Cone-beam computed tomography (CBCT) has become the “gold standard” to plan a comprehensive implant treatment and to achieve a post-operative assessment. A computer-aided design/computer-aided manufacturing (CAD/CAM) technique is proposed to produce custom-made block grafts for sinus lift procedure, and a customized cutting guide to accurately place the lateral wall and ease membrane elevation. This procedure allows to reduce intervention time, to precisely adapt the scaffold, to reduce risk of complications and to improve operation quality. Recently, a novel approach has been used to deepen our knowledge of the behavior of BSBs: by means of synchrotron micro-tomography (SCT). It is a 3-D analyzing method, suitable to examine the dynamic and spatial arrangement of regenerative phenomena in complex anatomical structures such as bone, where tissues with several morphologies (alveolar process, unmineralized extracellular matrix, regenerated vessels, etc.) compete to achieve the final goal of bone regeneration.
-
-
-
Molecular, Cellular and Pharmaceutical Aspects of Bone Grafting Materials and Membranes During Maxillary Sinus-lift Procedures. Part 2: Detailed Characteristics of the Materials
Various grafts or combination of bone substitute materials have been used in sinus lift procedures. Currently, ongoing developments in several disciplines, from molecular biology and chemistry to computer science and engineering, have contributed to the understanding of biological processes leading to bone healing after the use of bone substitute materials (BSBs) and therefore of the behavior of BSBs. The understanding of the properties of each graft enables individual treatment concepts and therefore allows shift from a simple replacement material to the modern concept of an individually created composite biomaterial. Indeed, the choice of the best BSB still remains crucial for success in maxillary sinus augmentation procedures. The present article provides an overview of most of the materials currently available for sinus lift, with a specific focus on their histological, molecular, cellular and pharmaceutical aspects.
-
-
-
Molecular and Pharmaceutical Aspects of Novel Methods and Materials for the Prevention of Tooth Structure Loss
More LessIn the past decade, a range of dental products have appeared which make advertising claims around preventing mineral loss or repairing mineral loss. This review examines the requirements for effective protection of tooth structure, and the evidence around technologies now available for preventing tooth structure loss and repairing demineralized enamel, ranging from tooth surface protection and enhanced fluoride uptake through to calcium compounds, unstabilized amorphous calcium phosphate, tricalcium phosphate, and casein phosphopeptide - amorphous calcium phosphate.
-
-
-
Antibiotic Release from Calcium Phosphate Materials in Oral and Maxillofacial Surgery. Molecular, Cellular and Pharmaceutical Aspects
Calcium phosphate materials (CPM) are widely used in dentistry and maxillofacial surgery. The presence of microbial biofilms and external infections is responsible for the failure of many procedures of dental implants and bone grafts. In an attempt to reduce the percentage of these infectious processes antibiotics have been associated with CPM improving certain conditions. For instance, antibiotics administered orally or intravenously have less effect and the blood flow in relation to this is poor near implants and grafts. Tissue engineering (TE) has employed CPM as a local drug delivery vehicle to be more effective and efficient in bone infections. This review is presented to describe current antibiotics used and the physical and chemical properties of scaffolds.
-
-
-
Molecular, Cellular and Pharmaceutical Aspects of Filling Biomaterials During the Management of Extraction Sockets
After a tooth extraction both hard and soft tissues undergo dimensional changes. The use of a ridge preservation technique at the moment of the tooth extraction could help could help to prevent the volume loss, thus simplifying the subsequent prosthetic and/or implant therapy. Some studies were conducted in order to examine the biomaterials and the surgical technique used for ridge preservation procedures. Clinical, histological, volumetric and molecular outcomes were registered and analyzed in different studies, in order to comprehend the biological events and the consequences of a socket preservation procedure and to allow the clinician to make the correct choice.
-
-
-
Impact of Different Implant Surfaces Topographies on Peri-Implant Tissues: An Update of Current Available Data on Dental Implants Retrieved from Human Jaws
The high success range obtained with the implant-supported restorations has improved its applicability on routine of the daily clinical practice. This elevated percentage of success is related to the previous pre-clinical data obtained from animal and in vitro studies that evaluated the impact of implant surface topographies on bone tissue. However, the histological evaluation of human bone tissue is scarce. Therefore, the aim of this review is to depict an actual panorama of the data available on boneto- implant contact (BIC) of retrieved implants from human jaws. Some aspects of implant surface topography as well as systemic conditions as osteoporosis and smoking habit were demonstrated to have a strong impact, suggesting that the data obtained from human bone tissue is still valuable for the better understanding of the osseointegration process. This article also highlighted that most data in humans are difficult to interpret, due to the lack of detailed information about the surfaces found in retrieved implants. Without the definition of the surface characteristics, it is difficult to link exactly the surface patterns to specific clinical observations, and all observations remain de facto incomplete. As a conclusion, data from implants retrieved from human jaws are very important for our understanding, however the studies remain scarce and data is fragmented. This important approach should be improved, completed and developed in the future.
-
-
-
Molecular, Cellular and Pharmaceutical Aspects of Autologous Grafts for Peri-implant Hard and Soft Tissue Defects
Authors: Jiayu Lu, Yongming Hao, Wei Zhao, Chengqi Lyu and Derong ZouThe lack of supporting hard and soft tissues always prevents the rehabilitation with dental implants. Among various hard and soft tissue augmentation procedures, autologous grafts have been considered to be the gold standard. Autologous mesenchymal stem cells (MSCs) from bone marrow, dental tissue and adipose tissue have been described as promising alternatives for bone regeneration in the field of dental implantation. Mucosal cells, gingival fibroblasts and dental progenitor cells (DPS) can enhance peri-implant soft tissue augmentation and regenerate periodontal tissues around dental implants. Obtained from patients, platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are enriched in autologous platelets, which contain a great deal of growth factors and cytokines that are conducive to the regeneration of both hand and soft tissues around dental implants. Pharmaceutical treatments for osteoporosis and diabetes should be locally applied with implant procedures to restrict the resorption of autologous bone grafts and reduction of bone volume. Although autografts hold great potentials for dental implants, new approaches should also be explored with minimally invasion donor sites methods such as tissue engineering combined with autologous three factors and bio-3D printing involving selfassembling cell aggregates.
-
-
-
Molecular, Cellular and Pharmaceutical Aspects of Synthetic Hydroxyapatite Bone Substitutes for Oral and Maxillofacial Grafting
Authors: Werner Gotz and Spyridon N. PapageorgiouBone grafts are widely used for augmentation procedures in oral and maxillofacial surgery, with autogenous bone being the gold standard. Recently, the focus of research has shifted towards synthetic bone substitutes, as no second surgery is needed and large quantities of graft can easily be provided. Within the broad range of bone substitutes, synthetic hydroxyapatite has drawn much attention, as they are considered to be biocompatible, non-immunogenic, osteoconductive and osteoinductive. Scope of this review is to summarize existing knowledge concerning the molecular, cellular and pharmaceutical aspects of synthetic bone substitutes for oral and maxillofacial grafting.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
