Current Pharmaceutical Biotechnology - Volume 13, Issue 11, 2012
Volume 13, Issue 11, 2012
-
-
Ultrasound: Medical Imaging and Beyond (An Invited Review)
By Haim AzhariMedical applications of ultrasound were first investigated about seventy years ago. It has rapidly evolved since then, becoming an essential tool in medical imaging. Ultrasound ability to provide real time images with frame rates exceeding several hundred frames per second allows one to view rapid anatomical changes as well as to guide minimal invasive procedures. By, combining Doppler techniques with anatomical images ultrasound provides real time quantitative flow information as well. It is portable, versatile, cost effective and considered sufficiently hazardless to monitor pregnancy. Moreover, ultrasound has the unique capacity to offer therapeutic capabilities in addition to its outstanding imaging abilities. It can be used for physiotherapy, lithotripsy, and thermal ablation, and recent studies have demonstrated its usefulness in drug delivery, gene therapy and molecular imaging. The purpose of this article is to provide an introductory review of the field covering briefly topics from basic physics through current imaging methods to therapeutic applications.
-
-
-
Opto-Acoustic Imaging of Drug Discovery Biomarkers
Authors: Bohumil Bednar and Vasilis NtziachristosOptical imaging has seen significant developments over the past decade as an investigational tool for in-vivo visualization of cellular and sub-cellular events. With the recent addition of optoacoustic (photoacoustic) methods, in particular multi-spectral opto-acoustic tomography (MSOT), to the already rich armamentarium of photonic methods the capacity of optical molecular imaging across scales has widened significantly. MSOT brings unique features into optical imaging, namely high resolution optical imaging over several millimeters to centimeters of tissue depth and the ability to simultaneously resolve multiple tissue molecules and extrinsically administered optical or optoacoustic agents with physiological or molecular specificity. Here, we discuss the implications of utilizing MSOT in the context of drug discovery and review suitable optoacoustic agents against disease and drug efficacy biomarkers. The combination of existing knowledge on generating optical targeted contrast, with the high resolution deep tissue visualization offered by MSOT, allows for the development of next-generation biological optical imaging and corresponding drug discovery applications.
-
-
-
Functional Imaging to Understand Biomechanics: A Critical Tool for the Study of Biology, Pathology and the Development of Pharmacological Solutions
We present four case studies of the literature discussing the effects of physical forces on biological function. While the field of biomechanics has existed for many decades, it may be considered by some a poor cousin to biochemistry and other traditional fields of medical research. In these case studies, including cardiovascular and respiratory systems, we demonstrate that, in fact, many systems historically believed to be controlled by biochemistry are dominated by biomechanics. We discuss both the previous paradigms that have advanced research in these fields and the changing paradigms that will define the progressions of these fields for decades to come. In the case of biomechanical effects of flowing blood on the endothelium, this has been well understood for decades. In the cases of platelet activation and liquid clearance from the lungs during birth, these discoveries are far more recent and perhaps not as universally accepted. While only a few specific examples are examined here, it is clear that not enough attention is paid to the possible mechanical links to biological function. The continued development of these research areas, with the inclusion of physical effects, will hopefully provide new insight into disease development, progression, diagnosis and effective therapies.
-
-
-
Dye Visualization - A Method for Investigating Biomechanical Flows
More LessFlow visualization using dye is an inexpensive and easy-to-implement experimental technique. It can be used for a rapid qualitative assessment of fluid flows in configurations relevant to biomedical or biotechnological applications, which often involve small spatial dimensions and flow velocities (low Reynolds numbers). This paper gives an overview of the practical aspects related to dye visualization in liquids (dyes, introduction of dye into the flow, illumination), and discusses the information that can be obtained by this method, which includes the distribution of coherent structures/ vortices, the location of recirculation zones, and certain characteristic spatial and temporal scales. Visualization results for three examples of generic flows related to biomechanical applications are presented: the flow behind a contraction in a pipe (stenosis), the wake of a particle moving along a wall, and the flow inside a lid-driven mixing vessel (bioreactor).
-
-
-
Patient-Specific Modeling and Multi-Scale Blood Simulation for Computational Hemodynamic Study on the Human Cerebrovascular System
Authors: Marie Oshima, Ryo Torii, Shigefumi Tokuda, Shigeki Yamada and Akio KoizumiTo develop a targeted drug delivery system for cerebrovascular disorders such as stroke, it is important to obtain detailed information on flow rates and hemodynamics of the human cerebrovascular system for individual patients. A patient-specific integrated numerical simulation system has been developed by the authors such that vascular geometry is constructed from medical images such as magnetic resonance imaging (MRI) or computed tomography (CT) data, and computational conditions are modeled mathematically to represent the realistic in vivo environments. In general, the threedimensional numerical simulation using a patient-specific model is conducted only for a localized diseased region with atherosclerosis or an aneurysm. Although the analysis region is only a part of the circulatory system, the simulation should include the effects from the entire circulatory system. Since the peripheral network determines the flow distributions in the cerebrovascular system, the paper reviews the recent simulation methods to take into account the network by coupling the image-based three-dimensional simulation with a one- and zero-dimensional simulations as an outflow boundary condition The paper shows the mathematical modeling of the multi-scale outflow boundary condition and its applications to patient- specific models of the arterial circle of Willis. The results are compared to those using the conventional, free-stream boundary condition. As a result, the multi-scale outflow boundary condition shows a significant difference in flow rate of each artery and in flow distribution in the arterial circle of Willis.
-
-
-
Recent Software Developments and Applications in Functional Imaging
Authors: Lingfeng Wen, Stefan Eberl, Michael Fulham and (David) Dagan FengFunctional imaging allows the quantification of biochemical or biophysiological changes in-vivo through the visualization of the spatial distribution and temporal changes of administrated radiopharmaceuticals. Instrumentation advances such as PET-CT (positron emission tomography - computed tomography) and PET-MR (positron emission tomography - magnetic resonance), improvements in image processing and reconstruction, the development of target and disease-specific radiotracers and improved kinetic modelling techniques, have substantially enhanced our ability to measure functional changes in normal and diseased states. Various combinations of these advances and refinements are now used in routine clinical practice for patient care. In this paper we review recent literature on software developments and applications in image restoration, motion correction, kinetic analysis, and image processing in the field of functional imaging.
-
-
-
Current Status of Therapeutic Targeting of Developmental Signalling Pathways in Oncology
Signalling pathways such as Hedgehog (Hh), Wnt, Notch, bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) hold a central position in regulation of vertebrate development by controlling vital processes such as migration, differentiation and proliferation. Insights into the mechanistic aspects of cancer initiation and progression have pointed to striking similarities between tumourigenesis and embryonic development. These observations can partly be explained by the fact that similar cellular signalling mechanisms are employed in both situations. This review focuses on the role and therapeutic potential of Hh, Wnt, Notch and BMP/TGF-β signalling and discusses i) their signal transduction mechanisms during development and tumourigenesis, ii) evidence of pathway activation in different types of cancers, and, iii) strategies for pharmacological targeting. Numerous studies have demonstrated a crucial role of developmental signalling in a variety of tumours, where their signalling mechanisms contribute to oncogenic properties such as tumour cell proliferation, apoptosis inhibition and / or metastatic migration. From the literature available, it is obvious that the relative importance and the oncogenic mechanisms of developmental pathways vary with the tumour type, the stage of the disease as well as the interaction with the tumour microenvironment, thus highlighting the complexity of cellular signalling strategies employed during tumourigenesis. Intensive research activities are devoted to identification of drugs that interfere with oncogenic signalling by developmental pathways. First clinical data for such compounds – e.g. GDC-0449 for the Hh pathway – are promising and indicate that targeted therapy of developmental signalling pathways has potential for future anti-cancer therapies.
-
-
-
Biomarkers for Hepatocellular Apoptosis in the Management of Liver Diseases
Authors: Marie V. St-Pierre and Jean-Francois DufourApoptosis is a rare event in normal hepatocytes. However, multiple signals can trigger apoptosis in hepatocytes and it plays a role in the pathogenesis of many liver diseases. This review summarizes the mechanisms of hepatocellular apoptosis and the importance of apoptosis in the pathological processes of liver disease. The potential for non-invasive biomarkers of apoptosis to gauge the extent and follow the evolution of clinical disease is emphasized.
-
-
-
New Drugs, Old Fashioned Ways: ER Stress Induced Cell Death
Authors: Pietro Di Fazio, Matthias Ocker and Roberta MontalbanoDiscovery of small molecules able to induce several cellular self-killing mechanisms improved cancer therapy in the last years. Research focused on canonical apoptotic (mitochondria or death receptor related) pathways to induce cell death in several hematologic and solid malignancies, showing that treatment with different synthetic and natural compounds reactivates the cell death machinery previously silenced in resistant cancer cells. Besides the canonical apoptotic pathways, alternative pathways of cell death induction have recently been rediscovered as potential new targets for cancer therapy. Under certain conditions, protein folding can be disturbed causing an accumulation of unfolded proteins inside the endoplasmic reticulum (ER). This situation leads to stress ER, involving the transcriptional and translational machinery to induce the expression and post-transcriptional modifications of many factors involved in ER stress response mediated cell death. In this scenario, some apoptotic players like caspase 4 or caspase 12 start to control cell fate by inducing downstream cell death proteins. Recently, inhibitors of protein deacetylases have been demonstrated to potently induce this alternative cell death pathway and will be reviewed here.
-
-
-
The Therapeutic Potential of RNA Interference: Novel Approaches for Cancer Treatment
Authors: Kinya Okamoto and Yoshikazu MurawakiExo- and endogenous RNA interference (RNAi) is a recently developed post-transcriptional gene silencing system and is regarded as one of the most effective and specific gene silencing techniques with therapeutic potential. siRNA technology is also expected to be an invaluable treatment tool for viral infections, dominant disorders, neurological disorders, and cancers. Novel and increasingly effective therapies are urgently needed as conventional radio/chemotherapy is of limited efficacy in advanced stages of some malignant diseases. In some cancers, it is known that resistance to chemotherapy is mainly attributed to increased expression of anti-apoptotic genes, e.g. members of the bcl-2 family that stabilize the mitochondrial membrane. The siRNA-mediated knockdown of bcl-2 leads to pronounced anti-tumor effects in a pancreatic cancer model, especially in combination with chemotherapy even at otherwise ineffective concentrations. The future success of this approach will depend on the development of effective, specific, and safe delivery systems. In addition to therapeutic RNAi, endogenous RNAi processes may also contribute to cancer development. For example, miRNAs have been shown to suppress target gene expression through binding to the 3'-untranslated regions (3'-UTR) of target mRNAs. miRNAs control many functions in regard to cell viability, including differentiation, proliferation, and apoptosis, especially during cancer progression. More investigation into miRNAs will lead to new diagnostic and therapeutic approaches in the near future.
-
-
-
Apoptosis Signalling Activated by TNF in the Lower Gastrointestinal Tract-Review
The tumor necrosis factor (TNF) gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving epigenetic mechanisms or miRNAs. A better knowledge of the molecular mechanisms that control TNF gene regulation and TNF signalling will provide deeper understanding of the initiation and development of apoptotic and inflammatory processes triggered by TNF cytokine in the gut. The described efforts to embed TNF in clinical treatment regiments reflect its attractive effectiveness in killing tumor cells. Whether the described strategies will achieve the success of incorporating TNF in lower gastrointestinal tract therapy for inflammatory diseases and cancer remains to be determined.
-
-
-
The Tumor Stroma as Mediator of Drug Resistance - A Potential Target to Improve Cancer Therapy?
Authors: Susanne Sebens and Heiner SchaferTumors irrespective of their origin are heterogenous cellular entities whose growth and progression greatly depend on reciprocal interactions between genetically altered (neoplastic) cells and their non-neoplastic microenvironment. Thus, microenvironmental factors promote many steps in carcinogenesis, e.g. proliferation, invasion, angiogenesis, metastasis and chemoresistance. Drug resistance, either intrinsic or acquired, essentially limits the efficacy of chemotherapy in many cancer patients. To some extent, this resistance is maintained by reduced drug accumulation, alterations in drug targets and increased repair of drug-induced DNA damage. However, the pivotal mechanism by which tumor cells elude the cytotoxic effect of chemotherapeutic drugs is their efficient protection from induction and excecution of apoptosis. It is meanwhile well established that cellular and non-cellular components of the tumoral microenvironment, e.g. myofibroblasts and extracellular matrix (ECM) proteins, respectively, contribute to the anti-apoptotic protection of tumor cells. Cellular adhesion molecules (e.g. L1CAM or CD44), chemokines (e.g. CXCL12), integrins and other ECM receptors which are involved in direct and indirect interactions between tumor cells and their microenvironment have been identified as suitable molecular targets to overcome chemoresistance. Accordingly, several therapeutic strategies based on these targets have been already elaborated and tested in preclinical and clinical studies, including inhibitors and blocking antibodies for CD44/hyaluronan, integrins, L1CAM and CXCL12. Even though these approaches turned out to be promising, the upcoming challenge will be to prove the efficacy of these strategies in improving treatment and prognosis of cancer patients.
-
-
-
Therapeutic Targeting of Apoptotic Pathways: Novel Aspects in Pancreatic Cancer
Authors: A. Neesse, T.M. Gress and P. MichlPancreatic cancer constitutes one of the most aggressive tumours with a 5-year survival rate of less than 5%. It is characterized by a high degree of resistance to apoptosis which is associated by high expression levels of multiple prosurvival proteins of the extrinsic and intrinsic apoptosis signalling cascades. This review focuses on current knowledge of apoptotic pathways involved in pancreatic cancer and mechanisms of resistance to apoptosis, including alterations in the death receptor and mitochondrial pathways, as well as anti-apoptotic effects of NF-kB and Akt signalling and the impact of histon-modifying enzymes such as histondeacetylases (HDAC). Furthermore, the therapeutic implications of modulating pro-survival pathways by specific inhibitors investigated in preclinical and clinical trials will be discussed.
-
-
-
Apoptotic Potency of Angiostatic Compounds in the Treatment of Cancer
Authors: Esther Raskopf, Tilman Sauerbruch and Volker SchmitzWhen tumours outgrow their vascular supply, they become hypoxic because of nutrient deficiency. This increases the expression and secretion of proangiogenic factors, like vascular endothelial growth factor (VEGF), leading to the activation of endothelial cells. The activated endothelial cells migrate, proliferate and form new blood vessels, resulting in increased tumour growth. This process is called tumour angiogenesis. Inhibiting tumour angiogenesis and therefore tumour growth is a well known concept in the treatment of cancer, such as hepatocellular carcinoma (HCC). This can be done by endogenous angiogenesis inhibitors, like angiostatin and its derivates. These are known to affect endothelial cell functions including the induction of apoptosis. The impact of these angiostatic factors on the cell is manifold. This also applies for so called small molecules, which affect tyrosine kinases such as receptors or intracellular signal transduction proteins. Other approaches, like monoclonal antibodies, target a single molecule, mainly VEGF, to inhibit receptorbinding and downstream signal transduction. Gene silencing, mainly via RNA interference (RNAi) intervenes on RNAlevel, leading to reduced gene expression and protein secretion. Due to intense research in this field, there is rising evidence that also tumour cells themselves are influenced by angiostatic treatment approaches and the underlying molecular mechanisms are more and more revealed. Here we give a (short) review regarding the pro-apoptotic potency of antiangiogenic compounds like angiostatic molecules, sequestering antibodies, small molecules and RNAi approaches targeting endothelial and tumour cell survival to inhibit angiogenesis and tumour growth.
-
-
-
Combination of Hypoxia and RNA-Interference Targeting VEGF Induces Apoptosis in Hepatoma Cells Via Autocrine Mechanisms
Control of VEGF signaling is an intense objective of pre-clinical and clinical studies in HCC disease with steadily increasing clinical application. Despite its emerging role, several aspects of anti-VEGF based treatments are poorly investigated, like the impact on tumor cells themselves, such as the effect on intracellular signaling and apoptosis induction in hepatoma cells. Effects of siRNA-VEGF on VEGF, VEGF-receptor expression and VEGF-A signaling such as AKT and JNK phosphorylation were determined under normoxic or hypoxic conditions in murine hepatoma cells. Apoptosis induction was analyzed by SubG1-fraction, JC1-staining and caspase-8 activation. VEGF receptor expression was analysed by semiquantitative real time PCR. Independent of oxygen status, siRNA-VEGF reduced VEGF levels resulting in decreased AKT and increased JNK phosphorylation in Hepa129 cells. The VEGF-receptors neuropilin-1 (Nrp1) and neuropilin-2 (Nrp2) were downregulated following siRNA-VEGF treatment or hypoxia induction respectively. Functionally, hypoxia significantly increased the apoptosis rate (as analyzed by SubG1-fraction, JC1-staining and JNKphosphorylation) which was further stimulated by siRNA-VEGF treatment. Our data indicate that antitumoral efficacy of an anti-VEGF based treatment with siRNA is partly based on negative autocrine feedback mechanisms which are even enhanced under hypoxic conditions. This observation helps to understand why antitumoral efficacy can be maintained despite of counteracting stimulation of tumoral VEGF secretion due to hypoxia. The direct impact on tumor cells further underscores the attractiveness of an anti-VEGF based siRNA treatment.
-
-
-
Glycobiology in Malignant Gliomas: Expression and Functions of Galectins and Possible Therapeutic Options
Authors: Herwig M. Strik, Malgorzata Kolodziej, Wolfgang Oertel and Jorg BaseckeMalignant gliomas, the most common malignant primary brain tumors, have a deleterious clinical prognosis of approximately 12 months in unselected series. The resistance against antineoplastic therapy is apparently not only associated with a high proliferative potential, marked antiapoptotic resistance and high migratory capacity. Effective mechanisms to escape the immune response of the organism and an intense neoangiogenesis also contribute to the aggressive growth of these neoplasms. In addition to a number of molecular mechanisms, the group of glycohydrate-binding galectins seems to contribute to the aggressive growth of malignant gliomas. Galectin-1, -3, -4 and -8 have been shown to be overexpressed in malignant gliomas. Galectin-1 is known to be involved in glioma cell migration and possibly also in proliferation. In this review, various aspects of glioma biology and their therapeutic relevance is discussed. The role of galectins in apoptosis-resistance, immune response and angiogenesis is discussed and explained why these molecules are interesting targets of glioma therapy.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
