Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The present study aimed to construct a novel pyroptosis-related gene signature to predict the prognosis of papillary thyroid cancer (PTC).

Methods

The gene expression level and survival and prognosis information of PTC were obtained from TCGA. The differentially expressed pyroptosis-related genes (DEPs) between cancer and control groups were selected, followed by subtype analysis. A prognostic model was built using LASSO regression analysis. The samples were then divided into high- and low-risk groups, and the differences in immune cell distribution in different risk groups were compared. The chemical drugs associated with genes in the prognostic model were extracted from the Comparative Toxicogenomics Database.

Results

A total of 31 DEPs were selected, and 3 different subtypes were obtained. A prognostic model based on 6 pyroptosis-related genes was constructed. The risk grouping was significantly correlated with the actual prognosis, and the model was found to be an independent prognostic factor. Six immune cells with significant differences in distribution in different risk groups were screened. CGP52608 could target four genes in the prognostic model, including GSDMB, NLRC4, IL1A, and IL6.

Conclusion

The present study constructed a pyroptosis-related gene signature that could predict the prognosis of PTC. Additionally, this signature was correlated with tumor immunity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010325685241029113633
2024-11-01
2025-10-03
Loading full text...

Full text loading...

References

  1. ChenD.W. LangB.H.H. McLeodD.S.A. NewboldK. HaymartM.R. Thyroid cancer.Lancet2023401103871531154410.1016/S0140‑6736(23)00020‑X37023783
    [Google Scholar]
  2. National Health Commission Of The People's Republic Of ChinaNational guidelines for diagnosis and treatment of thyroid cancer 2022 in China (English version).Chin. J. Cancer Res.202234313115010.21147/j.issn.1000‑9604.2022.03.0135873884
    [Google Scholar]
  3. ItoY. MiyauchiA. KiharaM. FukushimaM. HigashiyamaT. MiyaA. Overall survival of papillary thyroid carcinoma patients: A single-institution long-term follow-up of 5897 patients.World J. Surg.201842361562210.1007/s00268‑018‑4479‑z29349484
    [Google Scholar]
  4. XieZ. LiX. HeY. WuS. WangS. SunJ. LunY. XinS. ZhangJ. Analysis of the expression and potential molecular mechanism of interleukin-1 receptor antagonist (IL1RN) in papillary thyroid cancer via bioinformatics methods.BMC Cancer2011143202010.1186/s12885‑020‑07620‑833238942
    [Google Scholar]
  5. KimS.K. KwonA.Y. BackK. ParkI. HurN. LeeJ.H. ChoeJ.H. KimJ.H. OhY.L. KimJ.S. Predictive factors of lymph node metastasis in follicular variant of papillary thyroid carcinoma.Ann. Surg. Oncol.20172492617262310.1245/s10434‑017‑5912‑528685355
    [Google Scholar]
  6. LiP. WuQ. SunY. PanX. HanY. YeB. ZhangY. DongJ. ZhengZ. Downregulation of cdh16 in papillary thyroid cancer and its potential molecular mechanism analysed by qrt-pcr, tcga and in silico analysis.Cancer Manag. Res.201911107191072910.2147/CMAR.S22963131920382
    [Google Scholar]
  7. LiF. DuR. KouJ. LiJ. ZhouL. ZhangD. FuY. DionigiG. BertoliS. SunH. LiangN. Elucidating the role of Pyroptosis in papillary thyroid cancer: Prognostic, immunological, and therapeutic perspectives.Cancer Cell Int.20242414510.1186/s12935‑024‑03229‑038287330
    [Google Scholar]
  8. WangL. QinX. LiangJ. GeP. Induction of pyroptosis: A promising strategy for cancer treatment.Front. Oncol.20211163577410.3389/fonc.2021.63577433718226
    [Google Scholar]
  9. ChenY. LiaoY. DuQ. ShangC. QinS. LeeK. ZouQ. LiuJ. YaoS. Roles of pyroptosis-related gene signature in prediction of endometrial cancer outcomes.Front. Med. (Lausanne)2022982280610.3389/fmed.2022.82280635299842
    [Google Scholar]
  10. TanY. ChenQ. LiX. ZengZ. XiongW. LiG. LiX. YangJ. XiangB. YiM. Pyroptosis: A new paradigm of cell death for fighting against cancer.J. Exp. Clin. Cancer Res.202140115310.1186/s13046‑021‑01959‑x33941231
    [Google Scholar]
  11. YangY. LiuP.Y. BaoW. ChenS.J. WuF.S. ZhuP.Y. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway.BMC Cancer20202012810.1186/s12885‑019‑6491‑631924176
    [Google Scholar]
  12. LuL. ZhangY. TanX. MerkherY. LeonovS. ZhuL. DengY. zhangH. ZhuD. TanY. FuY. LiuT. ChenY. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer.Cell Death Discov.20228133810.1038/s41420‑022‑01101‑635896522
    [Google Scholar]
  13. ZhenH. HuY. LiuX. FanG. ZhaoS. The protease caspase-1: Activation pathways and functions.Biochem. Biophys. Res. Commun.202471714997810.1016/j.bbrc.2024.14997838718564
    [Google Scholar]
  14. MatikainenS. NymanT.A. Function and regulation of noncanonical caspase-4/5/11 inflammasome.J. Immunol.2041230633069202010.4049/jimmunol.2000373
    [Google Scholar]
  15. WangY. GaoW. ShiX. DingJ. LiuW. HeH. WangK. ShaoF. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.Nature201754776619910310.1038/nature2239328459430
    [Google Scholar]
  16. ZhangZ. ZhangH. LiD. ZhouX. QinQ. ZhangQ. Caspase‐3‐mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway.J. Cell. Mol. Med.202125178159816810.1111/jcmm.1657434369076
    [Google Scholar]
  17. JiangM. QiL. LiL. LiY. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer.Cell Death Discov.20206111210.1038/s41420‑020‑00349‑033133646
    [Google Scholar]
  18. LiC. LinC. XieX. Pan-cancer pyroptosis analyses identified novel immunology and chemotherapy-related prognostic signatures in cancer subtypes.J. Oncol.2022202211610.1155/2022/660929735769504
    [Google Scholar]
  19. YanS. YuL. ChenZ. XieD. HuangZ. OuyangS. ZBP1 promotes hepatocyte pyroptosis in acute liver injury by regulating the PGAM5/ROS pathway.Ann. Hepatol.202429410147510.1016/j.aohep.2024.10147538331384
    [Google Scholar]
  20. LiangX. QinY. WuD. WangQ. WuH. Pyroptosis: A double-edged sword in lung cancer and other respiratory diseases.Cell Commun. Signal.20242214010.1186/s12964‑023‑01458‑w38225586
    [Google Scholar]
  21. GuoZ. SuZ. WeiY. ZhangX. HongX. Pyroptosis in glioma: Current management and future application.Immunol. Rev.2024321115216810.1111/imr.1329438063042
    [Google Scholar]
  22. ZhouS. LiuJ. WanA. ZhangY. QiX. Epigenetic regulation of diverse cell death modalities in cancer: A focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis.J. Hematol. Oncol.20241712210.1186/s13045‑024‑01545‑638654314
    [Google Scholar]
  23. YanH. LuoB. WuX. GuanF. YuX. ZhaoL. KeX. WuJ. YuanJ. Cisplatin induces pyroptosis via activation of meg3/nlrp3/caspase-1/gsdmd pathway in triple-negative breast cancer.Int. J. Biol. Sci.202117102606262110.7150/ijbs.6029234326697
    [Google Scholar]
  24. GuoY. ZhuL. DuanY. HuY. LiL. FanW. SongF. CaiY. LiuY. ZhengG. GeM. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission.Cell Death Dis.202415212510.1038/s41419‑024‑06511‑138336839
    [Google Scholar]
  25. JiangK. LinB. ZhangY. LuK. WuF. LuoD. A novel pyroptosis-related gene signature for prediction of disease-free survival in papillary thyroid carcinoma.J. Pers. Med.20221318510.3390/jpm1301008536675746
    [Google Scholar]
  26. WuP. ShiJ. SunW. ZhangH. Identification and validation of a pyroptosis-related prognostic signature for thyroid cancer.Cancer Cell Int.202121152310.1186/s12935‑021‑02231‑034627252
    [Google Scholar]
  27. YeY. DaiQ. QiH. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer.Cell Death Discov.2021717110.1038/s41420‑021‑00451‑x33828074
    [Google Scholar]
  28. KhamisS.S.S. LuJ. YiY. RaoS. SunW. Pyroptosis-related gene signature for predicting gastric cancer prognosis.Front. Oncol.202414133673410.3389/fonc.2024.133673438571505
    [Google Scholar]
  29. ZhouY. ZhengJ. BaiM. GaoY. LinN. Effect of pyroptosis-related genes on the prognosis of breast cancer.Front. Oncol.20221294816910.3389/fonc.2022.94816935957895
    [Google Scholar]
  30. LiJ. YuT. SunJ. MaM. ZhengZ. KangW. YeX. Comprehensive integration of single-cell RNA and transcriptome RNA sequencing to establish a pyroptosis-related signature for improving prognostic prediction of gastric cancer.Comput. Struct. Biotechnol. J.202423990100410.1016/j.csbj.2024.02.00238404710
    [Google Scholar]
  31. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  32. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  33. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  34. ZhangX. RenL. YanX. ShanY. LiuL. ZhouJ. KuangQ. LiM. LongH. LaiW. Identification of immune-related lncRNAs in periodontitis reveals regulation network of gene-lncRNA-pathway-immunocyte.Int. Immunopharmacol.20208410660010.1016/j.intimp.2020.10660032417654
    [Google Scholar]
  35. TibshiraniR. The lasso method for variable selection in the Cox model.Stat. Med.199716438539510.1002/(SICI)1097‑0258(19970228)16:4<385::AID‑SIM380>3.0.CO;2‑39044528
    [Google Scholar]
  36. GoemanJ.J. L1 penalized estimation in the Cox proportional hazards model.Biom. J.2010521708410.1002/bimj.20090002819937997
    [Google Scholar]
  37. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  38. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Cancer Systems BiologyHumana PressNew York von StechowL. 201824325910.1007/978‑1‑4939‑7493‑1_12
    [Google Scholar]
  39. KhanM. AiM. DuK. SongJ. WangB. LinJ. RenA. ChenC. HuangZ. QiuW. ZhangJ. TianY. YuanY. Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective.Front. Immunol.202213106222510.3389/fimmu.2022.106222536605187
    [Google Scholar]
  40. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117410.1186/s13045‑022‑01392‑336482419
    [Google Scholar]
  41. ChenC. YeQ. WangL. ZhouJ. XiangA. LinX. GuoJ. HuS. RuiT. LiuJ. Targeting pyroptosis in breast cancer: Biological functions and therapeutic potentials on It.Cell Death Discov.2023917510.1038/s41420‑023‑01370‑936823153
    [Google Scholar]
  42. TuncerM. AlcanS. Pyroptosis: A new therapeutic strategy in cancer.Mol. Biol. Rep.20235076191620010.1007/s11033‑023‑08482‑637243815
    [Google Scholar]
  43. OltvalZ.N. MillimanC.L. KorsmeyerS.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death.Cell199374460961910.1016/0092‑8674(93)90509‑O8358790
    [Google Scholar]
  44. VaddeR. RadhakrishnanS. ReddivariL. VanamalaJ.K.P. Triphala extract suppresses proliferation and induces apoptosis in human colon cancer stem cells via suppressing c-myc/cyclin d1 and elevation of bax/bcl-2 ratio.BioMed Res. Int.2015201511210.1155/2015/64926326167492
    [Google Scholar]
  45. ManettoV. LorenziniR. Cordon-CardoC. KrajewskiS. RosaiJ. ReedJ.C. EusebiV. Bcl-2 and Bax expression in thyroid tumours An immunohistochemical and Western blot analysis.Virchows Arch.4302125130199710.1007/BF010080339083515
    [Google Scholar]
  46. Keestra-GounderA.M. TsolisR.M. Nod1 and nod2: Beyond peptidoglycan sensing.Trends Immunol.2017381075876710.1016/j.it.2017.07.00428823510
    [Google Scholar]
  47. JiangH.Y. NajmehS. MartelG. MacFadden-MurphyE. FariasR. SavageP. LeoneA. RousselL. Cools-LartigueJ. GowingS. BerubeJ. GianniasB. BourdeauF. ChanC.H.F. SpicerJ.D. McClureR. ParkM. RousseauS. FerriL.E. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis.Protein Cell202011318720110.1007/s13238‑019‑00687‑531956962
    [Google Scholar]
  48. KimW.Y. LeeJ.B. JungS.P. KimH.Y. WooS.U. SonG.S. BaeJ.W. Gene expression profiles of papillary thyroid microcarcinoma.Int. Surg.20171021-2394610.9738/INTSURG‑D‑17‑00049.1
    [Google Scholar]
  49. SaekiN. UsuiT. AoyagiK. KimD.H. SatoM. MabuchiT. YanagiharaK. OgawaK. SakamotoH. YoshidaT. SasakiH. Distinctive expression and function of four GSDM family genes ( GSDMA‐D ) in normal and malignant upper gastrointestinal epithelium.Genes Chromosomes Cancer200948326127110.1002/gcc.2063619051310
    [Google Scholar]
  50. De SchutterE. RoelandtR. RiquetF.B. Van CampG. WullaertA. VandenabeeleP. Punching holes in cellular membranes: Biology and evolution of gasdermins.Trends Cell Biol.202131650051310.1016/j.tcb.2021.03.00433771452
    [Google Scholar]
  51. Hergueta-RedondoM. SarrioD. Molina-CrespoÁ. VicarioR. Bernadó-MoralesC. MartínezL. Rojo-SebastiánA. Serra-MusachJ. MotaA. Martínez-RamírezÁ. CastillaM.Á. González-MartinA. PernasS. CanoA. CortesJ. NuciforoP.G. PegV. PalaciosJ. PujanaM.Á. ArribasJ. Moreno-BuenoG. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer.Oncotarget2016735562955630810.18632/oncotarget.1078727462779
    [Google Scholar]
  52. KomiyamaH. AokiA. TanakaS. MaekawaH. KatoY. WadaR. MaekawaT. TamuraM. ShiroishiT. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).Genes Genet. Syst.2010851758310.1266/ggs.85.7520410667
    [Google Scholar]
  53. XiC. ZhangG.Q. SunZ.K. SongH.J. ShenC.T. ChenX.Y. SunJ.W. QiuZ.L. LuoQ.Y. Interleukins in thyroid cancer: From basic researches to applications in clinical practice.Front. Immunol.202011112410.3389/fimmu.2020.0112432655554
    [Google Scholar]
  54. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a01629525190079
    [Google Scholar]
  55. ZhangY. SturgisE.M. SunY. SunC. WeiQ. HuangZ. LiG. A functional variant at miRNA-122 binding site in IL-1α 3′ UTR predicts risk and HPV-positive tumours of oropharyngeal cancer.Eur. J. Cancer511114151423201510.1016/j.ejca.2015.04.016
    [Google Scholar]
  56. LiH. DuanN. ZhangQ. ShaoY. IL1A & IL1B genetic polymorphisms are risk factors for thyroid cancer in a Chinese Han population.Int. Immunopharmacol.20197610586910.1016/j.intimp.2019.10586931499272
    [Google Scholar]
  57. HachimM.Y. KhalilB.A. ElemamN.M. MaghazachiA.A. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk.J. Leukoc. Biol.1081323338202010.1002/JLB.3MIR0120‑625R
    [Google Scholar]
  58. RashidiM. WicksI.P. VinceJ.E. Inflammasomes and cell death: Common pathways in microparticle diseases.Trends Mol. Med.202026111003102010.1016/j.molmed.2020.06.00532646646
    [Google Scholar]
  59. LinS. WuH. WangC. XiaoZ. XuF. Regulatory t cells and acute lung injury: Cytokines, uncontrolled inflammation, and therapeutic implications.Front. Immunol.20189154510.3389/fimmu.2018.0154530038616
    [Google Scholar]
  60. ZhangZ. ZhangD. XieK. WangC. XuF. Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury.Int. Immunopharmacol.20219910791410.1016/j.intimp.2021.10791434246059
    [Google Scholar]
  61. LiuM. LuJ. ChenY. ShiX. LiY. YangS. YuJ. GuanS. Sodium sulfite-induced mast cell pyroptosis and degranulation.J. Agric. Food Chem.202169277755776410.1021/acs.jafc.1c0243634191510
    [Google Scholar]
  62. MorettiR.M. MarelliM.M. MottaM. PolizziD. MonestiroliS. PratesiG. LimontaP. Activation of the orphan nuclear receptor ROR? induces growth arrest in androgen-independent DU 145 prostate cancer cells.Prostate200146432733510.1002/1097‑0045(20010301)46:4<327::AID‑PROS1040>3.0.CO;2‑611241556
    [Google Scholar]
  63. MorettiR.M. Montagnani MarelliM. MottaM. LimontaP. Oncostatic activity of a thiazolidinedione derivative on human androgen-dependent prostate cancer cells.Int. J. Cancer200192573373711340580
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010325685241029113633
Loading
/content/journals/cpb/10.2174/0113892010325685241029113633
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): gene; immune; papillary thyroid cancer; prognosis; Pyroptosis; signature
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test