Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Viral diseases have always been a threat to mankind throughout history, and many people have lost their lives due to the epidemic of these diseases. In recent years, despite the progress of science, we are still witnessing a pandemic of dangerous diseases such as COVID-19 all over the world, which can be a warning for humanity. is a genus of flowering plants commonly found in Central Asia, and its species have shown antiviral activity against a variety of viruses, including respiratory syncytial virus, Herpes simplex virus type 1, influenza, human immunodeficiency virus, hepatitis B, and coronaviruses. In this study, we intend to review the antiviral effects of plants, emphasizing the therapeutic potential of these plants in the treatment of COVID-19. Google, PubMed, Web of Science, and Scopus databases were searched to review the relevant literature on the antiviral effect of or its isolated compounds. The search was performed using the keywords , antiviral, Coronaviruses, respiratory syncytial virus, Herpes simplex virus type 1, influenza, human immunodeficiency virus, and hepatitis B. According to the reviewed articles and available scientific evidence, it was determined that the plants of this genus have strong antiviral effects. Also, clinical studies have shown that some species, such as can be used effectively in the treatment of COVID-19. plants have inhibitory effects on various viruses, making them an attractive alternative to conventional antiviral agents. Therefore, these plants are a natural source of valuable compounds that can help us fight infectious diseases.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010285343240530040218
2024-07-04
2025-10-03
Loading full text...

Full text loading...

References

  1. ChoK. ParkS. KoyanagiA. JacobL. YonD.K. LeeS.W. KimM.S. KimS.U. KimB.K. ShinJ.I. SmithL. The effect of pharmacological treatment and lifestyle modification in patients with nonalcoholic fatty liver disease: An umbrella review of meta‐analyses of randomized controlled trials.Obes. Rev.2022239e1346410.1111/obr.13464 35582982
    [Google Scholar]
  2. AllanJ. KleinschaferJ. SaksenaT. RahmanA. LawrenceJ. LockM. A comparison of rural Australian first nations and non-first nations survey responses to COVID-19 risks and impacts: Implications for health communications.BMC Public Health2022221127610.1186/s12889‑022‑13643‑6 35773669
    [Google Scholar]
  3. OkonjiO.C. OkonjiE.F. MohananP. BabarM.S. SaleemA. KhawajaU.A. EssarM.Y. HasanM.M. Marburg virus disease outbreak amidst COVID-19 in the Republic of Guinea: A point of contention for the fragile health system?Clin. Epidemiol. Glob. Health20221310092010.1016/j.cegh.2021.100920 34901523
    [Google Scholar]
  4. SunZ.G. LiZ.N. MiaoX.W. LiS. ZhuH.L. Recent advances in natural products with antiviral activities.Mini Rev. Med. Chem.202121141888190810.2174/1389557521666210304110824 33663367
    [Google Scholar]
  5. CiottiM. CiccozziM. TerrinoniA. JiangW.C. WangC.B. BernardiniS. The COVID-19 pandemic.Crit. Rev. Clin. Lab. Sci.202057636538810.1080/10408363.2020.1783198 32645276
    [Google Scholar]
  6. NicolaM. AlsafiZ. SohrabiC. KerwanA. JabirA.A. IosifidisC. AghaM. AghaR. The socio-economic implications of the coronavirus pandemic (COVID-19): A review.Int. J. Surg.20207818519310.1016/j.ijsu.2020.04.018 32305533
    [Google Scholar]
  7. HiscottJ. AlexandridiM. MuscoliniM. TassoneE. PalermoE. SoultsiotiM. ZeviniA. The global impact of the coronavirus pandemic.Cytokine Growth Factor Rev.2020531910.1016/j.cytogfr.2020.05.010 32487439
    [Google Scholar]
  8. AliM.U. ZafarA. TanveerJ. KhanM.A. KimS.H. AlsulamiM.M. LeeS.W. Deep learning network selection and optimized information fusion for enhanced COVID ‐19 detection.Int. J. Imaging Syst. Technol.2024342e2300110.1002/ima.23001
    [Google Scholar]
  9. AlexandridiM. MazejJ. PalermoE. HiscottJ. The Coronavirus pandemic – 2022: Viruses, variants & vaccines.Cytokine Growth Factor Rev.2022631910.1016/j.cytogfr.2022.02.002 35216872
    [Google Scholar]
  10. ValdésA. MorenoL.O. RelloS.R. Orduña, A.; Bernardo, D.; Cifuentes, A. Metabolomics study of COVID-19 patients in four different clinical stages.Sci. Rep.2022121165010.1038/s41598‑022‑05667‑0 35102215
    [Google Scholar]
  11. GilC. GinexT. MaestroI. NozalV. GilB.L. GeijoC.M.Á. Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments.J. Med. Chem.20206321123591238610.1021/acs.jmedchem.0c00606 32511912
    [Google Scholar]
  12. StasiC. FallaniS. VollerF. SilvestriC. Treatment for COVID-19: An overview.Eur. J. Pharmacol.202088917364410.1016/j.ejphar.2020.173644 33053381
    [Google Scholar]
  13. MukhtarM. ArshadM. AhmadM. PomerantzR.J. WigdahlB. ParveenZ. Antiviral potentials of medicinal plants.Virus Res.2008131211112010.1016/j.virusres.2007.09.008 17981353
    [Google Scholar]
  14. BenarbaB. PandiellaA. Medicinal plants as sources of active molecules against COVID-19.Front. Pharmacol.202011118910.3389/fphar.2020.01189 32848790
    [Google Scholar]
  15. IqbalM.S. NaqviR.A. AlizadehsaniR. HussainS. MoqurrabS.A. LeeS.W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.Comput. Biol. Med.202416810783610.1016/j.compbiomed.2023.107836 38086139
    [Google Scholar]
  16. JafarzadehA. JafarzadehS. NematiM. Therapeutic potential of ginger against COVID-19: Is there enough evidence?J. Tradit. Chin. Med. Sci.20218426727910.1016/j.jtcms.2021.10.001
    [Google Scholar]
  17. OhY. JungY.J. SujataP. KimM. YonD.K. LeeS.W. ChoK. KoyanagiA. DaiZ. SmithL. ShinJ.I. KimE. Spin in randomized controlled trials of pharmacology in COVID-19: A systematic review.Account. Res.2023202311910.1080/08989621.2023.2269083 37818630
    [Google Scholar]
  18. AfolabiS. FolorunsoS.O. BunyulaZ.S. BanjoO.O. MatshikaS.S. WarrieW.U. NgqambelaN. AdepojuA.E. RabophalaH. AbimbolaO.V. Social listening: A thematic analysis of COVID-19 discussion on social media.medRxiv202010.1101/2020.07.25.20162040
    [Google Scholar]
  19. ChoK. ParkS. KimE.Y. KoyanagiA. JacobL. YonD.K. LeeS.W. KimM.S. RaduaJ. ElenaD. Il ShinJ. SmithL. Immunogenicity of COVID‐19 vaccines in patients with diverse health conditions: A comprehensive systematic review.J. Med. Virol.20229494144415510.1002/jmv.27828 35567325
    [Google Scholar]
  20. YangL. XieX. TuZ. FuJ. XuD. ZhouY. The signal pathways and treatment of cytokine storm in COVID-19.Signal Transduct. Target. Ther.20216125510.1038/s41392‑021‑00679‑0 34234112
    [Google Scholar]
  21. HuangY.F. BaiC. HeF. XieY. ZhouH. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19).Pharmacol. Res.202015810493910.1016/j.phrs.2020.104939 32445956
    [Google Scholar]
  22. NugrahaR.V. RidwansyahH. GhozaliM. KhairaniA.F. AtikN. Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons.Evid. Based Complement. Alternat. Med.202020202560645
    [Google Scholar]
  23. BagheriS.M. AllahtavakoliM. MoradiA. Acetylcholinesterase inhibitory activity of Ferula plants and their potential for treatment of Alzheimer’s disease.J. Complement. Integr. Med.20230010.1515/jcim‑2022‑0284 36857494
    [Google Scholar]
  24. IranshahiM. RezaeeR. NajafiN.M. HaghbinA. KasaianJ. Cytotoxic activity of the genus Ferula (Apiaceae) and its bioactive constituents.Avicenna J. Phytomed.201884296312 30377589
    [Google Scholar]
  25. GhasemiY. FaridiP. MehreganI. MohagheghzadehA. Ferula gummosa fruits: An aromatic antimicrobial agent.Chem. Nat. Compd.200541331131410.1007/s10600‑005‑0138‑3
    [Google Scholar]
  26. MandegaryA. SayyahM. HeidariM.R. Antinociceptive and anti-inflammatory activity of the seed and root extracts of Ferula gummosa Boiss in mice and rats.Daru2004125862
    [Google Scholar]
  27. SadraeiH. AsghariG.R. HajhashemiV. KolagarA. EbrahimiM. Spasmolytic activity of essential oil and various extracts of Boiss. on ileum contractions.Phytomedicine20018537037610.1078/0944‑7113‑00052 11695880
    [Google Scholar]
  28. Abu-ZaitonA.S. Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats.Pak. J. Biol. Sci.20101329710010.3923/pjbs.2010.97.100 20415145
    [Google Scholar]
  29. BagheriS.M. HedeshS.T. MirjaliliA. Dashti-RM.H. Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin.J. Evid. Based Complementary Altern. Med.201621427127610.1177/2156587215605903 26427790
    [Google Scholar]
  30. SoudaminiK.K. UnnikrishnanM.C. SukumaranK. KuttanR. Mutagenicity and anti-mutagenicity of selected spices.Indian J. Physiol. Pharmacol.1995394347353 8582746
    [Google Scholar]
  31. LeeC.L. ChiangL.C. ChengL.H. LiawC.C. Abd El-RazekM.H. ChangF.R. WuY.C. InfluenzaA. H1N1) antiviral and cytotoxic agents from Ferula assa-foetida.J. Nat. Prod.20097291568157210.1021/np900158f 19691312
    [Google Scholar]
  32. BagheriS.M. AslA.A. MoghadamM.T. YadegariM. MirjaliliA. MohazabiehZ.F. MomeniH. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice.J. Ayurveda Integr. Med.20178315215810.1016/j.jaim.2017.02.013 28690055
    [Google Scholar]
  33. BagheriS.M. HejazianS.H. BafghiA.F. Antileishmanial activity of Ferula assa-foetida oleo gum resin against Leishmania major: An in vitro study.J. Ayurveda Integr. Med.20145422322610.4103/0975‑9476.146567 25624696
    [Google Scholar]
  34. HejazianS.H. Dashti-RM.H. BagheriS.M. The relaxant effect of seed fs essential oil and oleo-gum-resin of Ferula assa-foetida on isolated rat’s ileum.Ann. Med. Health Sci. Res.20144223824110.4103/2141‑9248.129050 24761245
    [Google Scholar]
  35. AsghariJ. AtabakiV. BaherE. MazaheritehraniM. Identification of sesquiterpene coumarins of oleo-gum resin of Ferula assa-foetida L. from the Yasuj region.Nat. Prod. Res.201630335035310.1080/14786419.2015.1050669 26134757
    [Google Scholar]
  36. NazariZ.E. IranshahiM. Biologically active sesquiterpene coumarins from Ferula species.Phytother. Res.201125331532310.1002/ptr.3311 21031633
    [Google Scholar]
  37. BagheriS. YadegariM. MirjalilyA. RezvaniM. Evaluation of toxicity effects of asafetida on biochemical, hematological, and histological parameters in male wistar rats.Toxicol. Int.2015221616510.4103/0971‑6580.172258 26862262
    [Google Scholar]
  38. BagheriS.M. ShiehA. GhalenoeiJ.A. MaryamM. AlborziN. Review of potential spermatogenic and aphrodisiac effects of the Ferula genus.In: Clin Exp Reprod Med; ,202350314315310.5653/cerm.2023.05995
    [Google Scholar]
  39. JhaA. JarvisH. FraserC. OpenshawP. SARS, MERS and other Viral Lung Infections.Sheffield, (UK),European Respiratory Society2016
    [Google Scholar]
  40. CaoD. GaoY. LiangB. Structural insights into the respiratory syncytial virus RNA synthesis complexes.Viruses202113583410.3390/v13050834 34063087
    [Google Scholar]
  41. GriffithsC. DrewsS.J. MarchantD.J. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment.Clin. Microbiol. Rev.201730127731910.1128/CMR.00010‑16 27903593
    [Google Scholar]
  42. MaS.C. DuJ. ButP.P.H. DengX.L. ZhangY.W. OoiV.E.C. XuH.X. LeeS.H.S. LeeS.F. Antiviral Chinese medicinal herbs against respiratory syncytial virus.J. Ethnopharmacol.200279220521110.1016/S0378‑8741(01)00389‑0 11801383
    [Google Scholar]
  43. HuZ. LinJ. ChenJ. CaiT. XiaL. LiuY. SongX. HeZ. Overview of viral pneumonia associated with influenza virus, respiratory syncytial virus, and coronavirus, and therapeutics based on natural products of medicinal plants.Front. Pharmacol.20211263083410.3389/fphar.2021.630834 34234668
    [Google Scholar]
  44. ZenginG. UysalA. DiuzhevaA. GunesE. JekőJ. CziákyZ. AllainP.C.M.N. MahomoodallyM.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight.J. Pharm. Biomed. Anal.201816037438210.1016/j.jpba.2018.08.020 30121555
    [Google Scholar]
  45. DoğanH.H. DumanR. The anti HRSV activity of Ferula halophila Peşmen aqueous and methanol extract by MTT assay.Trak. Univ. J. Nat. Sci.20212214348
    [Google Scholar]
  46. RizzettoM. CiancioA. Chronic HBV-related liver disease.Mol. Aspects Med.2008291-2728410.1016/j.mam.2007.09.013 18067957
    [Google Scholar]
  47. YuenM.F. ChenD.S. DusheikoG.M. JanssenH.L.A. LauD.T.Y. LocarniniS.A. PetersM.G. LaiC.L. Hepatitis B virus infection.Nat. Rev. Dis. Primers2018411803510.1038/nrdp.2018.35 29877316
    [Google Scholar]
  48. LavanchyD. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures.J. Viral Hepat.20041129710710.1046/j.1365‑2893.2003.00487.x 14996343
    [Google Scholar]
  49. van Bِmmel, F.; Wünsche, T.; Mauss, S.; Reinke, P.; Bergk, A.; Schürmann, D.; Wiedenmann, B.; Berg, T. Comparison of adefovir and tenofovir in the treatment of lamivudine-resistant hepatitis B virus infection.Hepatology20044061421142510.1002/hep.20464 15565615
    [Google Scholar]
  50. ChenZ. ZhouG. MaS. Research progress of Ferula ferulaeoides: A review.Molecules2023288357910.3390/molecules28083579 37110813
    [Google Scholar]
  51. SalehiM. NaghaviM.R. BahmankarM. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists.Ind. Crops Prod.201913911151110.1016/j.indcrop.2019.111511
    [Google Scholar]
  52. ZhaiL.L. LiuT. XieH.Q. XieY.H. MuQ. Inhibition effects on Hepatitis B virus replication by hydrophobic extracts from Ferula ferulaeoides (Steud.).Korov. J. Med. Plants Res.2012614861488
    [Google Scholar]
  53. BirkmannA. ZimmermannH. HSV antivirals – Current and future treatment options.Curr. Opin. Virol.20161891310.1016/j.coviro.2016.01.013 26897058
    [Google Scholar]
  54. BradyR.C. BernsteinD.I. Treatment of herpes simplex virus infections.Antiviral Res.2004612738110.1016/j.antiviral.2003.09.006 14670580
    [Google Scholar]
  55. GilbertC. Bestman-SmithJ. BoivinG. Resistance of herpesviruses to antiviral drugs: Clinical impacts and molecular mechanisms.Drug Resist. Updat.2002528811410.1016/S1368‑7646(02)00021‑3 12135584
    [Google Scholar]
  56. TremlJ. Gazdová, M.; Šmejkal, K.; Šudomová, M.; Kubatka, P.; Hassan, S.T.S. Natural products-derived chemicals: Breaking barriers to novel anti-HSV drug development.Viruses202012215410.3390/v12020154 32013134
    [Google Scholar]
  57. CrimiS. FiorilloL. BianchiA. D’AmicoC. AmorosoG. GorassiniF. MastroieniR. MarinoS. ScoglioC. CatalanoF. CampagnaP. BocchieriS. De StefanoR. FiorilloM.T. CicciùM. Herpes virus, oral clinical signs and QoL: Systematic review of recent data.Viruses201911546310.3390/v11050463 31117264
    [Google Scholar]
  58. KondelR. ShafiqN. KaurI.P. SinghM.P. PandeyA.K. RathoR.K. MalhotraS. Effect of acyclovir solid lipid nanoparticles for the treatment of herpes simplex virus (HSV) infection in an animal model of HSV-1 infection.Pharm. Nanotechnol.20197538940310.2174/2211738507666190829161737 31465287
    [Google Scholar]
  59. KłysikK. PietraszekA. KarewiczA. NowakowskaM. Acyclovir in the treatment of herpes viruses–A review.Curr. Med. Chem.202027244118413710.2174/0929867325666180309105519 29521211
    [Google Scholar]
  60. BagheriS.M. HakimizadehE. AllahtavakoliM. A review on antidiabetic potential of Genus Ferula (Apiaceae).Curr. Tradit. Med.2024101e09032321450910.2174/2215083809666230309111323
    [Google Scholar]
  61. SiriziM.A.G. GhalenoeiA.J. AllahtavakoliM. ForouzanfarH. BagheriS.M. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy.World J. Biol. Chem.2023142283910.4331/wjbc.v14.i2.28 37034135
    [Google Scholar]
  62. GhannadiA. FattahianK. ShokoohiniaY. BehbahaniM. ShahnoushA. Anti-viral evaluation of sesquiterpene coumarins from Ferula assa-foetida against HSV-1.Iran. J. Pharm. Res.2014132523530 25237347
    [Google Scholar]
  63. RollingerJ.M. SteindlT.M. SchusterD. KirchmairJ. AnrainK. EllmererE.P. LangerT. StuppnerH. WutzlerP. SchmidtkeM. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein.J. Med. Chem.200851484285110.1021/jm701494b 18247552
    [Google Scholar]
  64. MohamedS.M. IbrahimN.A. AliM.A. FaraidM.A. Chemical composition, antiviral and antimicrobial activities of the essential oils of Ferula hormonis,Plectranthus coleoides and Magnolia grandiflora.Planta Med.200672113
    [Google Scholar]
  65. DamondF. WorobeyM. CampaP. FarfaraI. ColinG. MatheronS. Brun-VézinetF. RobertsonD.L. SimonF. Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification.AIDS Res. Hum. Retroviruses200420666667210.1089/0889222041217392 15242544
    [Google Scholar]
  66. WolyecT.S. SarassoroA. MasidiM.J. BanzaT.E. DikumbwaN.G. MatondoM.D.M. KilunduA. LukusaK.L. AgasaB.S. BélecL. Field evaluation of capillary blood and oral-fluid HIV self-tests in the Democratic Republic of the Congo.PLoS One20201510e023960710.1371/journal.pone.0239607 33017442
    [Google Scholar]
  67. BarinF. HIV/AIDS as a model for emerging infectious disease: Origin, dating and circumstances of an emblematic epidemiological success.Presse Med.202251310412810.1016/j.lpm.2022.104128 35623545
    [Google Scholar]
  68. CôtéH.C.F. MagilA.B. HarrisM. ScarthB.J. GadawskiI. WangN. YuE. YipB. ZalunardoN. WerbR. HoggR. HarriganP.R. MontanerJ.S. Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy.Antivir. Ther.2006111798610.1177/135965350601100108 16518963
    [Google Scholar]
  69. CobbD.A. SmithN.A. EdagwaB.J. McMillanJ.M. Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: A review of recent research.Expert Opin. Drug Deliv.20201791227123810.1080/17425247.2020.1783233 32552187
    [Google Scholar]
  70. LiuJ.P. ManheimerE. YangM. Herbal medicines for treating HIV infection and AIDS.Cochrane Libr.200520101CD00393710.1002/14651858.CD003937.pub2 16034917
    [Google Scholar]
  71. DjordjevićP.J. QuispeC. GiordoR. KostićA. StankovićK.J.S. FokouP.V. CarboneK. MartorellM. KumarM. PintusG. RadS.J. DoceaA.O. CalinaD. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs.Eur. J. Med. Chem.202223311421710.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  72. SistaniP. DehghanG. SadeghiL. Structural and kinetic insights into HIV-1 reverse transcriptase inhibition by farnesiferol C.Int. J. Biol. Macromol.202117430931810.1016/j.ijbiomac.2021.01.173 33524481
    [Google Scholar]
  73. MurrayC.J.L. LopezA.D. ChinB. FeehanD. HillK.H. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–20 pandemic: A quantitative analysis.Lancet200636895542211221810.1016/S0140‑6736(06)69895‑4 17189032
    [Google Scholar]
  74. NguyenJ.T. HoopesJ.D. LeM.H. SmeeD.F. PatickA.K. FaixD.J. BlairP.J. de JongM.D. PrichardM.N. WentG.T. Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro.PLoS One201052e933210.1371/journal.pone.0009332 20179772
    [Google Scholar]
  75. FraserC. DonnellyC.A. CauchemezS. HanageW.P. Van KerkhoveVMD. HollingsworthT.D. GriffinJ. BaggaleyR.F. JenkinsHE. Lyons, EJ Pandemic potential of a strain of influenza A (H1N1): Early findings.Science200932415571561
    [Google Scholar]
  76. XuX. ZhuX. DwekR.A. StevensJ. WilsonI.A. Structural characterization of the 1918 influenza virus H1N1 neuraminidase.J. Virol.20088221104931050110.1128/JVI.00959‑08 18715929
    [Google Scholar]
  77. VaillantL. La RucheG. TarantolaA. BarbozaP. Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009.Euro Surveill.200914331930910.2807/ese.14.33.19309‑en 19712643
    [Google Scholar]
  78. Centers for Disease Control and Prevention (CDC). Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infection in two summer campers receiving prophylaxis--North Carolina, 2009.MMWR Morb. Mortal. Wkly. Rep.20095835969972 19745803
    [Google Scholar]
  79. ChenW. LimC.E.D. KangH.J. LiuJ. Chinese herbal medicines for the treatment of type A H1N1 influenza: A systematic review of randomized controlled trials.PLoS One2011612e2809310.1371/journal.pone.0028093 22164232
    [Google Scholar]
  80. LiG.Z. WangJ.C. LiX.J. CaoL. GaoL. LvN. SiJ.Y. An unusual sesquiterpene coumarin from the seeds of Ferula sinkiangensis.J. Asian Nat. Prod. Res.201618989189610.1080/10286020.2016.1168813 27053285
    [Google Scholar]
  81. KumarD. MalviyaR. SharmaP.K. Corona virus: A review of COVID-19.EJMO20204825
    [Google Scholar]
  82. El-SayedA. KamelM. Coronaviruses in humans and animals: The role of bats in viral evolution.Environ. Sci. Pollut. Res. Int.20212816195891960010.1007/s11356‑021‑12553‑1 33655480
    [Google Scholar]
  83. SuS. LiW. JiangS. Developing pan-β-coronavirus vaccines against emerging SARS-CoV-2 variants of concern.Trends Immunol.202243317017210.1016/j.it.2022.01.009 35125310
    [Google Scholar]
  84. RamadanN. ShaibH. Middle East respiratory syndrome coronavirus (MERS-CoV): A review.Germs201991354210.18683/germs.2019.1155 31119115
    [Google Scholar]
  85. KimM.S. SeongD. LiH. ChungS.K. ParkY. LeeM. LeeS.W. YonD.K. KimJ.H. LeeK.H. SolmiM. DragiotiE. KoyanagiA. JacobL. KronbichlerA. TizaouiK. CargninS. TerrazzinoS. HongS.H. GhaydaA.R. RaduaJ. OhH. KostevK. OginoS. LeeI.M. GiovannucciE. BarnettY. ButlerL. McDermottD. IlieP.C. ShinJ.I. SmithL. Comparative effectiveness of N95, surgical or medical, and non‐medical facemasks in protection against respiratory virus infection: A systematic review and network meta‐analysis.Rev. Med. Virol.2022325e233610.1002/rmv.2336 35218279
    [Google Scholar]
  86. HabibzadehS. ZohalinezhadM.E. Evaluation of the inhibitory activities of ferula gummosa bioactive compounds against the druggable targets of SARS-CoV-2: Molecular docking simulation.Biointerface Res. Appl. Chem.20221263826392
    [Google Scholar]
  87. HashemzadehH. IranshahyM. IranshahiM. RaissiH. In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2.Comput. Biol. Med.202214610556610.1016/j.compbiomed.2022.105566 35598351
    [Google Scholar]
  88. SeydiF. SalehiM. DabaghianH.F. EmadiF. FesharakiG.M. IranzadaslM. Efficacy of topical galbanum oil with dry cupping in hospitalized COVID-19 patients: A randomized open-label clinical trial.Avicenna J. Phytomed.2023134388399 37663385
    [Google Scholar]
  89. HasanpourM. SafariH. MohammadpourA.H. IranshahyM. NayyeriD.M.J. FarhadiF. EmamiB. IranshahiM. Efficacy of covexir® (Ferula foetida oleo‐gum) treatment in symptomatic improvement of patients with mild to moderate COVID ‐19: A randomized, double‐blind, placebo‐controlled trial.Phytother. Res.202236124504451510.1002/ptr.7567 35896167
    [Google Scholar]
  90. TaghanakiB.H.R. HoseinzadehH. HamediS. BajestaniJ.N.M. EsmaeilzadehN. AbdollahzadehH. asil, H.S.; Haghighi, G.; Bojdi, A. The effect of Phytopaj) Ferula assa-foetida L. oleo gum resin and tragacanth (in patients with COVID-19: A randomized clinical trial.Avicenna J. Phytomed.2023142152165
    [Google Scholar]
  91. GöçeriA. Demirtaşİ. AlmaM.H. AdemŞ. KasraZ.A. GülF. UzunA. Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen.Grasas Aceites2022731e450e45010.3989/gya.0107211
    [Google Scholar]
  92. MohamedT.A. ElshamyA.I. IbrahimM.A.A. ZellaguiA. MoustafaM.F. AbdelrahmanA.H.M. OhtaS. PareP.W. HegazyM.E.F. Carotane sesquiterpenes from Ferula vesceritensis: In silico analysis as SARS-CoV-2 binding inhibitors.RSC Advances20201057345413454810.1039/D0RA06901A 35514418
    [Google Scholar]
  93. RajapaksaRMH. PereraBT. NisansalaMJ. PereraW. DissanayakeKGC. Potential of inhibiting the receptor binding mechanism of sarscov-2 using phytochemical extracts of medicinal herb; moleculer docking study.Glob. J. Eng. Sci. Res. Manag.2020745161
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010285343240530040218
Loading
/content/journals/cpb/10.2174/0113892010285343240530040218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test