Skip to content
2000
Volume 26, Issue 16
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Colon-specific targeting delivery systems have drawn a great deal of attention because they represent potential vehicles for treating colonic disorders like diverticulitis, colitis, salmonellosis, Crohn’s disease, etc. with less systemic adverse effects as well as for the better oral delivery of many therapeutics that are prone to enzymatic and acidic deterioration in the upper GI tract. Smart polymeric delivery systems in particular have been investigated as “intelligent” delivery systems capable of releasing entrapped pharmaceuticals at the proper time & site of action in response to certain physiological stimuli. The creation of novel polymers & crosslinkers with improved biodegradability and biocompatibility would expand and enhance applications now in use. The development of polymeric systems could result in more precise and programmable drug delivery/therapies. In addition, newer advancements have led to the development of numerous ground-breaking techniques for directing a medication molecule to the colon. This review highlighted formulation techniques pH-dependent, time-dependent, enzyme sensitive, magnetically dependent, ligand-receptor mediated, and microflora-activated systems. Moreover, several methods have been put forth that make use of the innovative idea of such delivery systems, and mechanisms in which the release of drugs is regulated by pH and time as well as pH and the colon's bacteria.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010323922240924053921
2024-10-07
2025-12-13
Loading full text...

Full text loading...

References

  1. FedorukM.J. HongS. Gastrointestinal System.Encyclopedia of Toxicology.3rd edElsevier201470270510.1016/B978‑0‑12‑386454‑3.00026‑9
    [Google Scholar]
  2. Picture of the human colon anatomy & common colon conditions.Available from:webmd.com/digestive-disorders/picture-of-the-colon(accessed on 27-8-2024)
  3. FedorukM.J. GuidottiT.L. Gastrointestinal System.Encyclopedia of Toxicology.Elsevier200541041610.1016/B0‑12‑369400‑0/00446‑4
    [Google Scholar]
  4. BarrettK.E. Gastrointestinal Physiology.Reference Module in Biomedical SciencesElsevier2014
    [Google Scholar]
  5. KonturekP.C. BrzozowskiT. KonturekS.J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.J. Physiol. Pharmacol.201162659159922314561
    [Google Scholar]
  6. GreenwaldD. BrandtL.J. Gastrointestinal System: Function and Dysfunction.Encyclopedia of GerontologyElsevier2007
    [Google Scholar]
  7. IsmailM.K. ShresthaS. Gastrointestinal Complications of Neuromuscular Disorders.Neuromuscular Disorders: Treatment and Management.Elsevier20217996
    [Google Scholar]
  8. KrishnamurthyS. SchufflerM.D. Pathology of neuromuscular disorders of the small intestine and colon.Gastroenterology198793361063910.1016/0016‑5085(87)90926‑73301518
    [Google Scholar]
  9. US Preventive Services Task Force Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J. W.; García, F.A.R.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S.; Mangione, C.M.; Owens, D.K.; Phillips, W.R.; Phipps, M.G.; Pignone, M.P.; Siu, A.L. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement.JAMA2016315232564257527304597
    [Google Scholar]
  10. RahierJ.F. MagroF. AbreuC. ArmuzziA. Ben-HorinS. ChowersY. CottoneM. de RidderL. GD. EhehaltR. EsteveM. KatsanosK. LeesC.W. MacMahonE. MoreelsT. ReinischW. TilgH. TremblayL. Veereman-WautersG. VigetN. YazdanpanahY. EliakimR. ColombelJ.F. European Crohn’s and Colitis Organisation (ECCO) Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease.J. Crohn’s Colitis20148644346810.1016/j.crohns.2013.12.01324613021
    [Google Scholar]
  11. SouzaT. FigueiredoL. GonçalvesM. AzoiaN. GüebitzG. Cavaco-PauloA. Polymeric Nanoparticles for Colonic Drug Delivery: Advances and Challenges.Nanomedicine (Lond.)2021161210571072
    [Google Scholar]
  12. SharmaS. SinhaV.R. PawarV.K. Lipid-Based Nanoparticles for Colon-Targeted Drug Delivery: Recent Advances and Future Prospects.Int. J. Pharm.2020585119498
    [Google Scholar]
  13. QiuY. HuH. XuX. Azo Prodrugs for Targeted Drug Delivery: Recent Advances and Challenges.J. Pharm. Sci.20221113875888
    [Google Scholar]
  14. PatelM.M. AminA.F. BhadaniA. Glycoside Prodrugs for Colonic Drug Delivery: Design, Synthesis, and Biological Evaluation.Bioorg. Med. Chem.2019271226512660
    [Google Scholar]
  15. LiX. ChenD. WilliamsG.R. WangH. Hydrogels for Colon-Targeted Drug Delivery: Recent Advances and Future Perspectives.Carbohydr. Polym.2021260117813
    [Google Scholar]
  16. XuQ. DengY. FuY. HuK. Polysaccharides for Mucoadhesive Drug Delivery Systems: A Review of Recent Developments.Carbohydr. Polym.2021256117559
    [Google Scholar]
  17. WuH. ZhuL. XuY. YinL. Prebiotics and Synbiotics in Colonic Drug Delivery: Enhancing Therapeutic Efficacy.Curr. Opin. Biotechnol.2023745462
    [Google Scholar]
  18. HuaS. de MatosM.B. MetselaarJ.M. StormG. Enzyme-Responsive Drug Delivery Systems: Recent Advances and Future Prospects.Adv. Drug Deliv. Rev.20211727187
    [Google Scholar]
  19. WangY. YinL. DingJ. pH-Responsive Polymers for Colon-Targeted Drug Delivery: Recent Developments and Future Perspectives.Macromol. Rapid Commun.20224332100736
    [Google Scholar]
  20. LiuY. FengL. LiuT. Redox-Sensitive Polymers for Targeted Drug Delivery.J. Mater. Chem. B Mater. Biol. Med.20208814351448
    [Google Scholar]
  21. ClarkS.J. GoyanesA. TrenfieldS.J. TanH.X. GaisfordS. BasitA.W. 3D Printing in Pharmaceutical Manufacturing: Recent Advances and Future Prospects.Pharm. Res.20223911530
    [Google Scholar]
  22. GoyanesA. FinaF. MartoranaA. SedoughD. GaisfordS. BasitA.W. Multi-Layered Tablets for Complex Drug Release Profiles: A 3D Printing Approach.J. Control. Release2021334194205
    [Google Scholar]
  23. ZhangH. YinL. ChengJ. Personalized Medicine in Colonic Drug Delivery: Current Trends and Future Directions.Trends Pharmacol. Sci.2023442134145
    [Google Scholar]
  24. MartinA. BeckerK. SpagnuoloV. LühmannT. Combination Therapies for Colonic Disorders: Synergistic Effects and Future Directions.Drug Discov. Today202328510221035
    [Google Scholar]
  25. Regulatory Considerations for Advanced Drug Delivery Systems.U.S. Food and Drug Administration.2023
    [Google Scholar]
  26. HarelE. RubinsteinA. NissanA. KhazanovE. Nadler MilbauerM. BarenholzY. TiroshB. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa.PLoS One201169e2420210.1371/journal.pone.002420221915296
    [Google Scholar]
  27. Inflammatory bowel disease (IBD).Available from:mayoclinic.org/diseases-conditions/inflammatory-bowel-disease/diagnosis-treatment/drc-20353320(accessed on 27-8-2024)
  28. Inflammatory Bowel Disease (Overview).Available from:my.clevelandclinic.org/health/diseases/15587-inflammatory-bowel-disease-overview(accessed on 27-8-2024)
  29. DaCostaL.R. What is inflammatory bowel disease?Can. J. Gastroenterol.19937650350810.1155/1993/653712
    [Google Scholar]
  30. BraskyT.M. DarkeA.K. SongX. TangenC.M. GoodmanP.J. ThompsonI.M. MeyskensF.L.Jr GoodmanG.E. MinasianL.M. ParnesH.L. KleinE.A. KristalA.R. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial.J. Natl. Cancer Inst.2013105151132114110.1093/jnci/djt17423843441
    [Google Scholar]
  31. de KlaverW. WisseP.H.A. van WifferenF. BoschL.J.W. JimenezC.R. van der HulstR.W.M. FijnemanR.J.A. KuipersE.J. GreuterM.J.E. CarvalhoB. SpaanderM.C.W. DekkerE. CoupéV.M.H. de WitM. MeijerG.A. Clinical Validation of a Multitarget Fecal Immunochemical Test for Colorectal Cancer Screening.Ann. Intern. Med.202117491224123110.7326/M20‑827034280333
    [Google Scholar]
  32. Screening Tests to Detect Colorectal Cancer and Polyps.Available from:cancer.gov/types/colorectal/screening-fact-sheet(accessed on 27-8-2024)
  33. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑926070545
    [Google Scholar]
  34. ReddyR.B.D. MalleshwariK. PrasadG. PavaniG. Colon targeted drug delivery system: A review.IJPSR2013414254
    [Google Scholar]
  35. LeeS.H. BajracharyaR. MinJ.Y. HanJ.W. ParkB.J. HanH.K. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements.Pharmaceutics20201216810.3390/pharmaceutics1201006831952340
    [Google Scholar]
  36. SahuK.K. PandeyR.S. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization.Pharm. Dev. Technol.201924216617510.1080/10837450.2018.144463929468926
    [Google Scholar]
  37. IbekweV.C. LiuF. FaddaH.M. KhelaM.K. EvansD.F. ParsonsG.E. BasitA.W. An investigation into the in vivo performance variability of pH responsive polymers for ileo-colonic drug delivery using gamma scintigraphy in humans.J. Pharm. Sci.200695122760276610.1002/jps.2074216917845
    [Google Scholar]
  38. ChourasiaM.K. JainS.K. Polysaccharides for colon targeted drug delivery.Drug Deliv.200411212914810.1080/1071754049028077815200012
    [Google Scholar]
  39. ZeeshanM. AliH. KhanS. KhanS.A. WeigmannB. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease.Int. J. Pharm.201955820121410.1016/j.ijpharm.2018.12.07430615925
    [Google Scholar]
  40. GovindarajanS. BegumM.J. SandireddyR. RajendraY. Colon targeted drug delivery system: A review.Int J Pharm Technol.20123416571672
    [Google Scholar]
  41. KelmG.R. ManringG.L. Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery.U.S. Patent 5,914,132A, 1999.
  42. NehaS. HarikumarS.L. Polymers for Colon targeted drug delivery: A review.Int J Drug Dev Res.2013512131
    [Google Scholar]
  43. MaroniA. MoutaharrikS. ZemaL. GazzanigaA. Enteric coatings for colonic drug delivery: state of the art.Expert Opin. Drug Deliv.20171491027102910.1080/17425247.2017.136086428749188
    [Google Scholar]
  44. AnsariM. SadaraniB. MajumdarA. Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation.Saudi Pharm. J.2019271718110.1016/j.jsps.2018.07.02130662309
    [Google Scholar]
  45. DodooC.C. WangJ. BasitA.W. StapletonP. GaisfordS. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation.Int. J. Pharm.20175301-222422910.1016/j.ijpharm.2017.07.06828764983
    [Google Scholar]
  46. KonoY. GogatsuboS. OhbaT. FujitaT. Enhanced macrophage delivery to the colon using magnetic lipoplexes with a magnetic field.Drug Deliv.201926193594310.1080/10717544.2019.166251531530198
    [Google Scholar]
  47. XiaoB. LarouiH. ViennoisE. AyyaduraiS. CharaniaM.A. ZhangY. ZhangZ. BakerM.T. ZhangB. GewirtzA.T. MerlinD. Nanoparticles with surface antibody against cd98 and carrying cd98 small interfering RNA reduce colitis in mice.Gastroenterology201414651289130010.1053/j.gastro.2014.01.056
    [Google Scholar]
  48. XiongS. YuB. WuJ. LiH. LeeR.J. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS.Biomed. Pharmacother.20116512810.1016/j.biopha.2010.10.00321177069
    [Google Scholar]
  49. PrajapatiS.K. JainA. ShrivastavaC. JainA.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting.Int. J. Biol. Macromol.201912369170310.1016/j.ijbiomac.2018.11.11630445095
    [Google Scholar]
  50. GuoF. OuyangT. PengT. ZhangX. XieB. YangX. LiangD. ZhongH. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides.Biomater. Sci.2019741493150610.1039/C8BM01485J30672923
    [Google Scholar]
  51. NaeemM. ChoiM. CaoJ. LeeY. IkramM. YoonS. LeeJ. MoonH.R. KimM.S. JungY. YooJ.W. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy.Drug Des. Devel. Ther.201593789379926229440
    [Google Scholar]
  52. ZhaoM. LeeS.H. SongJ.G. KimH.Y. HanH.K. Enhanced oral absorption of sorafenib via the layer-by-layer deposition of a pH-sensitive polymer and glycol chitosan on the liposome.Int. J. Pharm.20185441142010.1016/j.ijpharm.2018.04.02029655795
    [Google Scholar]
  53. ParkH.J. JungH.J. HoM.J. LeeD.R. ChoH.R. ChoiY.S. JunJ. SonM. KangM.J. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet.Eur. J. Pharm. Sci.201710217217910.1016/j.ejps.2017.03.00628279763
    [Google Scholar]
  54. FoppoliA. MaroniA. MoutaharrikS. MelocchiA. ZemaL. PaluganL. CereaM. GazzanigaA. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release.Int. J. Pharm.201957211872310.1016/j.ijpharm.2019.11872331628978
    [Google Scholar]
  55. ZhuJ. ZhongL. ChenW. SongY. QianZ. CaoX. HuangQ. ZhangB. ChenH. ChenW. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system.Food Hydrocoll.20199556257010.1016/j.foodhyd.2018.04.042
    [Google Scholar]
  56. RenY. MuY. SongY. XieJ. YuH. GaoS. LiS. PengH. ZhouY. LuW. A new peptide ligand for colon cancer targeted delivery of micelles.Drug Deliv.20162351763177210.3109/10717544.2015.107729326289214
    [Google Scholar]
  57. GrifantiniR. TarantaM. GherardiniL. NaldiI. ParriM. GrandiA. GiannettiA. TombelliS. LucariniG. RicottiL. CampagnoliS. De CamilliE. PelosiG. BaldiniF. MenciassiA. VialeG. PileriP. CintiC. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer.J. Control. Release2018280768610.1016/j.jconrel.2018.04.05229733876
    [Google Scholar]
  58. JiangZ. GuanJ. QianJ. ZhanC. Peptide ligand-mediated targeted drug delivery of nanomedicines.Biomater. Sci.20197246147110.1039/C8BM01340C30656305
    [Google Scholar]
  59. HandaliS. MoghimipourE. RezaeiM. RamezaniZ. KouchakM. AminiM. AngaliK.A. SaremyS. DorkooshF.A. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes.Biomed. Pharmacother.20181081259127310.1016/j.biopha.2018.09.12830372827
    [Google Scholar]
  60. SiX.Y. MerlinD. XiaoB. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease.World J. Gastroenterol.201622347718772610.3748/wjg.v22.i34.771827678353
    [Google Scholar]
  61. ZhangL. ZhuW. YangC. GuoH. YuA. JiJ. GaoY. SunM. ZhaiG. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting.Int. J. Nanomedicine2012715116222275831
    [Google Scholar]
  62. VafaeiS.Y. EsmaeiliM. AminiM. AtyabiF. OstadS.N. DinarvandR. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.Carbohydr. Polym.201614437138110.1016/j.carbpol.2016.01.02627083829
    [Google Scholar]
  63. YuM. JambhrunkarS. ThornP. ChenJ. GuW. YuC. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.Nanoscale20135117818310.1039/C2NR32145A23076766
    [Google Scholar]
  64. GhoshD. PengX. LealJ. MohantyR.P. Peptides as drug delivery vehicles across biological barriers.J. Pharm. Investig.20184818911110.1007/s40005‑017‑0374‑029963321
    [Google Scholar]
  65. ChourasiaM.K. JainS.K. Pharmaceutical approaches to colon targeted drug delivery systems.J. Pharm. Pharm. Sci.200361336612753729
    [Google Scholar]
  66. LiuF. MorenoP. BasitA.W. A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract.Eur. J. Pharm. Biopharm.201074231131510.1016/j.ejpb.2009.11.00819932177
    [Google Scholar]
  67. HashemF. In Vitro and In Vivo Evaluation of Combined Time and pH- Dependent Oral Colonic Targeted Prednisolone Microspheres.Br. J. Pharm. Res.20133342043410.9734/BJPR/2013/3195
    [Google Scholar]
  68. MaurerJ.M. SchellekensR.C.A. van RiekeH.M. WankeC. IordanovV. StellaardF. WutzkeK.D. DijkstraG. van der ZeeM. WoerdenbagH.J. FrijlinkH.W. KosterinkJ.G.W. Gastrointestinal pH and Transit Time Profiling in Healthy Volunteers Using the IntelliCap System Confirms Ileo-Colonic Release of ColoPulse Tablets.PLoS One2015107e012907610.1371/journal.pone.012907626177019
    [Google Scholar]
  69. MutalikS. SutharN.A. ManaguliR.S. ShettyP.K. AvadhaniK. KalthurG. KulkarniR.V. ThomasR. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin.Int. J. Biol. Macromol.20168670972010.1016/j.ijbiomac.2015.11.09226851203
    [Google Scholar]
  70. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  71. Priya JamesH. JohnR. AlexA. AnoopK.R. Smart polymers for the controlled delivery of drugs – a concise overview.Acta Pharm. Sin. B20144212012710.1016/j.apsb.2014.02.00526579373
    [Google Scholar]
  72. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  73. KamounJ. KrichenF. KoubaaI. ZouariN. BougatefA. AbousalhamA. AloulouA. In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems.Heliyon202174e0671710.1016/j.heliyon.2021.e0671733898835
    [Google Scholar]
  74. VarumF.J.O. HattonG.B. FreireA.C. BasitA.W. A novel coating concept for ileo-colonic drug targeting: Proof of concept in humans using scintigraphy.Eur. J. Pharm. Biopharm.201384357357710.1016/j.ejpb.2013.01.00223348235
    [Google Scholar]
  75. RhodesJ. EvansB.K. Delayed release oral dosage forms for treatment of intestinal disorders.U.S. Patent 5,401,512 45, 1995.
  76. BarbosaJ.A.C. Al-KauraishiM.M. SmithA.M. ConwayB.R. MerchantH.A. Achieving gastroresistance without coating: Formulation of capsule shells from enteric polymers.Eur. J. Pharm. Biopharm.201914417417910.1016/j.ejpb.2019.09.01531541663
    [Google Scholar]
  77. MaurerJ.M. SchellekensR.C.A. van RiekeH.M. StellaardF. WutzkeK.D. BuurmanD.J. DijkstraG. WoerdenbagH.J. FrijlinkH.W. KosterinkJ.G.W. ColoPulse tablets perform comparably in healthy volunteers and Crohn’s patients and show no influence of food and time of food intake on bioavailability.J. Control. Release2013172361862410.1016/j.jconrel.2013.09.02124096020
    [Google Scholar]
  78. HuaS. MarksE. SchneiderJ.J. KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue.Nanomedicine20151151117113210.1016/j.nano.2015.02.01825784453
    [Google Scholar]
  79. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  80. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑411166403
    [Google Scholar]
  81. McCoubreyL.E. FavaronA. AwadA. OrluM. GaisfordS. BasitA.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics.J. Control. Release20233531107112610.1016/j.jconrel.2022.12.02936528195
    [Google Scholar]
  82. KaurM. KaurG. KaurR. KaurH. Recent Advances in Colonic Drug Delivery Systems: A Review.Drug Deliv.202027111431818156
    [Google Scholar]
  83. BansalM. GuptaV. GuptaP. SinghS. A Review on Natural Polymers in Colon Drug Delivery.J. Drug Deliv. Sci. Technol.201949110
    [Google Scholar]
  84. ChoudhuryH. GhoshA. ChoudhuryP. KarmakarP. Colon-Specific Drug Delivery Systems: A Review.Int. J. Pharm. Sci. Res.202112312921302
    [Google Scholar]
  85. HwangS.J. ParkK. Colon-Specific Drug Delivery Systems: Recent Advances and Future Perspectives.Expert Opin. Drug Deliv.2021185575586
    [Google Scholar]
  86. SahinU. KarikóK. TüreciÖ. mRNA-based therapeutics — developing a new class of drugs.Nat. Rev. Drug Discov.2014131075978010.1038/nrd427825233993
    [Google Scholar]
  87. WuP. HanJ. GongY. LiuC. YuH. XieN. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications.Pharmaceutics20221410199010.3390/pharmaceutics1410199036297426
    [Google Scholar]
  88. ChandrasekaranA.R. Nuclease resistance of DNA nanostructures.Nat. Rev. Chem.20215422523910.1038/s41570‑021‑00251‑y
    [Google Scholar]
  89. ChenD. LiuX. LuX. TianJ. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy.Front. Pharmacol.202314111199110.3389/fphar.2023.111199136874010
    [Google Scholar]
  90. DrugAvailable from:https://en.wikipedia.org/wiki/Drug(accessed on 27-8-2024)
  91. SnyderI.S. CuthbertA.W. RangH.P. ScarneJ. BloomF.E. ThomasJ.A. StringerJ.L. Drug.Available from:https://www.britannica.com/science/drug-chemical-agent(accessed on 27-8-2024)
  92. GisbertJ.P. GomollónF. MatéJ. PajaresJ.M. Role of 5-aminosalicylic acid (5-ASA) in treatment of inflammatory bowel disease: a systematic review.Dig. Dis. Sci.200247347148810.1023/A:101798722971811911332
    [Google Scholar]
  93. Drugs.com - Prescription Drug Information.Available from: https://www.drugs.com(accessed on 27-8-2024)
  94. MohammadzadehV. RahimanN. HosseinikhahS.M. BaraniM. RahdarA. JaafariM.R. SargaziS. ZirakM.R. PandeyS. BhattacharjeeR. GuptaA.K. ThakurV.K. SibuhB.Z. GuptaP.K. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update.J. Drug Deliv. Sci. Technol.20227310345910.1016/j.jddst.2022.103459
    [Google Scholar]
  95. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  96. BasitA.W. IbekweV.C. Colonic drug delivery formulation.U.S. Patent US 2007/0243253 A1, 2007.
  97. Sengel TurkC.T. HascicekC. GönülN. Colon targeted drug delivery systems.Ankara Universitesi Eczacilik Fakultesi Dergisi.200635125148
    [Google Scholar]
  98. RubinsteinA. SintovA. Colonic drug delivery system.E.Patent 0 527 942 B1, 1999.
  99. TheeuwesF. AltosL. GuittardG.V. PatrickC. Delivery of drug to colon by oral disage form.U.S. Patent 4,904,474, 1990.
  100. JohnsonL.K. SleisengerM.H. Use of 2-hydroxy-5-phenylazobenzoic acid derivative as colon cancer chemoprophylaxis agent and chemotherapeutic agent.WO 95/18622, 1995.
  101. Angiostatin and its use in inhibiting angiogenesis.JP 3880593B2 , 2006.
  102. ScottR.A. ColeE.T. Enteric and colonic delivery using HPMC capsules.U.S. Patent 7,094.425 B2, 2006.
  103. MurrayA. NguyenT.M. ParkerC.E. FeaganB.G. MacDonaldJ.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis.Cochrane Database Syst. Rev.202088CD00054332786164
    [Google Scholar]
  104. CreedT.J. ProbertC.S.J. Review article: steroid resistance in inflammatory bowel disease – mechanisms and therapeutic strategies.Aliment. Pharmacol. Ther.200725211112210.1111/j.1365‑2036.2006.03156.x17229236
    [Google Scholar]
  105. GisbertJ.P. LinaresP.M. McNichollA.G. MatéJ. GomollónF. Meta‐analysis: the efficacy of azathioprine and mercaptopurine in ulcerative colitis.Aliment. Pharmacol. Ther.200930212613710.1111/j.1365‑2036.2009.04023.x19392869
    [Google Scholar]
  106. GlimeliusB. StintzingS. MarshallJ. YoshinoT. de GramontA. Metastatic colorectal cancer: Advances in the folate-fluoropyrimidine chemotherapy backbone.Cancer Treat. Rev.20219810221810.1016/j.ctrv.2021.10221834015686
    [Google Scholar]
  107. SaraJ.D. KaurJ. KhodadadiR. RehmanM. LoboR. ChakrabartiS. HerrmannJ. LermanA. GrotheyA. 5-fluorouracil and cardiotoxicity: a review.Ther. Adv. Med. Oncol.20181010.1177/175883591878014029977352
    [Google Scholar]
  108. PathakS. BanerjeeA. MengW.J. Kumar NandyS. GopinathM. SunX.F. Significant expression of tafazzin (TAZ) protein in colon cancer cells and its downregulation by radiation.Int. J. Radiat. Biol.2018941798710.1080/09553002.2018.140019129099643
    [Google Scholar]
  109. DeyA. MitraA. PathakS. PrasadS. ZhangA.S. ZhangH. SunX.F. BanerjeeA. Recent advancements, limitations, and future perspectives of the use of personalized medicine in treatment of colon cancer.Technol. Cancer Res. Treat.202322840310.1177/1533033823117840337248615
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010323922240924053921
Loading
/content/journals/cpb/10.2174/0113892010323922240924053921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test