Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The process of wound healing is intricate and requires close coordination; any disruption to this process can have catastrophic results. It is hypothesized that chronic wounds that do not heal or that cease healing entirely can be caused by a combination of host factors and bacteria that are present in a wound bed or wound bed environment. There is currently a lack of understanding regarding the role that the cutaneous microbiome plays in the healing process of wounds, despite the fact that methods that do not rely on culture have revealed the role that the gut microbiome plays in human health and illness. In order to keep the host immune system in check, protect the epithelial barrier function, and ward off harmful microbes, skin commensals play a crucial role. This review compiles the research on the effects of microbiome modifications on wound healing and tissue regeneration from both clinical and pre-clinical investigations on a variety of chronic skin wounds. It is now clear that human skin commensals, symbionts, and pathogens all play a part in the inflammatory response, which in turn suggests a number of ways to treat wounds that are infected and not healing. To fully understand the function of the human skin microbiome in both short-term and long-term wound healing, additional study is required to reconcile the conflicting and contentious results of previous investigations.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010307032240530071003
2024-06-12
2025-09-07
Loading full text...

Full text loading...

References

  1. BurnsS. JanY-K. Diabetic foot ulceration and amputation.Rehabilitation Medicineintechopen2012120
    [Google Scholar]
  2. AroraA. BehlT. SehgalA. SinghS. SharmaN. BhatiaS. Sobarzo-SanchezE. BungauS. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  3. Corb AronR.A. AbidA. VesaC.M. NechiforA.C. BehlT. GhiteaT.C. MunteanuM.A. FratilaO. Andronie-CioaraF.L. TomaM.M. BungauS. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium.Microorganisms20219361810.3390/microorganisms9030618 33802777
    [Google Scholar]
  4. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  5. JanY.K. LiaoF. CheingG.L.Y. PuF. RenW. ChoiH.M.C. Differences in skin blood flow oscillations between the plantar and dorsal foot in people with diabetes mellitus and peripheral neuropathy.Microvasc. Res.2019122455110.1016/j.mvr.2018.11.002 30414870
    [Google Scholar]
  6. BremH. SheehanP. RosenbergH.J. SchneiderJ.S. BoultonA.J.M. Evidence-based protocol for diabetic foot ulcers.Plast. Reconstr. Surg.20061177Suppl.193S209S10.1097/01.prs.0000225459.93750.29 16799388
    [Google Scholar]
  7. RömlingU. BalsalobreC. Biofilm infections, their resilience to therapy and innovative treatment strategies.J. Intern. Med.2012272654156110.1111/joim.12004 23025745
    [Google Scholar]
  8. RaymanG. KrishnanS.T.M. BakerN.R. WarehamA.M. RaymanA. Are we underestimating diabetes-related lower-extremity amputation rates? Results and benefits of the first prospective study.Diabetes Care20042781892189610.2337/diacare.27.8.1892 15277413
    [Google Scholar]
  9. WhicherC.A. O’NeillS. HoltR.I.G. Diabetes in the UK: 2019.Diabet. Med.202037224224710.1111/dme.14225 31901175
    [Google Scholar]
  10. RutterL. Identifying and managing wound infection in the community.Br J Community Nurs201823Sup3S6S1410.12968/bjcn.2018.23.Sup3.S6
    [Google Scholar]
  11. MisicA.M. GardnerS.E. GriceE.A. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing.Adv. Wound Care20143750251010.1089/wound.2012.0397 25032070
    [Google Scholar]
  12. MaY. ShiN. LiM. ChenF. NiuH. Applications of next-generation sequencing in systemic autoimmune diseases.Genom. Proteom. Bioinformat.201513424224910.1016/j.gpb.2015.09.004 26432094
    [Google Scholar]
  13. McIntyreM.K. PeacockT.J. AkersK.S. BurmeisterD.M. Initial characterization of the pig skin bacteriome and its effect on in vitro models of wound healing.PLoS One20161111e016617610.1371/journal.pone.0166176 27824921
    [Google Scholar]
  14. HolmesC.J. PlichtaJ.K. GamelliR.L. RadekK.A. Dynamic role of host stress responses in modulating the cutaneous microbiome: Implications for wound healing and infection.Adv. Wound Care201541243710.1089/wound.2014.0546 25566412
    [Google Scholar]
  15. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  16. LaiY. Di NardoA. NakatsujiT. LeichtleA. YangY. CogenA.L. WuZ.R. HooperL.V. SchmidtR.R. von AulockS. RadekK.A. HuangC.M. RyanA.F. GalloR.L. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury.Nat. Med.200915121377138210.1038/nm.2062 19966777
    [Google Scholar]
  17. KugadasA. ChristiansenS.H. SankaranarayananS. SuranaN.K. GauguetS. KunzR. FichorovaR. Vorup-JensenT. GadjevaM. Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced keratitis.PLoS Pathog.2016129e100585510.1371/journal.ppat.1005855 27658245
    [Google Scholar]
  18. XiaoJ. XieB. DaoD. SpedaleM. D’SouzaM. TheriaultB. HariprasadS.M. SulakheD. ChangE.B. SkondraD. High-fat diet alters the retinal pigment epithelium and choroidal transcriptome in the absence of gut microbiota.Cells20221113207610.3390/cells11132076 35805160
    [Google Scholar]
  19. KorntnerS. LehnerC. GehwolfR. WagnerA. GrützM. KunkelN. TempferH. TrawegerA. Limiting angiogenesis to modulate scar formation.Adv. Drug Deliv. Rev.201914617018910.1016/j.addr.2018.02.010 29501628
    [Google Scholar]
  20. DhankharS. ChauhanS. MehtaD.K. Nitika; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  21. ZhangM. JiangZ. LiD. JiangD. WuY. RenH. PengH. LaiY. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing.Microb. Ecol.201569241542110.1007/s00248‑014‑0504‑4 25301498
    [Google Scholar]
  22. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. Kumar SharmaS. RaniN. Cognitive rehabilitation for early-stage dementia: A review.Curr. Psychiatry Res. Rev.20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  23. ChenZ. DowningS. TzanakakisE.S. Four decades after the discovery of regenerating islet-derived (Reg) proteins: current understanding and challenges.Front. Cell Dev. Biol.2019723510.3389/fcell.2019.00235 31696115
    [Google Scholar]
  24. HwangI.Y. KohE. KimH.R. YewW.S. ChangM.W. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria.Drug Resist. Updat.201627597110.1016/j.drup.2016.06.002 27449598
    [Google Scholar]
  25. BhowmickA. OishiT.S. AishyR.I. Current Antibiotic-resistant crisis and initiatives to combat antimicrobial resistance: A review from global perspective.Brac University202218
    [Google Scholar]
  26. KarunagaranM. VishaM.G. A review on wound healing.Int. J. Clinicopatholog. Correl.201932505910.4103/ijcpc.ijcpc_13_19
    [Google Scholar]
  27. KhoZ.Y. LalS.K. The human gut microbiome a potential controller of wellness and disease.Front. Microbiol.20189183510.3389/fmicb.2018.01835 30154767
    [Google Scholar]
  28. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound healing: A cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.2017 30475656
    [Google Scholar]
  29. ReinkeJ.M. SorgH. Wound repair and regeneration.Eur. Surg. Res.2012491354310.1159/000339613 22797712
    [Google Scholar]
  30. ChauhanS. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  31. PastarI. StojadinovicO. YinN.C. RamirezH. NusbaumA.G. SawayaA. PatelS.B. KhalidL. IsseroffR.R. Tomic-CanicM. Epithelialization in wound healing: A comprehensive review.Adv. Wound Care20143744546410.1089/wound.2013.0473 25032064
    [Google Scholar]
  32. RuffinM. BrochieroE. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues.Front. Cell. Infect. Microbiol.2019918210.3389/fcimb.2019.00182 31214514
    [Google Scholar]
  33. ReidG. YounesJ.A. Van der MeiH.C. GloorG.B. KnightR. BusscherH.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities.Nat. Rev. Microbiol.201191273810.1038/nrmicro2473 21113182
    [Google Scholar]
  34. NguyenA.V. SoulikaA.M. The dynamics of the skin’s immune system.Int. J. Mol. Sci.2019208181110.3390/ijms20081811 31013709
    [Google Scholar]
  35. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  36. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  37. BonniciL. SuleimanS. Schembri-WismayerP. CassarA. Targeting signalling pathways in chronic wound healing.Int. J. Mol. Sci.20232515010.3390/ijms25010050 38203220
    [Google Scholar]
  38. SwobodaL. HeldJ. Impaired wound healing in diabetes.J. Wound Care2022311088288510.12968/jowc.2022.31.10.882 36240794
    [Google Scholar]
  39. LoebL. A comparative study of the mechanism of wound healing.J. Med. Res.1920412247281 19972504
    [Google Scholar]
  40. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  41. MacLeodA.S. MansbridgeJ.N. The innate immune system in acute and chronic wounds.Adv. Wound Care201652657810.1089/wound.2014.0608 26862464
    [Google Scholar]
  42. WernerS. KriegT. SmolaH. Keratinocyte-fibroblast interactions in wound healing.J. Invest. Dermatol.20071275998100810.1038/sj.jid.5700786 17435785
    [Google Scholar]
  43. NarwalS. Current therapeutic strategies for chagas disease.Antiinfect. Agents202321111
    [Google Scholar]
  44. RousselleP. MontmassonM. GarnierC. Extracellular matrix contribution to skin wound re-epithelialization.Matrix Biol.201975-76122610.1016/j.matbio.2018.01.002 29330022
    [Google Scholar]
  45. LeoniG. NeumannP-A. SumaginR. DenningT.L. NusratA. Wound repair: Role of immune–epithelial interactions.Mucosal Immunol.20158595996810.1038/mi.2015.63 26174765
    [Google Scholar]
  46. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  47. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.3009337
    [Google Scholar]
  48. TangQ. XueN. DingX. TsaiK.H.Y. HewJ.J. JiangR. HuangR. ChengX. DingX. Yee ChengY. ChenJ. WangY. Role of wound microbiome, strategies of microbiota delivery system and clinical management.Adv. Drug Deliv. Rev.202319211467110.1016/j.addr.2022.114671 36538989
    [Google Scholar]
  49. CanessoM.C.C. VieiraA.T. CastroT.B.R. SchirmerB.G.A. CisalpinoD. MartinsF.S. RachidM.A. NicoliJ.R. TeixeiraM.M. BarcelosL.S. Skin wound healing is accelerated and scarless in the absence of commensal microbiota.J. Immunol.2014193105171518010.4049/jimmunol.1400625 25326026
    [Google Scholar]
  50. DhankarS. MujwarS. GargN. ChauhanS. SharmaP. Kumar SharmaS. KamalM.A. RaniD.N. KumarS. SainiM. Artificial Intelligence in The Management of Neurodegenerative Disorders.CNS Neurol. Disord. Drug Targets202323110 37861051
    [Google Scholar]
  51. KarygianniL. RenZ. KooH. ThurnheerT. Biofilm matrixome: extracellular components in structured microbial communities.Trends Microbiol.202028866868110.1016/j.tim.2020.03.016 32663461
    [Google Scholar]
  52. GirodS. ZahmJ.M. PlotkowskiC. BeckG. PuchelleE. Role of the physiochemical properties of mucus in the protection of the respiratory epithelium.Eur. Respir. J.19925447748710.1183/09031936.93.05040477 1563506
    [Google Scholar]
  53. Font-JiménezI. Llaurado-SerraM. Roig-GarciaM. De los Mozos-PerezB. Acebedo-UrdialesS. Retrospective study of the evolution of the incidence of non-traumatic lower-extremity amputations (2007–2013) and risk factors of reamputation.Prim. Care Diabetes201610643444110.1016/j.pcd.2016.04.001 27184825
    [Google Scholar]
  54. AhmedK. UsmanJ. AbidM. Frequency of Lower Extremity Amputations in patients with Diabetics Foot Ulcers.Insulin20179246
    [Google Scholar]
  55. DienerC. Reyes-EscogidoM.L. Jimenez-CejaL.M. MatusM. Gomez-NavarroC.M. ChuN.D. ZhongV. TejeroM.E. AlmE. Resendis-AntonioO. Guardado-MendozaR. Progressive shifts in the gut microbiome reflect prediabetes and diabetes development in a treatment-naive Mexican cohort.Front. Endocrinol.20211160232610.3389/fendo.2020.602326 33488518
    [Google Scholar]
  56. NickelK. Differences in the skin microbiome and in suction blister fluids between individuals with diabetes mellitus type II and healthy individuals.HannoverGottfried Wilhelm Leibniz Universität2021X-7110.15488/11501
    [Google Scholar]
  57. PatelB.K. PatelK.H. HuangR.Y. LeeC.N. MoochhalaS.M. The gut-skin microbiota axis and its role in diabetic wound healing—a review based on current literature.Int. J. Mol. Sci.2022234237510.3390/ijms23042375 35216488
    [Google Scholar]
  58. LavigneJ.P. SottoA. Dunyach-RemyC. LipskyB.A. New molecular techniques to study the skin microbiota of diabetic foot ulcers.Adv. Wound Care201541384910.1089/wound.2014.0532 25566413
    [Google Scholar]
  59. Tomic-CanicM. BurgessJ.L. O’NeillK.E. StrboN. PastarI. Skin microbiota and its interplay with wound healing.Am. J. Clin. Dermatol.202021S1Suppl. 1364310.1007/s40257‑020‑00536‑w 32914215
    [Google Scholar]
  60. BowlerP.G. DuerdenB.I. ArmstrongD.G. Wound microbiology and associated approaches to wound management.Clin. Microbiol. Rev.200114224426910.1128/CMR.14.2.244‑269.2001 11292638
    [Google Scholar]
  61. DragoF. GariazzoL. CioniM. TraveI. ParodiA. The microbiome and its relevance in complex wounds.Eur. J. Dermatol.201929161310.1684/ejd.2018.3486 30670371
    [Google Scholar]
  62. AmmonsM.C.B. MorrisseyK. TripetB.P. Van LeuvenJ.T. HanA. LazarusG.S. ZenilmanJ.M. StewartP.S. JamesG.A. CopiéV. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.PLoS One2015105e012673510.1371/journal.pone.0126735 25978400
    [Google Scholar]
  63. FazliM. BjarnsholtT. Kirketerp-MøllerK. JørgensenB. AndersenA.S. KrogfeltK.A. GivskovM. Tolker-NielsenT. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds.J. Clin. Microbiol.200947124084408910.1128/JCM.01395‑09 19812273
    [Google Scholar]
  64. KalanL.R. Strain-and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy.Cell Host Microbe201925564165510.1016/j.chom.2019.03.006
    [Google Scholar]
  65. LalucatJ. MuletM. GomilaM. García-ValdésE. Genomics in bacterial taxonomy: impact on the genus Pseudomonas.Genes202011213910.3390/genes11020139 32013079
    [Google Scholar]
  66. ChenY.E. FischbachM.A. BelkaidY. Skin microbiota–host interactions.Nature2018553768942743610.1038/nature25177 29364286
    [Google Scholar]
  67. NakamuraY. Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein.Immunity20123718595
    [Google Scholar]
  68. BartlettA.H. FosterT.J. HayashidaA. ParkP.W. α-toxin facilitates the generation of CXC chemokine gradients and stimulates neutrophil homing in Staphylococcus aureus pneumonia.J. Infect. Dis.2008198101529153510.1086/592758 18823272
    [Google Scholar]
  69. MaheswaryT. NurulA.A. FauziM.B. The insights of microbes’ roles in wound healing: A comprehensive review.Pharmaceutics202113798110.3390/pharmaceutics13070981 34209654
    [Google Scholar]
  70. SandovalC. RíosG. SepúlvedaN. SalvoJ. Souza-MelloV. FaríasJ. Effectiveness of copper nanoparticles in wound healing process using in vivo and in vitro studies: A systematic review.Pharmaceutics2022149183810.3390/pharmaceutics14091838 36145586
    [Google Scholar]
  71. TauchA. KaiserO. HainT. GoesmannA. WeisshaarB. AlbersmeierA. BekelT. BischoffN. BruneI. ChakrabortyT. KalinowskiJ. MeyerF. RuppO. SchneikerS. ViehoeverP. PühlerA. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.J. Bacteriol.2005187134671468210.1128/JB.187.13.4671‑4682.2005 15968079
    [Google Scholar]
  72. Al-AttwaniJ.H. The effect of probiotics on bacterial human skin pathogens.Microorganisms2014122234
    [Google Scholar]
  73. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.20108962363310.1038/nrmicro2415 20676145
    [Google Scholar]
  74. DombachJ.L. QuintanaJ.L. DetweilerC.S. Staphylococcal bacterial persister cells, biofilms, and intracellular infection are disrupted by JD1, a membrane-damaging small molecule.MBio2021125e018012110.1128/mBio.01801‑21
    [Google Scholar]
  75. KumarA. AlamA. RaniM. EhteshamN.Z. HasnainS.E. Biofilms: Survival and defense strategy for pathogens.Int. J. Med. Microbiol.2017307848148910.1016/j.ijmm.2017.09.016 28950999
    [Google Scholar]
  76. MoserC. JensenP.Ø. ThomsenK. KolpenM. RybtkeM. LaulandA.S. TrøstrupH. Tolker-NielsenT. Immune responses to Pseudomonas aeruginosa biofilm infections.Front. Immunol.20211262559710.3389/fimmu.2021.625597 33692800
    [Google Scholar]
  77. BarkerJ.C. KhansaI. GordilloG.M. A formidable foe is sabotaging your results: what you should know about biofilms and wound healing.Plast. Reconstr. Surg.201713951184e1194e10.1097/PRS.0000000000003325 28445380
    [Google Scholar]
  78. PercivalS.L. VuottoC. DonelliG. LipskyB.A. Biofilms and wounds: An identification algorithm and potential treatment options.Adv. Wound Care20154738939710.1089/wound.2014.0574 26155381
    [Google Scholar]
  79. MaloneM. BjarnsholtT. McBainA.J. JamesG.A. StoodleyP. LeaperD. TachiM. SchultzG. SwansonT. WolcottR.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data.J. Wound Care2017261202510.12968/jowc.2017.26.1.20 28103163
    [Google Scholar]
  80. JohaniK. MaloneM. JensenS.O. DicksonH.G. GosbellI.B. HuH. YangQ. SchultzG. VickeryK. Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo.J. Antimicrob. Chemother.201873249450210.1093/jac/dkx391 29165561
    [Google Scholar]
  81. Guzmán-SotoI. McTiernanC. Gonzalez-GomezM. RossA. GuptaK. SuuronenE.J. MahT.F. GriffithM. AlarconE.I. Mimicking biofilm formation and development: Recent progress inin vitro and in vivo biofilm models.iScience202124510244310.1016/j.isci.2021.102443 34013169
    [Google Scholar]
  82. SánchezB. DelgadoS. Blanco-MíguezA. LourençoA. GueimondeM. MargollesA. Probiotics, gut microbiota, and their influence on host health and disease.Mol. Nutr. Food Res.2017611160024010.1002/mnfr.201600240 27500859
    [Google Scholar]
  83. TerpouA. PapadakiA. LappaI. KachrimanidouV. BosneaL. KopsahelisN. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value.Nutrients2019117159110.3390/nu11071591 31337060
    [Google Scholar]
  84. KirpichI.A. McClainC.J. Probiotics in the treatment of the liver diseases.J. Am. Coll. Nutr.2012311142310.1080/07315724.2012.10720004 22661622
    [Google Scholar]
  85. WilsonB. WhelanK. Prebiotic inulin‐type fructans and galacto‐oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders.J. Gastroenterol. Hepatol.201732S1Suppl. 1646810.1111/jgh.13700 28244671
    [Google Scholar]
  86. SinghD.P. SinghJ. BoparaiR.K. ZhuJ. MantriS. KhareP. KhardoriR. KondepudiK.K. ChopraK. BishnoiM. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice.Pharmacol. Res.201712310311310.1016/j.phrs.2017.06.015 28668709
    [Google Scholar]
  87. MillerC.N. CarvilleK. NewallN. KappS. LewinG. KarimiL. SantamariaN. Assessing bacterial burden in wounds: comparing clinical observation and wound swabs.Int. Wound J.201181455510.1111/j.1742‑481X.2010.00747.x 21078131
    [Google Scholar]
  88. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. KumarS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211110.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  89. MohseniS. BayaniM. BahmaniF. Tajabadi-EbrahimiM. BayaniM.A. JafariP. AsemiZ. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double‐blind, placebo‐controlled trial.Diabetes Metab. Res. Rev.2018343e297010.1002/dmrr.2970 29193662
    [Google Scholar]
  90. RazzaghiR. PourbagheriH. Momen-HeraviM. BahmaniF. ShadiJ. SoleimaniZ. AsemiZ. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial.J. Diabetes Complications201731476677210.1016/j.jdiacomp.2016.06.017 27363929
    [Google Scholar]
  91. MohtashamiM. MohamadiM. Azimi-NezhadM. SaeidiJ. NiaF.F. GhasemiA. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors.Biotechnol. Appl. Biochem.202168614211431 33125785
    [Google Scholar]
  92. CamposL.F. TagliariE. CasagrandeT.A.C. NoronhaL. CamposA.C.L. MatiasJ.E.F. Effects of probiotics supplementation on skin wound healing in diabetic rats.Arq. Bras. Cir. Dig.2020331e149810.1590/0102‑672020190001e1498 32667528
    [Google Scholar]
  93. KadamS. ShaiS. ShahaneA. KaushikK.S. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the ‘chink in the armor’?Biomedicines2019723510.3390/biomedicines7020035 31052335
    [Google Scholar]
  94. BernardesN. SerucaR. ChakrabartyA.M. FialhoA.M. Microbial-based therapy of cancer: Current progress and future prospects.Bioeng. Bugs20101317819010.4161/bbug.1.3.10903 21326924
    [Google Scholar]
  95. RoslanM.A.M. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment.NPJ Biofilms Microbiomes2023919510.1038/s41522‑023‑00463‑8
    [Google Scholar]
  96. WangG. LiuJ. XiaY. AiL. Probiotics-based interventions for diabetes mellitus: A review.Food Biosci.20214310117210.1016/j.fbio.2021.101172
    [Google Scholar]
  97. Liévin-Le MoalV. ServinA.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.Clin. Microbiol. Rev.201427216719910.1128/CMR.00080‑13 24696432
    [Google Scholar]
  98. SkowronK. Bauza-KaszewskaJ. KraszewskaZ. Wiktorczyk-KapischkeN. Grudlewska-BudaK. Kwiecińska-PirógJ. Wałecka-ZacharskaE. RadtkeL. Gospodarek-KomkowskaE. Human skin microbiome: Impact of intrinsic and extrinsic factors on skin microbiota.Microorganisms20219354310.3390/microorganisms9030543 33808031
    [Google Scholar]
  99. AbergK.M. RadekK.A. ChoiE.H. KimD.K. DemerjianM. HupeM. KerbleskiJ. GalloR.L. GanzT. MauroT. FeingoldK.R. EliasP.M. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice.J. Clin. Invest.2007117113339334910.1172/JCI31726 17975669
    [Google Scholar]
  100. SinhaA. SagarS. M, M.; Jabez Osborne, W. Probiotic bacteria in wound healing; an in-vivo study.Iran. J. Biotechnol.2019174e2188 32671124
    [Google Scholar]
  101. Heydari NasrabadiM. Tajabadi EbrahimiM. Dehghan BanadakiS. Study of cutaneous wound healing in rats treated with Lactobacillus plantarum on days 1, 3, 7, 14 and 21.Afr. J. Pharm. Pharmacol.20115212395240110.5897/AJPP11.568
    [Google Scholar]
  102. KaisthaS.D. DeshpandeN. Traditional probiotics, next-generation probiotics and engineered live biotherapeutic products in chronic wound healing.Wound Healing Research, Current Trends and Future DirectionsSpringerLink202124728410.1007/978‑981‑16‑2677‑7_8
    [Google Scholar]
  103. VågesjöE. ÖhnstedtE. MortierA. LoftonH. HussF. ProostP. RoosS. PhillipsonM. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria.Proc. Natl. Acad. Sci201811581895190010.1073/pnas.1716580115 29432190
    [Google Scholar]
  104. MagneF. GottelandM. GauthierL. ZazuetaA. PesoaS. NavarreteP. BalamuruganR. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?Nutrients2020125147410.3390/nu12051474 32438689
    [Google Scholar]
  105. BailénM. BressaC. Martínez-LópezS. González-SolteroR. Montalvo LomincharM.G. San JuanC. LarrosaM. Microbiota features associated with a high-fat/low-fiber diet in healthy adults.Front. Nutr.2020758360810.3389/fnut.2020.583608 33392236
    [Google Scholar]
  106. Al OthaimA. Impact of Different Plant-Based Foods Consumption on the Composition and Diversity of Gut Microbiota; University of Arkansas.2021Available from: https://scholarworks.uark.edu/etd/3992
    [Google Scholar]
  107. ManachC. MilenkovicD. Van de WieleT. Rodriguez-MateosA. de RoosB. Garcia-ConesaM.T. LandbergR. GibneyE.R. HeinonenM. Tomás-BarberánF. MorandC. Addressing the inter‐individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction.Mol. Nutr. Food Res.2017616160055710.1002/mnfr.201600557 27687784
    [Google Scholar]
  108. ErejuwaO. SulaimanS. WahabM. Modulation of gut microbiota in the management of metabolic disorders: The prospects and challenges.Int. J. Mol. Sci.20141534158418810.3390/ijms15034158 24608927
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010307032240530071003
Loading
/content/journals/cpb/10.2174/0113892010307032240530071003
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bacteria; diabetic; diabetic foot; healing; Microbiome; ulcer; wound
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test