Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The trend in the incidence rate of bone fractures has been upward and as a result, the burden associated with orthopedic fractures has increased significantly. Titanium (Ti) implants are considered a preferred method of managing long bone fractures. However, no benefit comes without some downside, and using Ti implants is associated with several complications. In this respect, it was observed that in bones, Ti can disrupt the bone healing process by disturbing the balance of osteoclast and osteoblast activation and also increasing the production of inflammatory cytokines. Melatonin is a widely-acting molecule that possesses strong anti-oxidant features. This molecule reinforces mineral density and improves bone formation processes. In this review, we focused on the protective effect of melatonin in mitigating the Ti-related complications.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010300967240610111644
2025-06-25
2025-09-08
Loading full text...

Full text loading...

References

  1. WuA-M. BisignanoC. JamesS.L. AbadyG.G. AbediA. Abu-GharbiehE. AlhassanR.K. AlipourV. ArablooJ. AsaadM. AsmareW.N. AwedewA.F. BanachM. BanerjeeS.K. BijaniA. BirhanuT.T.M. BollaS.R. CámeraL.A. ChangJ-C. ChoD.Y. ChungM.T. CoutoR.A.S. DaiX. DandonaL. DandonaR. FarzadfarF. FilipI. FischerF. FomenkovA.A. GillT.K. GuptaB. HaagsmaJ.A. MirzaianH.A. HamidiS. HayS.I. IlicI.M. IlicM.D. IversR.Q. JürissonM. KalhorR. KanchanT. KavetskyyT. KhalilovR. KhanE.A. KhanM. KneibC.J. KrishnamoorthyV. KumarG.A. KumarN. LallooR. LasradoS. LimS.S. LiuZ. ManafiA. ManafiN. MenezesR.G. MeretojaT.J. MiazgowskiB. MillerT.R. MohammadY. Mohammadian-HafshejaniA. MokdadA.H. MurrayC.J.L. NaderiM. NaimzadaM.D. NayakV.C. NguyenC.T. NikbakhshR. OlagunjuA.T. OtstavnovN. OtstavnovS.S. PadubidriJ.R. PereiraJ. PhamH.Q. PinheiroM. PolinderS. PourchamaniH. RabieeN. RadfarA. RahmanM.H.U. RawafD.L. RawafS. SaebM.R. SamyA.M. Sanchez RieraL. SchwebelD.C. ShahabiS. ShaikhM.A. SoheiliA. SeisdedosT.R. PaloneT.M.R. TranB.X. TravillianR.S. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. ZhangZ-J. VosT. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: A systematic analysis from the global burden of disease study 2019.Lancet Healthy Longev.202129e580e59210.1016/S2666‑7568(21)00172‑0 34723233
    [Google Scholar]
  2. KimT. SeeC.W. LiX. ZhuD. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective.Eng. Regen.2020161810.1016/j.engreg.2020.05.003
    [Google Scholar]
  3. FragomenA.T. RozbruchS.R. The mechanics of external fixation.HSS J.200731132910.1007/s11420‑006‑9025‑0 18751766
    [Google Scholar]
  4. BarberC.C. BurnhamM. OjameruayeO. McKeeM.D. A systematic review of the use of titanium versus stainless steel implants for fracture fixation.OTA Internat202143e13810.1097/OI9.0000000000000138
    [Google Scholar]
  5. LaurentC. VerwaerdeJ. BöhmeB. PonthotJ.P. BalligandM. Effect of orthopedic implants on long bone properties: A combined experimental and numerical approach.Comput. Methods Biomech. Biomed. Engin.201720S1S113S11410.1080/10255842.2017.1382887
    [Google Scholar]
  6. SansoneV. PaganiD. MelatoM. The effects on bone cells of metal ions released from orthopaedic implants. A review.Clin. Cases Miner. Bone Metab.2013101344010.11138/ccmbm/2013.10.1.034 23858309
    [Google Scholar]
  7. EliazN. Corrosion of metallic biomaterials: A review.Materials201912340710.3390/ma12030407 30696087
    [Google Scholar]
  8. ShalawiA.F.D. AriffM.A.H. JungD.W. Mohd AriffinM.K.A. Seng KimC.L. BrabazonD. OsaimiA.M.O. Biomaterials as implants in the orthopedic field for regenerative medicine: Metal versus synthetic polymers.Polymers20231512260110.3390/polym15122601 37376247
    [Google Scholar]
  9. BandopadhyayS. BandyopadhyayN. AhmedS. YadavV. TekadeR.K. Current research perspectives of orthopedic implant materials.Biomaterials and Bionanotechnology. TekadeR.K. Academic Press201933737410.1016/B978‑0‑12‑814427‑5.00010‑X
    [Google Scholar]
  10. PerrenS.M. RegazzoniP. FernandezA.A. How to choose between the implant materials steel and titanium in orthopedic trauma surgery: Part 2 - biological aspects.Acta Chir. Orthop. Traumatol. Cech.2017842859010.55095/achot2017/012 28809623
    [Google Scholar]
  11. KuzykP.R.T. SchemitschE.H. The basic science of peri-implant bone healing.Indian J. Orthop.201145210811510.4103/0019‑5413.77129 21430864
    [Google Scholar]
  12. KligmanS. RenZ. ChungC.H. PerilloM.A. ChangY.C. KooH. ZhengZ. LiC. The impact of dental implant surface modifications on osseointegration and biofilm formation.J. Clin. Med.2021108164110.3390/jcm10081641 33921531
    [Google Scholar]
  13. ParithimarkalaignanS. PadmanabhanT.V. Osseointegration: An update.J. Indian Prosthodont. Soc.20131312610.1007/s13191‑013‑0252‑z 24431699
    [Google Scholar]
  14. SarrafM. GhomiR.E. AlipourS. RamakrishnaS. SukimanL.N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications.Biodes. Manuf.20225237139510.1007/s42242‑021‑00170‑3 34721937
    [Google Scholar]
  15. MehrzadiS. KarimiM.Y. FatemiA. ReiterR.J. HosseinzadehA. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: Beneficial effects of melatonin.Pharmacol. Ther.202122410782510.1016/j.pharmthera.2021.107825 33662449
    [Google Scholar]
  16. HematiK. PourhanifehM.H. DehdashtianE. FatemiI. MehrzadiS. ReiterR.J. HosseinzadehA. Melatonin and morphine: Potential beneficial effects of co-use.Fundam. Clin. Pharmacol.2021351253910.1111/fcp.12566 32415694
    [Google Scholar]
  17. ReiterR.J. MayoJ.C. TanD.X. SainzR.M. JimenezA.M. QinL. Melatonin as an antioxidant: Under promises but over delivers.J. Pineal Res.201661325327810.1111/jpi.12360 27500468
    [Google Scholar]
  18. SheibaniM. ShayanM. KhalilzadehM. GhasemiM. DehpourA.R. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy.Neuropeptides20239910233510.1016/j.npep.2023.102335 37003137
    [Google Scholar]
  19. PourhanifehM.H. MehrzadiS. KamaliM. HosseinzadehA. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways.Eur. J. Pharmacol.202088617347110.1016/j.ejphar.2020.173471 32877658
    [Google Scholar]
  20. PourhanifehM.H. MehrzadiS. HosseinzadehA. Melatonin and regulation of miRNAs: Novel targeted therapy for cancerous and noncancerous disease.Epigenomics2021131658110.2217/epi‑2020‑0241 33350862
    [Google Scholar]
  21. PourhanifehM.H. DehdashtianE. HosseinzadehA. SezavarS.H. MehrzadiS. Clinical application of melatonin in the treatment of cardiovascular diseases: Current evidence and new insights into the cardioprotective and cardiotherapeutic properties.Cardiovasc. Drugs Ther.20202020125 32926271
    [Google Scholar]
  22. HosseinzadehA. BagherifardA. KooshaF. AmiriS. BehnaghK.A. ReiterR.J. MehrzadiS. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19.Life Sci.202230712086610.1016/j.lfs.2022.120866 35944663
    [Google Scholar]
  23. PourhanifehM.H. HosseinzadehA. JuybariK.B. MehrzadiS. Correction to: Melatonin and urological cancers: A new therapeutic approach.Cancer Cell Int.202020146610.1186/s12935‑020‑01564‑6 33005099
    [Google Scholar]
  24. LuK.H. LinR.C. YangJ.S. YangW.E. ReiterR.J. YangS.F. Molecular and cellular mechanisms of melatonin in osteosarcoma.Cells2019812161810.3390/cells8121618 31842295
    [Google Scholar]
  25. BarceloS.E. MediavillaM. TanD. ReiterR. Scientific basis for the potential use of melatonin in bone diseases: Osteoporosis and adolescent idiopathic scoliosis.J. Osteoporos.2010201083023110.4061/2010/830231
    [Google Scholar]
  26. LuX. YuS. ChenG. ZhengW. PengJ. HuangX. ChenL. Insight into the roles of melatonin in bone tissue and bone related diseases (Review).Int. J. Mol. Med.20214758210.3892/ijmm.2021.4915 33760138
    [Google Scholar]
  27. BagherifardA. HosseinzadehA. KooshaF. SheibaniM. BehnaghK.A. ReiterR.J. MehrzadiS. Melatonin and bone-related diseases: An updated mechanistic overview of current evidence and future prospects.Osteoporos. Int.202334101677170110.1007/s00198‑023‑06836‑1 37393580
    [Google Scholar]
  28. MillanR.E. SalasJ.E. DevesaE.A. LópezL.J. Evaluation of bone gain and complication rates after guided bone regeneration with titanium foils: A systematic review.Materials20201323534610.3390/ma13235346 33255825
    [Google Scholar]
  29. ZhuS. ChenY. LinF. ChenZ. JiangX. ZhangJ. WangJ. Complications following titanium cranioplasty compared with nontitanium implants cranioplasty: A systematic review and meta-analysis.J. Clin. Neurosci.202184667410.1016/j.jocn.2020.12.009 33485602
    [Google Scholar]
  30. ReiterR.J. SharmaR. CorralR.S. de ZuccariC.D.A.P. de ChuffaA.L.G. Melatonin: A mitochondrial resident with a diverse skill set.Life Sci.202230112061210.1016/j.lfs.2022.120612 35523285
    [Google Scholar]
  31. FaveroG. MorettiE. BonominiF. ReiterR.J. RodellaL.F. RezzaniR. Promising antineoplastic actions of melatonin.Front. Pharmacol.20189108610.3389/fphar.2018.01086 30386235
    [Google Scholar]
  32. ZisapelN. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation.Br. J. Pharmacol.2018175163190319910.1111/bph.14116 29318587
    [Google Scholar]
  33. HosseinzadehA. AshtiyaniC.S. KooshaF. AmiriS. BehnaghK.A. MehrzadiS. Melatonin: Therapeutic potential for stroke and other neurodegenerative diseases.Melatonin Research20236119213410.32794/mr112500144
    [Google Scholar]
  34. JuybariK.B. HosseinzadehA. GhaznaviH. KamaliM. SedaghatA. MehrzadiS. NaseripourM. Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells.Curr. Pharm. Des.201925283057307310.2174/1381612825666190829151314 31465274
    [Google Scholar]
  35. HosseinzadehA. KamravaS.K. MooreB.C.J. ReiterR.J. GhaznaviH. KamaliM. MehrzadiS. Molecular aspects of melatonin treatment in tinnitus: A review.Curr. Drug Targets201920111112112810.2174/1389450120666190319162147 30892162
    [Google Scholar]
  36. PintorJ.J. Melatonin stimulates extracellular matrix formation in human articular cartilage chondrocytes.Melatonin Research20192110611410.32794/mr11250014
    [Google Scholar]
  37. KoyamaH. NakadeO. TakadaY. KakuT. LauK.H.W. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation.J. Bone Miner. Res.20021771219122910.1359/jbmr.2002.17.7.1219 12096835
    [Google Scholar]
  38. CheungK.M.C. LuD.S. PoonA.M.S. WangT. LukK.D.K. LeongJ.C.Y. Effect of melatonin suppression on scoliosis development in chickens by either constant light or surgical pinealectomy.Spine200328171941194410.1097/01.BRS.0000083140.80750.93 12973138
    [Google Scholar]
  39. WaiM. JunW. YeeY. HoW. BunN. PingL. ManL. WahN. ChiuW. YongQ. YiuC. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis.Int. J. Mol. Sci.2014159164841649910.3390/ijms150916484 25238413
    [Google Scholar]
  40. KennawayD. Cause of idiopathic scoliosis.Spine200025192552255310.1097/00007632‑200010010‑00026 11013515
    [Google Scholar]
  41. HistingT. AntonC. ScheuerC. GarciaP. HolsteinJ.H. KleinM. MatthysR. PohlemannT. MengerM.D. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling.J. Surg. Res.20121731839010.1016/j.jss.2010.08.036 20888595
    [Google Scholar]
  42. MunmunF. EnderbyW.P.A. Melatonin effects on bone: Implications for use as a therapy for managing bone loss.J. Pineal Res.2021711e1274910.1111/jpi.12749 34085304
    [Google Scholar]
  43. MalakotiF. ZareF. ZarezadehR. Raei SadighA. SadeghpourA. MajidiniaM. YousefiB. AlemiF. The role of melatonin in bone regeneration: A review of involved signaling pathways.Biochimie2022202567010.1016/j.biochi.2022.08.008 36007758
    [Google Scholar]
  44. LiuP.I. ChangA.C. LaiJ.L. LinT.H. TsaiC.H. ChenP.C. JiangY.J. LinL.W. HuangW.C. YangS.F. TangC.H. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: Implications for bone metastases.Oncogene20214081503151510.1038/s41388‑020‑01613‑4 33452455
    [Google Scholar]
  45. AmstrupA.K. SikjaerT. MosekildeL. RejnmarkL. The effect of melatonin treatment on postural stability, muscle strength, and quality of life and sleep in postmenopausal women: A randomized controlled trial.Nutr. J.201514110210.1186/s12937‑015‑0093‑1 26424587
    [Google Scholar]
  46. KotlarczykM.P. LassilaH.C. O’NeilC.K. D’AmicoF. EnderbyL.T. EnderbyW.P.A. BalkJ.L. Melatonin osteoporosis prevention study (MOPS): A randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women.J. Pineal Res.201252441442610.1111/j.1600‑079X.2011.00956.x 22220591
    [Google Scholar]
  47. MariaS. SamsonrajR.M. MunmunF. GlasJ. SilvestrosM. KotlarczykM.P. RylandsR. DudakovicA. van WijnenA.J. EnderbyL.T. LassilaH. DoddaB. DavisV.L. BalkJ. BurowM. BunnellB.A. EnderbyW.P.A. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT 2 melatonin receptors, MEK 1/2, and MEK 5 in melatonin-mediated osteoblastogenesis.J. Pineal Res.2018643e1246510.1111/jpi.12465 29285799
    [Google Scholar]
  48. LassilaH. JohnsN. O’NeilC. JohnsJ. BalkJ. EnderbyW.P. Alternative options to manage menopausal symptoms with a focus on melatonin and osteoporosis.Clin. Pharmacol. Biopharm.20143111510.4172/2167‑065X.1000115
    [Google Scholar]
  49. WangY. YangZ. Effects of melatonin combined with Cis-platinum or methotrexate on the proliferation of osteosarcoma cell line SaOS-2.Acta Acad. Med. Sin.2015372215220
    [Google Scholar]
  50. SantosG.G. MartinV. BlancoR.J. HerreraF. ZapicoC.S. SánchezS.A.M. AntolínI. RodríguezC. Fas/Fas ligand regulation mediates cell death in human Ewing’s sarcoma cells treated with melatonin.Br. J. Cancer201210671288129610.1038/bjc.2012.66 22382690
    [Google Scholar]
  51. LuK.H. SuS.C. LinC.W. HsiehY.H. LinY.C. ChienM.H. ReiterR.J. YangS.F. Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway.J. Pineal Res.2018653e1250710.1111/jpi.12507 29766567
    [Google Scholar]
  52. PermuyM. PeñaL.M. CantalapiedraG.A. MuñozF. Melatonin: A review of its potential functions and effects on dental diseases.Int. J. Mol. Sci.201718486510.3390/ijms18040865 28422058
    [Google Scholar]
  53. CutandoA. MorenoG.G. AranaC. MuñozF. PeñaL.M. StephensonJ. ReiterR.J. Melatonin stimulates osteointegration of dental implants.J. Pineal Res.200845217417910.1111/j.1600‑079X.2008.00573.x 18298460
    [Google Scholar]
  54. Iwai-YoshidaM. ShibataY. Wurihan SuzukiD. FujisawaN. TanimotoY. KamijoR. MakiK. MiyazakiT. Antioxidant and osteogenic properties of anodically oxidized titanium.J. Mech. Behav. Biomed. Mater.20121323023610.1016/j.jmbbm.2012.01.016 22944262
    [Google Scholar]
  55. CoelhoP.G. GranjeiroJ.M. RomanosG.E. SuzukiM. SilvaN.R.F. CardaropoliG. ThompsonV.P. LemonsJ.E. Basic research methods and current trends of dental implant surfaces.J. Biomed. Mater. Res. B Appl. Biomater.200988B257959610.1002/jbm.b.31264 18973274
    [Google Scholar]
  56. ValverdeL.N. FraileF.J. RamírezJ.M. de SousaM.B. HernándezH.S. ValverdeL.A. Bioactive surfaces vs. conventional surfaces in titanium dental implants: A comparative systematic review.J. Clin. Med.202097204710.3390/jcm9072047 32610687
    [Google Scholar]
  57. RothJ.A. KimB.G. LinW.L. ChoM.I. Melatonin promotes osteoblast differentiation and bone formation.J. Biol. Chem.199927431220412204710.1074/jbc.274.31.22041 10419530
    [Google Scholar]
  58. López-ValverdeN. Pardal-PeláezB. López-ValverdeA. RamírezJ.M. Role of melatonin in bone remodeling around titanium dental implants: Meta-analysis.Coatings202111327110.3390/coatings11030271
    [Google Scholar]
  59. FernándezR.M.P. GuiradoC.J.L. de-ValJ.E.M.S. RuizD.R.A. NegriB. ZamoraP.G. PeñarrochaD. BaronaC. GraneroJ.M. BañosA.M. RETRACTED ARTICLE:Melatonin promotes angiogenesis during repair of bone defects: A radiological and histomorphometric study in rabbit tibiae.Clin. Oral Investig.201317114715810.1007/s00784‑012‑0684‑6 22323056
    [Google Scholar]
  60. OktemG. UsluS. VatanseverS.H. AktugH. YurtsevenM.E. UysalA. Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat.Surg. Radiol. Anat.200628215716210.1007/s00276‑005‑0065‑9 16362227
    [Google Scholar]
  61. MuñozF. PeñaL.M. MiñoN. MorenoG.G. GuardiaJ. CutandoA. Topical application of melatonin and growth hormone accelerates bone healing around dental implants in dogs.Clin. Implant Dent. Relat. Res.201214222623510.1111/j.1708‑8208.2009.00242.x 19793331
    [Google Scholar]
  62. TresguerresI.F. ClementeC. BlancoL. KhraisatA. TamimiF. TresguerresJ.A.F. Effects of local melatonin application on implant osseointegration.Clin. Implant Dent. Relat. Res.201214339539910.1111/j.1708‑8208.2010.00271.x 20455901
    [Google Scholar]
  63. GuiradoC.J.L. MorenoG.G. BaroneA. CutandoA. BañosA.M. ChivaF. MaríL.L. GuardiaJ. Retracted: Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants.J. Pineal Res.200947216417210.1111/j.1600‑079X.2009.00696.x 19570131
    [Google Scholar]
  64. GuiradoC.J.L. SalvatierraA.A. AlbiolG.J. RuizD.R.A. SanchezM.J.E. NietoS.M. Zirconia with laser-modified microgrooved surface vs. titanium implants covered with melatonin stimulates bone formation. Experimental study in tibia rabbits.Clin. Oral Implants Res.201526121421142910.1111/clr.12472 25155996
    [Google Scholar]
  65. TakechiM. TateharaS. SatomuraK. FujisawaK. NagayamaM. Effect of FGF-2 and melatonin on implant bone healing: A histomorphometric study.J. Mater. Sci. Mater. Med.20081982949295210.1007/s10856‑008‑3416‑3 18360797
    [Google Scholar]
  66. AlbrektssonT. ChrcanovicB. JacobssonM. WennerbergA. Osseointegration of implants: A biological and clinical overview.JSM Dent. Surg.201723
    [Google Scholar]
  67. BheringC.L.B. MarquesI.S.V. TakahashiJ.M.F.K. BarãoV.A.R. ConsaniR.L.X. MesquitaM.F. The effect of casting and masticatory simulation on strain and misfit of implant-supported metal frameworks.Mater. Sci. Eng. C20166274675110.1016/j.msec.2016.02.035
    [Google Scholar]
  68. YamazakiS-i. OchiM. HiroseY. NakanishiY. NakadeO. Melatonin enhances peri-implant osteogenesis in the femur of rabbits.J. Oromax Biomechem.2008143438
    [Google Scholar]
  69. TaoZ.S. ZhouW.S. QiangZ. TuK. HuangZ.L. XuH.M. SunT. LvY.X. CuiW. YangL. Intermittent administration of human parathyroid hormone (1–34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur.J. Biomater. Appl.201630795296010.1177/0885328215610898 26482573
    [Google Scholar]
  70. TaoZ.S. ZhouW.S. HeX.W. LiuW. BaiB.L. ZhouQ. HuangZ.L. TuK. LiH. SunT. LvY.X. CuiW. YangL. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats.Mater. Sci. Eng. C20166222623210.1016/j.msec.2016.01.034 26952418
    [Google Scholar]
  71. HaraT. HayashiK. NakashimaY. KanemaruT. IwamotoY. The effect of hydroxyapatite coating on the bonding of bone to titanium implants in the femora of ovariectomised rats.J. Bone Joint Surg. Br.199981-B470570910.1302/0301‑620X.81B4.0810705 10463750
    [Google Scholar]
  72. TaoZ.S. ZhouW.S. TuK. HuangZ.L. ZhouQ. SunT. LvY.X. CuiW. YangL. The effects of combined human parathyroid hormone (1–34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats.Injury201546112164216910.1016/j.injury.2015.08.034 26404665
    [Google Scholar]
  73. SunT. LiJ. XingH.L. TaoZ.S. YangM. Melatonin improves the osseointegration of hydroxyapatite-coated titanium implants in senile female rats.Z. Gerontol. Geriatr.202053877077710.1007/s00391‑019‑01640‑1 31654128
    [Google Scholar]
  74. LimS.S. KookS.H. BhattaraiG. ChoE.S. SeoY.K. LeeJ.C. Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects.J. Biomed. Mater. Res. A201510392942295110.1002/jbm.a.35439 25727390
    [Google Scholar]
  75. KimY.S. PaikI.Y. RhieY.J. SuhS.H. Integrative physiology: Defined novel metabolic roles of osteocalcin.J. Korean Med. Sci.201025798599110.3346/jkms.2010.25.7.985 20592887
    [Google Scholar]
  76. WangJ. HeM. WangG. FuQ. Organic gallium treatment improves osteoporotic fracture healing through affecting the OPG/RANKL ratio and expression of serum inflammatory cytokines in ovariectomized rats.Biol. Trace Elem. Res.2018183227027910.1007/s12011‑017‑1123‑y 28836172
    [Google Scholar]
  77. LiT. JiangS. LuC. YangW. YangZ. HuW. XinZ. YangY. Melatonin: Another avenue for treating osteoporosis?J. Pineal Res.2019662e1254810.1111/jpi.12548 30597617
    [Google Scholar]
  78. ValverdeL.N. ValverdeL.A. AragonesesJ.M. MartínezM.F. EscuderoG.M.C. RamírezJ.M. Bone density around titanium dental implants coating tested/coated with chitosan or melatonin: An evaluation via microtomography in jaws of beagle dogs.Coatings202111777710.3390/coatings11070777
    [Google Scholar]
  79. JolyJ.C. de LimaA.F.M. da SilvaR.C. Clinical and radiographic evaluation of soft and hard tissue changes around implants: A pilot study.J. Periodontol.20037481097110310.1902/jop.2003.74.8.1097 14514222
    [Google Scholar]
  80. SatomuraK. TobiumeS. TokuyamaR. YamasakiY. KudohK. MaedaE. NagayamaM. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo.J. Pineal Res.200742323123910.1111/j.1600‑079X.2006.00410.x 17349020
    [Google Scholar]
  81. PalinL.P. PoloT.O.B. BatistaF.R.S. FerreiraG. PHS; Garcia, IR, Junior; Rossi, AC Daily melatonin administration improves osseointegration in pinealectomized rats.J. Appl. Oral Sci.201826e2017047010.1590/1678‑7757‑2017‑0470
    [Google Scholar]
  82. CardinaliD.P. LadizeskyM.G. BoggioV. CutreraR.A. MautalenC. Melatonin effects on bone: Experimental facts and clinical perspectives.J. Pineal Res.2003342818710.1034/j.1600‑079X.2003.00028.x 12562498
    [Google Scholar]
  83. KireevR.A. TresguerresA.C.F. CastilloC. SalazarV. AriznavarretaC. VaraE. TresguerresJ.A.F. Effect of exogenous administration of melatonin and growth hormone on pro-antioxidant functions of the liver in aging male rats.J. Pineal Res.2007421647010.1111/j.1600‑079X.2006.00385.x 17198540
    [Google Scholar]
  84. AliT. RahmanS.U. HaoQ. LiW. LiuZ. Ali ShahF. MurtazaI. ZhangZ. YangX. LiuG. LiS. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation.J. Pineal Res.2020692e1266710.1111/jpi.12667 32375205
    [Google Scholar]
  85. PengZ. ZhangW. QiaoJ. HeB. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD.Int. Immunopharmacol.201862232810.1016/j.intimp.2018.06.033 29990691
    [Google Scholar]
  86. CarrascalL. AbadesN.P. AyalaA. CanoM. Role of melatonin in the inflammatory process and its therapeutic potential.Curr. Pharm. Des.201824141563158810.2174/1381612824666180426112832 29701146
    [Google Scholar]
  87. WuX. QiaoS. WangW. ZhangY. ShiJ. ZhangX. GuW. ZhangX. LiY. DingX. WeiJ. GuY. LaiH. Melatonin prevents peri implantitis via suppression of TLR4/NF-κ.B. Acta Biomater.202113432533610.1016/j.actbio.2021.07.017 34271168
    [Google Scholar]
  88. OgawaS. LozachJ. BennerC. PascualG. TangiralaR.K. WestinS. HoffmannA. SubramaniamS. DavidM. RosenfeldM.G. GlassC.K. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors.Cell2005122570772110.1016/j.cell.2005.06.029 16143103
    [Google Scholar]
  89. ŠkrlecI. The influence of dental implants on the circadian clock and the role of melatonin in the oral cavity.Explor. Res. Hypothesis Med.20228214314910.14218/ERHM.2022.00052
    [Google Scholar]
  90. YiM. YinY. SunJ. WangZ. TangQ. YangC. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice.Front. Mol. Biosci.2022996575310.3389/fmolb.2022.965753 36188222
    [Google Scholar]
  91. ZhouM.S. TaoZ.S. Systemic administration with melatonin in the daytime has a better effect on promoting osseointegration of titanium rods in ovariectomized rats.Bone Joint Res.2022111175176210.1302/2046‑3758.1111.BJR‑2022‑0017.R2 36317318
    [Google Scholar]
  92. ShaoJ. LiuS. ZhengX. ChenJ. LiL. ZhuZ. Berberine promotes peri-implant osteogenesis in diabetic rats by ROS -mediated IRS -1 pathway.Biofactors2021471809210.1002/biof.1692 33233028
    [Google Scholar]
  93. WangX. LiangT. ZhuY. QiuJ. QiuX. LianC. GaoB. PengY. LiangA. ZhouH. YangX. LiaoZ. LiY. XuC. SuP. HuangD. Melatonin prevents bone destruction in mice with retinoic acid–induced osteoporosis.Mol. Med.20192514310.1186/s10020‑019‑0107‑0 31462213
    [Google Scholar]
  94. GuardiaJ. MorenoG.G. FerreraM.J. CutandoA. Evaluation of effects of topic melatonin on implant surface at 5 and 8 weeks in Beagle dogs.Clin. Implant Dent. Relat. Res.201113426226810.1111/j.1708‑8208.2009.00211.x 19681939
    [Google Scholar]
  95. HiraiT. Circadian clock and bone biology.J. Oral Biosci./JAOB, Jpn. Assoc. Oral Biol.201759417918310.1016/j.job.2017.06.001
    [Google Scholar]
  96. TakaradaT. XuC. OchiH. NakazatoR. YamadaD. NakamuraS. Bone resorption is regulated by circadian clock in osteoblasts.J. Bone Miner. Res.201732487288110.1002/jbmr.3053
    [Google Scholar]
  97. ZhengL. SeonY.J. MourãoM.A. SchnellS. KimD. HaradaH. PapagerakisS. PapagerakisP. Circadian rhythms regulate amelogenesis.Bone201355115816510.1016/j.bone.2013.02.011 23486183
    [Google Scholar]
  98. QinX. LiQ. ChenW. BaiY. BabanB. MaoJ. The circadian expression of osteogenic factors in periodontal tissue loading mechanical force: New concepts of the personalized orthodontic care.EPMA J.2019101132010.1007/s13167‑019‑0161‑2
    [Google Scholar]
  99. GittensR.A. NavarreteO.R. SchwartzZ. BoyanB.D. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants.Acta Biomater.20141083363337110.1016/j.actbio.2014.03.037 24721613
    [Google Scholar]
  100. SamsaW.E. VasanjiA. MiduraR.J. KondratovR.V. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.Bone20168419420310.1016/j.bone.2016.01.006 26789548
    [Google Scholar]
  101. ZhengL. PapagerakisS. SchnellS.D. HoogerwerfW.A. PapagerakisP. Expression of clock proteins in developing tooth.Gene Expr. Patterns2011113-420220610.1016/j.gep.2010.12.002 21156215
    [Google Scholar]
  102. LuoB. ZhouX. TangQ. YinY. FengG. LiS. ChenL. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism.J. Transl. Med.202119141010.1186/s12967‑021‑03068‑x 34579752
    [Google Scholar]
  103. Ravi KiranS. BammidiN. KumarA.K. KumarP.S. KarnamY. Evaluation of the effect of topical melatonin application on immediately placed dental implants using cone beam computed tomography (CBCT).Cureus2022145e2523310.7759/cureus.25233 35755538
    [Google Scholar]
  104. AntarE KhalifaM HosnyS Determination of the accuracy of Linear anD VoLumetric measurements on cone Beam computed tomography images (in-vitro study).Egypt. Dent. J.2011574)(29172925
    [Google Scholar]
  105. XiaoL. LinJ. ChenR. HuangY. LiuY. BaiJ. GeG. ShiX. ChenY. ShiJ. AiqingL. YangH. GengD. WangZ. Sustained release of melatonin from GelMA liposomes reduced osteoblast apoptosis and improved implant osseointegration in osteoporosis.Oxid. Med. Cell. Longev.2020202012010.1155/2020/6797154 32566094
    [Google Scholar]
  106. DingY. YangH. WangY. ChenJ. JiZ. SunH. Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1ɑ-SOD2-mediated regulation of mitochondrial function.Int. J. Biol. Sci.201713225426410.7150/ijbs.17053 28255277
    [Google Scholar]
  107. HallabN.J. JacobsJ.J. Biologic effects of implant debris.Bull. NYU Hosp. Jt. Dis.2009672182188 19583551
    [Google Scholar]
  108. GoodmanS.B. Wear particles, periprosthetic osteolysis and the immune system.Biomaterials200728345044504810.1016/j.biomaterials.2007.06.035 17645943
    [Google Scholar]
  109. PingZ. HuX. WangL. ShiJ. TaoY. WuX. HouZ. GuoX. ZhangW. YangH. XuY. WangZ. GengD. Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway.Acta Biomater.20175151352510.1016/j.actbio.2017.01.034 28088671
    [Google Scholar]
  110. CaicedoM.S. DesaiR. McAllisterK. ReddyA. JacobsJ.J. Hallab, NJ Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity.J. Orthop. Res.200927784785410.1002/jor.20826
    [Google Scholar]
  111. BurtonL. PagetD. BinderN.B. BohnertK. NestorB.J. SculcoT.P. Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation.J. Orthop. Res.2013311738010.1002/jor.22190
    [Google Scholar]
  112. St PierreC.A. ChanM. IwakuraY. AyersD.C. JonesK.E.A. Finberg, RW Periprosthetic osteolysis: Characterizing the innate immune response to titanium wear-particles.J. Orthop. Res.201028111418142410.1002/jor.21149
    [Google Scholar]
  113. LamkanfiM. DixitV.M. Mechanisms and functions of inflammasomes.Cell201415751013102210.1016/j.cell.2014.04.007 24855941
    [Google Scholar]
  114. LatzE. XiaoT.S. StutzA. Activation and regulation of the inflammasomes.Nat. Rev. Immunol.201313639741110.1038/nri3452 23702978
    [Google Scholar]
  115. WuY. HeF. ZhangC. ZhangQ. SuX. ZhuX. LiuA. ShiW. LinW. JinZ. YangH. LinJ. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway.J. Nanobiotechnology202119117010.1186/s12951‑021‑00915‑3 34092246
    [Google Scholar]
  116. ShaoH. ShenJ. WangM. CuiJ. WangY. ZhuS. ZhangW. YangH. XuY. GengD. Icariin protects against titanium particle-induced osteolysis and inflammatory response in a mouse calvarial model.Biomaterials201560929910.1016/j.biomaterials.2015.04.048 25985156
    [Google Scholar]
  117. GengD. WuJ. ShaoH. ZhuS. WangY. ZhangW. PingZ. HuX. ZhuX. XuY. YangH. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis.Biomaterials201569122110.1016/j.biomaterials.2015.07.061 26275858
    [Google Scholar]
  118. LernerU.H. OhlssonC. The WNT system: Background and its role in bone.J. Intern. Med.2015277663064910.1111/joim.12368 25845559
    [Google Scholar]
  119. CaiT. SunD. DuanY. WenP. DaiC. YangJ. HeW. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression.Exp. Cell Res.2016345220621710.1016/j.yexcr.2016.06.007 27321958
    [Google Scholar]
  120. WangJ. TaoY. PingZ. ZhangW. HuX. WangY. WangL. ShiJ. WuX. YangH. XuY. GengD. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro.Sci. Rep.2016612382710.1038/srep23827 27029606
    [Google Scholar]
  121. PingZ. WangZ. ShiJ. WangL. GuoX. ZhouW. HuX. WuX. LiuY. ZhangW. YangH. XuY. GuY. GengD. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κ;B signaling.Acta Biomater.20176236237110.1016/j.actbio.2017.08.046 28867647
    [Google Scholar]
  122. LiuX. ZhuS. CuiJ. ShaoH. ZhangW. YangH. XuY. GengD. YuL. Strontium ranelate inhibits titanium-particle-induced osteolysis by restraining inflammatory osteoclastogenesis in vivo.Acta Biomater.201410114912491810.1016/j.actbio.2014.07.025 25078426
    [Google Scholar]
  123. KimJ.H. JinH.M. KimK. SongI. YounB.U. MatsuoK. KimN. The mechanism of osteoclast differentiation induced by IL-1.J. Immunol.200918331862187010.4049/jimmunol.0803007 19587010
    [Google Scholar]
  124. ZhaoB. GrimesS.N. LiS. HuX. IvashkivL.B. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J.J. Exp. Med.2012209231933410.1084/jem.20111566 22249448
    [Google Scholar]
  125. FujiharaR. UsuiM. YamamotoG. NishiiK. TsukamotoY. OkamatsuY. SatoT. AsouY. NakashimaK. YamamotoM. Tumor necrosis factor-α enhances RANKL expression in gingival epithelial cells via protein kinase A signaling.J. Periodontal Res.201449450851710.1111/jre.12131 24102429
    [Google Scholar]
  126. TeitelbaumS.L. Osteoclasts: What do they do and how do they do it?Am. J. Pathol.2007170242743510.2353/ajpath.2007.060834 17255310
    [Google Scholar]
  127. ClohisyJ.C. HirayamaT. FrazierE. HanS.K. Abu-AmerY. NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis.J. Orthop. Res.2004221132010.1016/S0736‑0266(03)00156‑6 14656654
    [Google Scholar]
  128. LinT. PajarinenJ. SatoT. LoiF. FanC. CórdovaL.A. NabeshimaA. GibonE. ZhangR. YaoZ. GoodmanS.B. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.Acta Biomater.20164127328110.1016/j.actbio.2016.05.038 27260104
    [Google Scholar]
  129. ZhuX. ZhangY. YangH. HeF. LinJ. Melatonin suppresses Ti-particle-induced inflammatory osteolysis via activation of the Nrf2/Catalase signaling pathway.Int. Immunopharmacol.20208810684710.1016/j.intimp.2020.106847 32771943
    [Google Scholar]
  130. ZhouL. ChenX. YanJ. LiM. LiuT. ZhuC. PanG. GuoQ. YangH. PeiM. HeF. Melatonin at pharmacological concentrations suppresses osteoclastogenesis via the attenuation of intracellular ROS.Osteoporos. Int.201728123325333710.1007/s00198‑017‑4127‑8 28956094
    [Google Scholar]
  131. GuoY. SunJ. LiT. ZhangQ. BuS. WangQ. LaiD. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/HO-1 signaling pathway.Sci. Rep.201771959910.1038/s41598‑017‑09943‑2 28127051
    [Google Scholar]
  132. WanT. WangZ. LuoY. ZhangY. HeW. MeiY. FA-97, a new synthetic caffeic acid phenethyl ester derivative, protects against oxidative stress-mediated neuronal cell apoptosis and scopolamine-induced cognitive impairment by activating Nrf2/HO-1 signaling.Oxid. Med. Cell. Longev.201920198239642
    [Google Scholar]
  133. YuB.P. Cellular defenses against damage from reactive oxygen species.Physiol. Rev.199474113916210.1152/physrev.1994.74.1.139 8295932
    [Google Scholar]
  134. YusaK. YamamotoO. TakanoH. FukudaM. IinoM. Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro.Sci. Rep.2016612946210.1038/srep29462 27387130
    [Google Scholar]
  135. ZukP.A. ZhuM. AshjianP. UgarteD.D.A. HuangJ.I. MizunoH. AlfonsoZ.C. FraserJ.K. BenhaimP. HedrickM.H. Human adipose tissue is a source of multipotent stem cells.Mol. Biol. Cell200213124279429510.1091/mbc.e02‑02‑0105 12475952
    [Google Scholar]
  136. ManivasagamV.K. PopatK.C. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells.Mater. Sci. Eng. C202112811231510.1016/j.msec.2021.112315 34474866
    [Google Scholar]
  137. LuchettiF. CanonicoB. BartoliniD. ArcangelettiM. CiffolilliS. MurdoloG. PiroddiM. PapaS. ReiterR.J. GalliF. Melatonin regulates mesenchymal stem cell differentiation: A review.J. Pineal Res.201456438239710.1111/jpi.12133 24650016
    [Google Scholar]
  138. ChanY.H. HoK.N. LeeY.C. ChouM.J. LewW.Z. HuangH.M. LaiP.C. FengS.W. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects.Stem Cell Res. Ther.20221317310.1186/s13287‑022‑02744‑z 35183254
    [Google Scholar]
  139. ZhangY. ZhuX. WangG. ChenL. YangH. HeF. LinJ. Melatonin rescues the Ti particle-impaired osteogenic potential of bone marrow mesenchymal stem cells via the SIRT1/SOD2 signaling pathway.Calcif. Tissue Int.2020107547448810.1007/s00223‑020‑00741‑z 32767062
    [Google Scholar]
  140. LaiM. JinZ. TangQ. LuM. Sustained release of melatonin from TiO 2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.J. Biomater. Sci. Polym. Ed.201728151651166410.1080/09205063.2017.1342334 28604249
    [Google Scholar]
  141. JafariM.R. SheibaniM. NezamoleslamiS. ShayestehS. JandY. DehpourA.R. Drug repositioning: A review. J. Iran.Med. Council.201811710
    [Google Scholar]
  142. LemaîtreG.B. Toxicology of melatonin.J. Biol. Rhythms199712669770610.1177/074873049701200627 9406047
    [Google Scholar]
  143. AndersenL.P.H. GögenurI. RosenbergJ. ReiterR.J. The safety of melatonin in humans.Clin. Drug Investig.201636316917510.1007/s40261‑015‑0368‑5 26692007
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010300967240610111644
Loading
/content/journals/cpb/10.2174/0113892010300967240610111644
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): implant; Melatonin; osteoblast; osteoclast; pharmacology; titanium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test