Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

To improve the prognosis outcome of lung cancer patients, more investigations are still needed. Previous reports have demonstrated the function of Ferulic Acid (FA) in lung cancer; thus, we have attempted to probe more molecular mechanisms underlying FA application in lung cancer.

Methods

CCK8 and colony formation experiments have been employed to explore cell viability and proliferation. Cell apoptosis was evaluated through flow cytometry. Cell morphology was observed with a microscope. MMP was assessed by JC-1 and LDH activity was evaluated by relative kit. Western blot assays were performed to examine the expression levels of GSDMD, GSDMD-N, caspase family proteins, and ROS/JNK/Bax mitochondrial apoptosis pathway downstream proteins. Flow cytometry analysis also measured the level of ROS. Tissues from animal models were taken for IHC analysis of C-caspase-1.

Results

FA was found to inhibit proliferation, change cell morphology, decrease MMP, and enhance LDH activity, suggesting its ability to induce pyroptosis of lung cancer cells. Both caspase-1 and GSDMD were found to be involved in the pyroptosis of lung cancer cells treated with FA, and caspase-1 mediated GSDMD. Moreover, FA was validated to regulate pyroptosis by ROS/JNK/Bax mitochondrial apoptosis pathway and .

Conclusion

In summary, FA regulates GSDMD through ROS/JNK/Bax mitochondrial apoptosis pathway to induce pyroptosis in lung cancer cells, which may offer a theoretical basis for pyroptosis in the occurrence of lung cancer.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303032240902063213
2024-09-16
2025-10-02
Loading full text...

Full text loading...

References

  1. NasimF. SabathB.F. EapenG.A. Lung Cancer.Med. Clin. North Am.2019103346347310.1016/j.mcna.2018.12.00630955514
    [Google Scholar]
  2. WadowskaK. Bil-LulaI. TrembeckiŁ. Śliwińska-MossońM. Genetic markers in lung cancer diagnosis: a review.Int. J. Mol. Sci.20202113456910.3390/ijms2113456932604993
    [Google Scholar]
  3. CollinsL.G. HainesC. PerkelR. EnckR.E. Lung cancer: diagnosis and management.Am. Fam. Physician2007751566317225705
    [Google Scholar]
  4. HayashiR. InomataM. Small cell lung cancer; recent advances of its biology and therapeutic perspective.Respir. Investig.202260219720410.1016/j.resinv.2021.10.00834896039
    [Google Scholar]
  5. Rami-PortaR. BolejackV. GirouxD.J. ChanskyK. CrowleyJ. AsamuraH. GoldstrawP. The international association for the study of lung cancer lung cancer staging project: proposals for the revision of the n descriptors in the forthcoming 8th edition of the tnm classification for lung cancer.J Thorac Oncol2014101216751684
    [Google Scholar]
  6. de GrootP. MundenR.F. Lung cancer epidemiology, risk factors, and prevention.Radiol. Clin. North Am.201250586387610.1016/j.rcl.2012.06.00622974775
    [Google Scholar]
  7. BadeB.C. Dela CruzC.S. Lung Cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.00132008623
    [Google Scholar]
  8. MancusoC. SantangeloR. Ferulic acid: Pharmacological and toxicological aspects.Food Chem. Toxicol.20146518519510.1016/j.fct.2013.12.02424373826
    [Google Scholar]
  9. LiD. RuiY. GuoS. LuanF. LiuR. ZengN. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives.Life Sci.202128411992110.1016/j.lfs.2021.11992134481866
    [Google Scholar]
  10. RoyN. NarayanankuttyA. NazeemP.A. ValsalanR. BabuT.D. MathewD. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation.Asian Pac. J. Cancer Prev.20161784019402327644655
    [Google Scholar]
  11. LuoL. ZhuS. TongY. PengS. Ferulic acid induces apoptosis of hela and caski cervical carcinoma cells by down-regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway.Med. Sci. Monit.202026e92009510.12659/MSM.92009531983729
    [Google Scholar]
  12. YangG.W. JiangJ.S. LuW.Q. Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis.Int. J. Mol. Sci.20151610240112403110.3390/ijms16102401126473837
    [Google Scholar]
  13. YueS.J. ZhangP.X. ZhuY. LiN.G. ChenY.Y. LiJ.J. ZhangS. JinR.Y. YanH. ShiX.Q. TangY.P. DuanJ.A. A Ferulic acid derivative fxs-3 inhibits proliferation and metastasis of human lung cancer a549 cells via positive JNK Signaling Pathway and Negative ERK/p38, AKT/mTOR and MEK/ERK signaling pathways.Molecules20192411216510.3390/molecules2411216531181779
    [Google Scholar]
  14. DasU. MannaK. AdhikaryA. MishraS. SahaK.D. SharmaR.D. MajumderB. DeyS. Ferulic acid enhances the radiation sensitivity of lung and liver carcinoma cells by collapsing redox homeostasis: mechanistic involvement of Akt/p38 MAPK signalling pathway.Free Radic. Res.2019539-1094496710.1080/10715762.2019.165555931576765
    [Google Scholar]
  15. LiuX. ZhangZ. RuanJ. PanY. MagupalliV.G. WuH. LiebermanJ. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.Nature2016535761015315810.1038/nature1862927383986
    [Google Scholar]
  16. ManS.M. KannegantiT.D. Gasdermin D: the long-awaited executioner of pyroptosis.Cell Res.201525111183118410.1038/cr.2015.12426482951
    [Google Scholar]
  17. YuanR. ZhaoW. WangQ.Q. HeJ. HanS. GaoH. FengY. YangS. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis.Pharmacol. Res.202117010574810.1016/j.phrs.2021.10574834217831
    [Google Scholar]
  18. ChengZ. LiZ. GuL. LiL. GaoQ. ZhangX. FuJ. GuoY. LiQ. ShenX. ChenM. ZhangX. Ophiopogonin B alleviates cisplatin resistance of lung cancer cells by inducing Caspase-1/GSDMD dependent pyroptosis.J. Cancer202213271572710.7150/jca.6643235069914
    [Google Scholar]
  19. GaoJ. QiuX. XiG. LiuH. ZhangF. LvT. SongY. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non‑small cell lung cancer.Oncol. Rep.20184041971198410.3892/or.2018.663430106450
    [Google Scholar]
  20. BandugulaV.R. NR.P. 2-Deoxy-d-glucose and ferulic acid modulates radiation response signaling in non-small cell lung cancer cells.Tumour Biol.201334125125910.1007/s13277‑012‑0545‑623065571
    [Google Scholar]
  21. ChenX. WuJ. WangJ. Pyroptosis: A new insight of non-small-cell lung cancer treatment.Front. Oncol.202212101354410.3389/fonc.2022.101354436523974
    [Google Scholar]
  22. NiuX. ChenL. LiY. HuZ. HeF. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC.Semin. Cancer Biol.202286Pt 327328510.1016/j.semcancer.2022.03.00935288298
    [Google Scholar]
  23. LongK. GuL. LiL. ZhangZ. LiE. ZhangY. HeL. PanF. GuoZ. HuZ. Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer.Cell Death Dis.202112650310.1038/s41419‑021‑03804‑734006852
    [Google Scholar]
  24. ZhangT. LiY. ZhuR. SongP. WeiY. LiangT. XuG. Transcription Factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer.Oxid. Med. Cell. Longev.201920191910.1155/2019/874689531737176
    [Google Scholar]
  25. LiuJ. YaoL. ZhangM. JiangJ. YangM. WangY. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death.Aging201911187830784610.18632/aging.10229131553952
    [Google Scholar]
  26. ShiJ. GaoW. ShaoF. Pyroptosis: Gasdermin-mediated programmed necrotic cell death.Trends Biochem. Sci.201742424525410.1016/j.tibs.2016.10.00427932073
    [Google Scholar]
  27. FangY. TianS. PanY. LiW. WangQ. TangY. YuT. WuX. ShiY. MaP. ShuY. Pyroptosis: A new frontier in cancer.Biomed. Pharmacother.202012110959510.1016/j.biopha.2019.10959531710896
    [Google Scholar]
  28. LiS. SunY. SongM. SongY. FangY. ZhangQ. LiX. SongN. DingJ. LuM. HuG. NLRP3/caspase-1/GSDMD–mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression.JCI Insight2021623e14685210.1172/jci.insight.14685234877938
    [Google Scholar]
  29. YanH. LuoB. WuX. GuanF. YuX. ZhaoL. KeX. WuJ. YuanJ. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer.Int. J. Biol. Sci.202117102606262110.7150/ijbs.6029234326697
    [Google Scholar]
  30. WuX. ZhangH. QiW. ZhangY. LiJ. LiZ. LinY. BaiX. LiuX. ChenX. YangH. XuC. ZhangY. YangB. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis.Cell Death Dis.20189217110.1038/s41419‑017‑0257‑329416034
    [Google Scholar]
  31. CuiJ. ZhouZ. YangH. JiaoF. LiN. GaoY. WangL. ChenJ. QuanM. MST1 suppresses pancreatic cancer progression via ros-induced pyroptosis.Mol. Cancer Res.20191761316132510.1158/1541‑7786.MCR‑18‑091030796177
    [Google Scholar]
  32. WangC. ChenK. XiaY. DaiW. WangF. ShenM. ChengP. WangJ. LuJ. ZhangY. YangJ. ZhuR. ZhangH. LiJ. ZhengY. ZhouY. GuoC. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway.PLoS One201499e10885510.1371/journal.pone.010885525264893
    [Google Scholar]
  33. ZhangH. WangS. WangY. LuA. HuC. YanC. DHA ameliorates MeHg‑induced PC12 cell apoptosis by inhibiting the ROS/JNK signaling pathway.Mol. Med. Rep.202124255810.3892/mmr.2021.1219734109428
    [Google Scholar]
  34. LeeW.H. LooC.Y. TrainiD. YoungP.M. Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment.Pharmaceutics2020131910.3390/pharmaceutics1301000933375181
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010303032240902063213
Loading
/content/journals/cpb/10.2174/0113892010303032240902063213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test