Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Cancer metastasis usually means that cancer cells spread to other tissues or organs, and the condition worsens. Identifying whether cancer has metastasized can help doctors infer the progression of a patient's condition and is an essential prerequisite for devising treatment plans. Fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography (18DG PET/CT) is an advanced cancer diagnostic imaging technique that provides both metabolic and structural information.

Methods

In cancer metastasis recognition tasks, effectively integrating metabolic and structural information stands as a key technology to enhance feature representation and recognition performance. This paper proposes a cancer metastasis identification network based on dynamic coordinated metabolic attention and structural attention to address these challenges. Specifically, metabolic and structural features are extracted by incorporating a Dynamic Coordinated Attention Module (DCAM) into two branches of ResNet networks, thereby amalgamating high metabolic spatial information from PET images with texture structure information from CT images, and dynamically adjusting this process through iterations.

Discussion

Next, to improve the efficacy of feature expression, a Multi-Receptive Field Feature Fusion Module (MRFM) is included in order to execute multi-receptive field fusion of semantic features.

Results

To validate the effectiveness of our proposed model, experiments were conducted on both a private lung lymph nodes dataset and a public soft tissue sarcomas dataset.

Conclusion

The accuracy of our method reached 76.0% and 75.1% for the two datasets, respectively, demonstrating an improvement of 6.8% and 5.6% compared to ResNet, thus affirming the efficacy of our method.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010302534240530073118
2024-06-12
2025-12-13
Loading full text...

Full text loading...

References

  1. SaoudH. GhadiA. GhailaniM. Analysis of evolutionary trends of incidence and mortality by cancers[C]//Innovations in Smart Cities and ApplicationsProceedings of the 2nd Mediterranean Symposium on Smart City Applications 2Springer International Publishing201877878810.1007/978‑3‑319‑74500‑8_71
    [Google Scholar]
  2. TedescoS. AndrulliM. LarssonM.Å. KellyD. TimmonsS. AlamäkiA. BartonJ. CondellC. O’ FlynnB. NordströmA. Investigation of the analysis of wearable data for cancer-specific mortality prediction in older adults.2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),IEEE, 2021: 1848-1851.
    [Google Scholar]
  3. DuY. YangC. LiQ. ZhiL. Assessing the risk of heavy metal mixture exposure and its association with cancer mortality.8th International Conference on Data Science in Cyberspace (DSC),IEEE, 2023: 416-421.
    [Google Scholar]
  4. BozkurtC. AşuroğluT. Mortality prediction of various cancer patients via relevant feature analysis and machine learning.Comput. Sci.202343264
    [Google Scholar]
  5. KongB. WangX. LiZ. SongQ. ZhangS. Cancer metastasis detection via spatially structured deep network.Information Processing in Medical Imaging.25th International Conference,IPMI 2017,Boone, NC, USA,pp.236-248.
    [Google Scholar]
  6. LiY. PingW Cancer metastasis detection with neural conditional random field.arXiv:1806.070642018
    [Google Scholar]
  7. LinH. ChenH. GrahamS. DouQ. RajpootN. HengP.A. Fast scannet: Fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection.IEEE Trans. Med. Imaging20193881948195810.1109/TMI.2019.289130530624213
    [Google Scholar]
  8. XuY. ZhaoR. A prediction model of endometrial cancer lesion metastasis under region of interest target detection algorithm.Sci. Program.202120211710.1155/2021/8108287
    [Google Scholar]
  9. BütünErtan UçanMurat KayaMehmet Automatic detection of cancer metastasis in lymph node using deep learning.Biomedical Signal Processing and Control202382104564
    [Google Scholar]
  10. de BruijneM. Machine learning approaches in medical image analysis: From detection to diagnosis.Med. Image Anal.201633949710.1016/j.media.2016.06.03227481324
    [Google Scholar]
  11. GrauV. MewesA.U.J. AlcañizM. KikinisR. WarfieldS.K. Improved watershed transform for medical image segmentation using prior information.IEEE Trans. Med. Imaging200423444745810.1109/TMI.2004.82422415084070
    [Google Scholar]
  12. HsiehC.J. ChangK.W. LinC.J. KeerthiS.S. SundararajanS. A dual coordinate descent method for large-scale linear SVM.Proceedings of the 25th international conference on Machine learning.2008408415
    [Google Scholar]
  13. GrossmanD. DomingosP. Learning Bayesian network classifiers by maximizing conditional likelihood.Proceedings of the twenty-first international conference on Machine learning.20044246
    [Google Scholar]
  14. LiC. ZhangS. ZhangH. PangL. LamK. HuiC. ZhangS. Using the K-nearest neighbor algorithm for the classification of lymph node metastasis in gastric cancer.Comput. Math. Methods Med.2012201211110.1155/2012/87654523150740
    [Google Scholar]
  15. GuoQ. ShaoJ. RuizV.F. Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms.Int. J. CARS200941112510.1007/s11548‑008‑0276‑820033598
    [Google Scholar]
  16. Martínez-CortésT. Fernández-TorresM.Á. Jiménez-MorenoA. González-DíazI. Díaz-de-MaríaF. Guzmán-De-VilloriaJ.A. FernándezP. A Bayesian model for brain tumor classification using clinical-based features.2014 IEEE International Conference on Image Processing (ICIP),IEEE, 2014: 2779-2783.
    [Google Scholar]
  17. WieseT. BurnsJ. YaoJ. SummersR.M. Computer-aided detection of sclerotic bone metastases in the spine using watershed algorithm and support vector machines.2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,IEEE, 2011: 152-155.
    [Google Scholar]
  18. MortaziA. BagciU. Automatically designing CNN architectures for medical image segmentation.Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018,Granada, Spain, September 16, 2018, Proceedings 9. Springer International Publishing, 2018: 98-106.
    [Google Scholar]
  19. Frid-AdarM. DiamantI. KlangE. AmitaiM. GoldbergerJ. GreenspanH. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification.Neurocomputing2018321321331[J].10.1016/j.neucom.2018.09.013
    [Google Scholar]
  20. SudhaS. JayanthiK.B. RajasekaranC. SunderT. Segmentation of RoI in medical images using CNN-A comparative study.TENCON 2019-2019 IEEE Region 10 Conference (TENCON),IEEE, 2019: 767-771.
    [Google Scholar]
  21. HoangH.S. PhamC.P. FranklinD. van WalsumT. LuuM.H. An evaluation of CNN-based liver segmentation methods using multi-types of CT abdominal images from multiple medical centers.2019 19th international symposium on communications and information technologies (ISCIT),IEEE, 2019: 20-25.
    [Google Scholar]
  22. RamosR.M. RalhaC.G. KurcT.M. SaltzJ.H. TeodoroG. Increasing accuracy of medical CNN applying optimization algorithms: an image classification case.2019 8th Brazilian Conference on Intelligent Systems (BRACIS),IEEE, 2019: 233-238.
    [Google Scholar]
  23. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition.arXiv:1409.15562014
    [Google Scholar]
  24. SzegedyC. LiuW. JiaY. SermanetP. ReedS. AnguelovD. ErhanD. VanhouckeV. RabinovichA. Going deeper with convolutions.Proceedings of the IEEE conference on computer vision and pattern recognition.201519
    [Google Scholar]
  25. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE conference on computer vision and pattern recognition.2016770778
    [Google Scholar]
  26. HuangG. LiuZ. Van Der MaatenL. WeinbergerK.Q. Densely connected convolutional networks.Proceedings of the IEEE conference on computer vision and pattern recognition.201747004708
    [Google Scholar]
  27. GaoS.H. ChengM.M. ZhaoK. ZhangX.Y. YangM.H. TorrP. Res2net: A new multi-scale backbone architecture.IEEE Trans. Pattern Anal. Mach. Intell.202143265266210.1109/TPAMI.2019.293875831484108
    [Google Scholar]
  28. XieS. GirshickR. DollárP. TuZ. HeK. Aggregated residual transformations for deep neural networks.Proceedings of the IEEE conference on computer vision and pattern recognition.201714921500
    [Google Scholar]
  29. Jiménez GaonaY. Rodriguez-AlvarezM.J. Espino-MoratoH. Castillo MallaD. LakshminarayananV. Densenet for breast tumor classification in mammographic images.International Conference on Bioengineering and Biomedical Signal and Image Processing.Cham: Springer International Publishing, 2021: 166-176.
    [Google Scholar]
  30. ChenY. LiJ. XiaoH. JinX. YanS. FengJ. Dual path networks.NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems201744704478
    [Google Scholar]
  31. LeeD.H. LiY. ShinB.S. Mid-level feature extraction method based transfer learning to small-scale dataset of medical images with visualizing analysis.J. Inform. Proces. Syst.202016612931308
    [Google Scholar]
  32. ChenY. LiD. ZhangX. JinJ. ShenY. Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning.Med. Image Anal.20216710181910.1016/j.media.2020.10181933049580
    [Google Scholar]
  33. LiS. LiuY. SuiX. ChenC. TjioG. TingD.S.W. GohR.S.M. Multi-instance multi-scale CNN for medical image classification.Medical Image Computing and Computer Assisted Intervention–MICCAI 2019.22nd International Conference,Shenzhen, ChinaOctober 13–17, 2019,pp.531-539.
    [Google Scholar]
  34. BağcıU. BrayM. CabanJ. YaoJ. MolluraD.J. Computer-assisted detection of infectious lung diseases: A review.Comput. Med. Imaging Graph.2012361728410.1016/j.compmedimag.2011.06.00221723090
    [Google Scholar]
  35. JiangC. ZhengS. LiL. PET/CT Co-segmentation based on hybrid active contour model.2022 IEEE International Conference on Image Processing (ICIP),IEEE, 2022: 4143-4147.
    [Google Scholar]
  36. JuweidM.E. ChesonB.D. Positron-emission tomography and assessment of cancer therapy.N. Engl. J. Med.2006354549650710.1056/NEJMra05027616452561
    [Google Scholar]
  37. AsmanY. EvensonA.R. Even-SapirE. ShiboletO. [18F]fludeoxyglucose positron emission tomography and computed tomography as a prognostic tool before liver transplantation, resection, and loco‐ablative therapies for hepatocellular carcinoma.Liver Transpl.201521557258010.1002/lt.2408325644857
    [Google Scholar]
  38. TixierF. VriensD. Cheze-Le RestC. HattM. DisselhorstJ.A. OyenW.J.G. de Geus-OeiL.F. VisserE.P. VisvikisD. Comparison of tumor uptake heterogeneity characterization between static and parametric 18 F-FDG PET images in non–small cell lung cancer.J. Nucl. Med.20165771033103910.2967/jnumed.115.16691826966161
    [Google Scholar]
  39. WangJ. ShaoY. LiuB. WangX. GeistB.K. LiX. LiF. ZhaoH. HackerM. DingH. ZhangH. HuoL. Dynamic 18F-FDG PET imaging of liver lesions: Evaluation of a two-tissue compartment model with dual blood input function.BMC Med. Imaging20212119010.1186/s12880‑021‑00623‑234034664
    [Google Scholar]
  40. HeJ. WangT. LiY. DengY. WangS. Dynamic chaotic gravitational search algorithm-based kinetic parameter estimation of hepatocellular carcinoma on 18F-FDG PET/CT.BMC Med. Imaging20222212010.1186/s12880‑022‑00742‑435125095
    [Google Scholar]
  41. FarwellM.D. PrymaD.A. MankoffD.A. PET/CT imaging in cancer: Current applications and future directions.Cancer2014120223433344510.1002/cncr.2886024947987
    [Google Scholar]
  42. BagciU. UdupaJ.K. MendhirattaN. FosterB. XuZ. YaoJ. ChenX. MolluraD.J. Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images.Med. Image Anal.201317892994510.1016/j.media.2013.05.00423837967
    [Google Scholar]
  43. LiberiniV. PizzutoD.A. MesserliM. OritaE. GrünigH. MaurerA. MaderC. HusmannL. DeandreisD. KotasidisF. TrinckaufJ. CurioniA. OpitzI. WinklhoferS. HuellnerM.W. BSREM for brain metastasis detection with 18F-FDG-PET/CT in lung cancer patients.J. Digit. Imaging202235358159310.1007/s10278‑021‑00570‑y35212859
    [Google Scholar]
  44. MoreauN. RousseauC. FourcadeC. SantiniG. FerrerL. LacombeM. GuillerminetC. CamponeM. ColombiéM. RubeauxM. NormandN. Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer.2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),IEEE, 2020: 1532-1535.
    [Google Scholar]
  45. KumarA. FulhamM. FengD. KimJ. Co-learning feature fusion maps from PET-CT images of lung cancer.IEEE Trans. Med. Imaging202039120421710.1109/TMI.2019.292360131217099
    [Google Scholar]
  46. FuX. BiL. KumarA. FulhamM. KimJ. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation.IEEE J. Biomed. Health Inform.20212593507351610.1109/JBHI.2021.305945333591922
    [Google Scholar]
  47. NiuZ. ZhongG. YuH. A review on the attention mechanism of deep learning.Neurocomputing2021452486210.1016/j.neucom.2021.03.091
    [Google Scholar]
  48. HuJ. ShenL. SunG. Squeeze-and-excitation networks.Proceedings of the IEEE conference on computer vision and pattern recognition.201871327141
    [Google Scholar]
  49. WooS. ParkJ. LeeJ.Y. KweonI.S. Cbam: Convolutional block attention module.Proceedings of the European conference on computer vision (ECCV).2018319
    [Google Scholar]
  50. ChenL. ZhangH. XiaoJ. NieL. ShaoJ. LiuW. ChuaT.S. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning.Proceedings of the IEEE conference on computer vision and pattern recognition.201756595667
    [Google Scholar]
  51. YangT. YoshimuraY. MoritaA. NamikiT. NakaguchiT. Pyramid predictive attention network for medical image segmentation.IEICE Trans. Fundam. Electron. Commun. Comput. Sci.2019E102.A91225123410.1587/transfun.E102.A.1225
    [Google Scholar]
  52. XuL. HuangJ. NitandaA. AsaokaR. YamanishiK A novel global spatial attention mechanism in convolutional neural network for medical image classification.arXiv:2007.158972020
    [Google Scholar]
  53. ChengX. ChenX. FengS. ZhuW. XiangD. ChenQ. XuY. FanY. ShiF. Group-wise attention fusion network for choroid segmentation in OCT images.Medical Imaging 2020: Image Processing.SPIE202011313773779
    [Google Scholar]
  54. YangS. NiuJ. WuJ. LiuX. Automatic medical image report generation with multi-view and multi-modal attention mechanism.Algorithms and Architectures for Parallel Processing: 20th International Conference,ICA3PP 2020, New York City, NY, USA, October 2–4, 2020, Proceedings, Part III 20. Springer International Publishing, 2020: 687-699.
    [Google Scholar]
  55. ChenL.C. YangY. WangJ. XuW. YuilleA.L. Attention to scale: Scale-aware semantic image segmentation.Proceedings of the IEEE conference on computer vision and pattern recognition.201636403649
    [Google Scholar]
  56. SinhaA. DolzJ. Multi-scale self-guided attention for medical image segmentation.IEEE J. Biomed. Health Inform.202125112113010.1109/JBHI.2020.298692632305947
    [Google Scholar]
  57. JamesA.P. DasarathyB.V. Medical image fusion: A survey of the state of the art.Inf. Fusion20141941910.1016/j.inffus.2013.12.002
    [Google Scholar]
  58. KumarA. KimJ. WenL. FulhamM. FengD. A graph-based approach for the retrieval of multi-modality medical images.Med. Image Anal.201418233034210.1016/j.media.2013.11.00324378541
    [Google Scholar]
  59. ZhuZ. ChaiY. YinH. LiY. LiuZ. A novel dictionary learning approach for multi-modality medical image fusion.Neurocomputing201621447148210.1016/j.neucom.2016.06.036
    [Google Scholar]
  60. DuJ. LiW. LuK. XiaoB. An overview of multi-modal medical image fusion.Neurocomputing201621532010.1016/j.neucom.2015.07.160
    [Google Scholar]
  61. MunT.S.H. DoranS. HuangP. MessiouC. BlackledgeM. Multi modal fusion for radiogenomics classification of brain tumor.International MICCAI Brainlesion Workshop,Cham: Springer International Publishing, 2021: 344-355.
    [Google Scholar]
  62. YangX. XiX. XuC. SunL. MengL. NieX. Attention-based interactions network for breast tumor classification with multi-modality images.2022 15th International Conference on Human System Interaction (HSI),IEEE, 2022: 1-6.
    [Google Scholar]
  63. YangX. XiX. YangL. XuC. SongZ. NieX. QiaoL. LiC. ShiQ. YinY. Multi-modality relation attention network for breast tumor classification.Comput. Biol. Med.202215010621010.1016/j.compbiomed.2022.10621037859295
    [Google Scholar]
  64. UsmanK. RajpootK. Brain tumor classification from multi-modality MRI using wavelets and machine learning.Pattern Anal. Appl.2017203871881[J].10.1007/s10044‑017‑0597‑8
    [Google Scholar]
  65. ZhongZ. KimY. ZhouL. PlichtaK. AllenB. BuattiJ. WuX. 3D fully convolutional networks for co-segmentation of tumors on PET-CT images.2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),IEEE, 2018: 228-231.
    [Google Scholar]
  66. ZhaoX. LiL. LuW. TanS. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network.Phys. Med. Biol.201864101501110.1088/1361‑6560/aaf44b30523964
    [Google Scholar]
  67. LiL. ZhaoX. LuW. TanS. Deep learning for variational multimodality tumor segmentation in PET/CT.Neurocomputing202039227729510.1016/j.neucom.2018.10.09932773965
    [Google Scholar]
  68. JamesA.P. DasarathyB. A review of feature and data fusion with medical images.arXiv:1506.00097 2015
    [Google Scholar]
  69. QinR. WangZ. JiangL. QiaoK. HaiJ. ChenJ. XuJ. ShiD. YanB. Fine-grained lung cancer classification from PET and CT images based on multidimensional attention mechanism.Complexity2020202011210.1155/2020/6153657
    [Google Scholar]
  70. XiangZ. ZhuoQ. ZhaoC. DengX. ZhuT. WangT. JiangW. LeiB. Self-supervised multi-modal fusion network for multi-modal thyroid ultrasound image diagnosis.Comput. Biol. Med.202215010616410.1016/j.compbiomed.2022.10616436240597
    [Google Scholar]
  71. HuangZ. LinL. ChengP. PengL. TangX. Multi-modal brain tumor segmentation via missing modality synthesis and modality-level attention fusion.arXiv:2203.045862022
    [Google Scholar]
  72. VallièresM. FreemanC.R. SkameneS.R. El NaqaI. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities.Phys. Med. Biol.201560145471549610.1088/0031‑9155/60/14/547126119045
    [Google Scholar]
  73. HeX. WangY. ZhaoS. ChenX. Co-attention fusion network for multimodal skin cancer diagnosis.Pattern Recognit.202313310899010.1016/j.patcog.2022.108990
    [Google Scholar]
  74. LiJ. XiaX. LiW. LiH. WangX. XiaoX. WangR. ZhengM. PanX. Next-vit: Next generation vision transformer for efficient deployment in realistic industrial scenarios.arXiv:2207.055012022
    [Google Scholar]
  75. HuoX. SunG. TianS. WangY. YuL. LongJ. ZhangW. LiA. HiFuse: Hierarchical multi-scale feature fusion network for medical image classification.arXiv:2209.102182022
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010302534240530073118
Loading
/content/journals/cpb/10.2174/0113892010302534240530073118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test