Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Acquired Immune Deficiency Syndrome (AIDS) is a devastating infectious disease caused by the Human Immunodeficiency Virus type 1 (HIV-1). Enfuvirtide (T20) is the first HIV-1 fusion inhibitor for marketing, which plays an important role in AIDS treatment. However, in the clinical application process, T20 has several drawbacks, such as a high level of development of drug resistance, a short half-life , and rapid renal clearance, which severely limits the clinical application. Therefore, the development of novel fusion inhibitors to address T20 shortcomings has long been the research hotspot. Short peptides have a long half-life through modification and a high barrier to drug resistance, which is expected to solve the current fusion inhibitors dilemma. In this paper, we summarized six emerging R&D strategies for short peptide-based fusion inhibitors against HIV-1. We hope that this review will provide fresh insights into the development of novel fusion inhibitors, as well as ideas for other viral fusion inhibitor discoveries based on the common membrane fusion 6-HB core structure.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010297943240325040448
2024-03-28
2025-09-04
Loading full text...

Full text loading...

References

  1. AshkenaziA. ShaiY. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides.Eur. Biophys. J.2011404349357
    [Google Scholar]
  2. LuD.-Y. High Active Anti-retroviral Therapy for HIV/AIDS, Progresses and Drawback.Adv. Pharmacoepidemiol. Drug Safety2012106
    [Google Scholar]
  3. Ting-Ren LuD.-Y.L. Challenges for HIV/AIDS Therapy.Adv. Pharmacoepidemiol. Drug Safety2013204
    [Google Scholar]
  4. VervoortS.C.J.M. BorleffsJ.C.C. HoepelmanA.I.M. GrypdonckM.H.F. Adherence in antiretroviral therapy: a review of qualitative studies.AIDS2007213271281
    [Google Scholar]
  5. IckovicsJ.R. MeadeC.S. Adherence to HAART among patients with HIV: Breakthroughs and barriers.AIDS Care2010143309318
    [Google Scholar]
  6. PomerantzR.J. HornD.L. Twenty years of therapy for HIV-1 infection.Nat. Med.200397867873
    [Google Scholar]
  7. LuD-Y. WuH-Y. YarlaN.S. XuB. DingJ. LuT-R. HAART in HIV/AIDS Treatments: Future Trends.Infect. Disord. Drug Targets20181811522
    [Google Scholar]
  8. MooreJ.P. DomsR.W. The entry of entry inhibitors: A fusion of science and medicine.Proc. Natl. Acad. Sci.2003100191059810602
    [Google Scholar]
  9. A. YiH. C. FochtmanB. C. RizzoR. JacobsA. Inhibition of HIV Entry by Targeting the Envelope Transmembrane Subunit gp41.Curr. HIV Res.2016143283294
    [Google Scholar]
  10. EckertD.M. MalashkevichV.N. HongL.H. CarrP.A. KimP.S. Inhibiting HIV-1 Entry.Cell1999991103115
    [Google Scholar]
  11. EckertD.M. KimP.S. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region.Proc. Natl. Acad. Sci.200198201118711192
    [Google Scholar]
  12. ChanD.C. FassD. BergerJ.M. KimP.S. Core Structure of gp41 from the HIV Envelope Glycoprotein.Cell1997892263273
    [Google Scholar]
  13. JingS. ZhaoQ. DebnathA. Peptide and Non-peptide HIV Fusion Inhibitors.Curr. Pharm. Des.200288563580
    [Google Scholar]
  14. PanC. LiuS. JiangS. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics.J. Formosan Med. Assoc.2010109294105
    [Google Scholar]
  15. ChampagneK. ShishidoA. RootM.J. Interactions of HIV-1 Inhibitory Peptide T20 with the gp41 N-HR Coiled Coil.J. Biol. Chem.2009284636193627
    [Google Scholar]
  16. BinleyJ.M. WrinT. KorberB. ZwickM.B. WangM. ChappeyC. StieglerG. KunertR. Zolla-PaznerS. KatingerH. PetropoulosC.J. BurtonD.R. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies.J. Virol.200478231323213252
    [Google Scholar]
  17. MascolaJ.R. LewisM.G. StieglerG. HarrisD. VanCottT.C. HayesD. LouderM.K. BrownC.R. SapanC.V. FrankelS.S. LuY. RobbM.L. KatingerH. BirxD.L. Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies.J. Virol.199973540094018
    [Google Scholar]
  18. MascolaJ.R. StieglerG. VanCottT.C. KatingerH. CarpenterC.B. HansonC.E. BearyH. HayesD. FrankelS.S. BirxD.L. LewisM.G. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies.Nat. Med.200062207210
    [Google Scholar]
  19. ZhangD. LiW. JiangS. Peptide fusion inhibitors targeting the HIV-1 gp41: a patent review (2009 – 2014).Expert Opin. Ther. Pat.2014252159173
    [Google Scholar]
  20. CaiL. JiangS. Development of Peptide and Small‐Molecule HIV‐1 Fusion Inhibitors that Target gp41.ChemMedChem201051118131824
    [Google Scholar]
  21. WangC. ShiW. CaiL. LuL. YuF. WangQ. JiangX. XuX. WangK. XuL. JiangS. LiuK. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains.J. Antimicrob. Chemother.201469615371545
    [Google Scholar]
  22. WangH. WangC. In Virus Entry Inhibitors2022pp 87100
    [Google Scholar]
  23. ChanD.C. ChutkowskiC.T. KimP.S. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target.Proc. Natl. Acad. Sci.199895261561315617
    [Google Scholar]
  24. ChongH. YaoX. QiuZ. SunJ. ZhangM. WalterspergerS. WangM. LiuS.L. CuiS. HeY. Short‐peptide fusion inhibitors with high potency against wild‐type and enfuvirtide‐resistant HIV‐1.FASEB J.201227312031213
    [Google Scholar]
  25. OtakaA. NakamuraM. NamekiD. KodamaE. UchiyamaS. NakamuraS. NakanoH. TamamuraH. KobayashiY. MatsuokaM. FujiiN. Remodeling of gp41-C34 Peptide Leads to Highly Effective Inhibitors of the Fusion of HIV-1 with Target Cells We thank Dr. Terrence R. Burke, Jr., NCI, NIH, Frederick, MD 21702-1201, for proofreading the manuscript and providing useful comments. This research was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Japan Society for the Promotion of Science, and the Japan Health Science Foundation.Angewandte Chem. Int. Ed.20024116
    [Google Scholar]
  26. NishikawaH. NakamuraS. KodamaE. ItoS. KajiwaraK. IzumiK. SakagamiY. OishiS. OhkuboT. KobayashiY. OtakaA. FujiiN. MatsuokaM. Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide.Int. J. Biochem. Cell Biol.2009414891899
    [Google Scholar]
  27. GuoY. FuL. FanX. ShiX. Stapled SC34EK fusion inhibitors with high potency against HIV-1 and improved protease resistance.Chinese Chem. Lett.201829711671170
    [Google Scholar]
  28. NaitoT. IzumiK. KodamaE. SakagamiY. KajiwaraK. NishikawaH. WatanabeK. SarafianosS.G. OishiS. FujiiN. MatsuokaM. SC29EK, a Peptide Fusion Inhibitor with Enhanced α-Helicity, Inhibits Replication of Human Immunodeficiency Virus Type 1 Mutants Resistant to Enfuvirtide.Antimicrob. Agents Chemother.200953310131018
    [Google Scholar]
  29. NishikawaH. OishiS. FujitaM. WatanabeK. TokiwaR. OhnoH. KodamaE. IzumiK. KajiwaraK. NaitohT. MatsuokaM. OtakaA. FujiiN. Identification of minimal sequence for HIV-1 fusion inhibitors.Bioorg. Med. Chem.2008162091849187
    [Google Scholar]
  30. MarquseeS. BaldwinR.L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.Proc. Natl. Acad. Sci.1987842488988902
    [Google Scholar]
  31. WangC. WangH. WangX. SunL. WangQ. LiQ. LiangR. DouD. YuF. LuL. JiangS. Multitargeted drug design strategy for discovery of short-peptide-based HIV-1 entry inhibitors with high potency.Eur. J. Med. Chem.2023252
    [Google Scholar]
  32. CronicanJ.J. ThompsonD.B. BeierK.T. McNaughtonB.R. CepkoC.L. LiuD.R. Potent Delivery of Functional Proteins into Mammalian Cells in vitro and in vivo Using a Supercharged Protein.ACS Chem. Biol.201058747752
    [Google Scholar]
  33. LawrenceM.S. PhillipsK.J. LiuD.R. Supercharging Proteins Can Impart Unusual Resilience.J. Am. Chem. Soc.2007129331011010112
    [Google Scholar]
  34. McNaughtonB.R. CronicanJ.J. ThompsonD.B. LiuD.R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins.Proc. Natl. Acad. Sci.20091061561116116
    [Google Scholar]
  35. ApostolopoulosV. BojarskaJ. ChaiT-T. ElnagdyS. KaczmarekK. MatsoukasJ. NewR. ParangK. LopezO.P. ParhizH. PereraC.O. PickholzM. RemkoM. SavianoM. SkwarczynskiM. TangY. WolfW.M. YoshiyaT. ZabrockiJ. ZielenkiewiczP. AlKhazindarM. BarrigaV. KelaidonisK. SarasiaE.M. TothI. A Global Review on Short Peptides: Frontiers and Perspectives.Molecules2021262
    [Google Scholar]
  36. SchafmeisterC.E. PoJ. VerdineG.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides.J. Am. Chem. Soc.20001222458915892
    [Google Scholar]
  37. VerdineG.L. WalenskyL.D. The Challenge of Drugging Undruggable Targets in Cancer: Lessons Learned from Targeting BCL-2 Family Members.Clin. Cancer Res.2007132472647270
    [Google Scholar]
  38. BirdG.H. MadaniN. PerryA.F. PrinciottoA.M. SupkoJ.G. HeX. GavathiotisE. SodroskiJ.G. WalenskyL.D. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic.Proc. Natl. Acad. Sci.2010107321409314098
    [Google Scholar]
  39. MengG. PuJ. LiY. HanA. TianY. XuW. ZhangT. LiX. LuL. WangC. JiangS. LiuK. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled–Coil Fusion Complex.J. Med. Chem.2019621987738783
    [Google Scholar]
  40. WangC. XiaS. ZhangP. ZhangT. WangW. TianY. MengG. JiangS. LiuK. Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors.J. Med. Chem.201861520182026
    [Google Scholar]
  41. HeY. ChengJ. LiJ. QiZ. LuH. DongM. JiangS. DaiQ. Identification of a Critical Motif for the Human Immunodeficiency Virus Type 1 (HIV-1) gp41 Core Structure: Implications for Designing Novel Anti-HIV Fusion Inhibitors.J. Virol.2008821363496358
    [Google Scholar]
  42. YaoX. ChongH. ZhangC. QiuZ. QinB. HanR. WalterspergerS. WangM. HeY. CuiS. Structural Basis of Potent and Broad HIV-1 Fusion Inhibitor CP32M.J. Biol. Chem.2012287322661826629
    [Google Scholar]
  43. ChongH. YaoX. QiuZ. QinB. HanR. WalterspergerS. WangM. CuiS. HeY. Discovery of Critical Residues for Viral Entry and Inhibition through Structural Insight of HIV-1 Fusion Inhibitor CP621–652.J. Biol. Chem.2012287242028120289
    [Google Scholar]
  44. HeY. ChengJ. LuH. LiJ. HuJ. QiZ. LiuZ. JiangS. DaiQ. Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains.Proc. Natl. Acad. Sci.2008105421633216337
    [Google Scholar]
  45. ChongH.H. YaoX. SunJ.P. QiuZ.L. ZhangM. WalterspergerS. WangM.T. CuiS. HeY.X. The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors.J. Biol. Chem.2012287413455834568
    [Google Scholar]
  46. ChongH. YaoX. QiuZ. SunJ. QiaoY. ZhangM. WangM. CuiS. HeY. The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance.J. Antimicrob. Chemother.2014691027592769
    [Google Scholar]
  47. ChongH. QiuZ. SunJ. QiaoY. LiX. HeY. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK.Retrovirology2014111
    [Google Scholar]
  48. ChongH. QiuZ. SuY. YangL. HeY. Design of a highly potent HIV-1 fusion inhibitor targeting the gp41 pocket.AIDS20152911321
    [Google Scholar]
  49. WeissenhornW. DessenA. HarrisonS.C. SkehelJ.J. WileyD.C. Atomic structure of the ectodomain from HIV-1 gp41.Nature19973876631426430
    [Google Scholar]
  50. ZhuY. SuS. QinL. WangQ. ShiL. MaZ. TangJ. JiangS. LuL. YeS. ZhangR. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations.Sci. Rep.201661
    [Google Scholar]
  51. SuY. ChongH. QiuZ. XiongS. HeY. DomsR.W. Mechanism of HIV-1 Resistance to Short-Peptide Fusion Inhibitors Targeting the Gp41 Pocket.J. Virol.2015891158015811
    [Google Scholar]
  52. SuS. MaZ. HuaC. LiW. LuL. JiangS. Adding an Artificial Tail—Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile.Molecules20172211
    [Google Scholar]
  53. SuS. ZhuY. YeS. QiQ. XiaS. MaZ. YuF. WangQ. ZhangR. JiangS. LuL. KirchhoffF. Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors.J. Virol.2017911
    [Google Scholar]
  54. SuS. RasquinhaG. DuL. WangQ. XuW. LiW. LuL. JiangS. A Peptide-Based HIV-1 Fusion Inhibitor with Two Tail-Anchors and Palmitic Acid Exhibits Substantially Improved In vitro and Ex Vivo Anti-HIV-1 Activity and Prolonged In vivo Half-Life.Molecules2019246
    [Google Scholar]
  55. FosgerauK. HoffmannT. Peptide therapeutics: current status and future directions.Drug Discov. Today2015201122128
    [Google Scholar]
  56. OtvosL. WadeJ.D. Current challenges in peptide-based drug discovery.Front. Chem.20142
    [Google Scholar]
  57. HarrisonS.C. FerrerM. KapoorT.M. StrassmaierT. WeissenhornW. SkehelJ.J. OprianD. SchreiberS.L. WileyD.C. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements.Nat. Struct. Biol.1999610953960
    [Google Scholar]
  58. WangC. ShiW. CaiL. LuL. WangQ. ZhangT. LiJ. ZhangZ. WangK. XuL. JiangX. JiangS. LiuK. Design, Synthesis, and Biological Evaluation of Highly Potent Small Molecule–Peptide Conjugates as New HIV-1 Fusion Inhibitors.J. Med. Chem.201356625272539
    [Google Scholar]
  59. YuD. SakuraiY. ChenC-H. ChangF-R. HuangL. KashiwadaY. LeeK-H. Anti-AIDS Agents 69. Moronic Acid and Other Triterpene Derivatives as Novel Potent Anti-HIV Agents.J. Med. Chem.2006491854625469
    [Google Scholar]
  60. RattanathongkomA. LeeJ-B. HayashiK. SripanidkulchaiB-o. KanchanapoomT. HayashiT. Evaluation of Chikusetsusaponin IV a Isolated fromAlternanthera philoxeroidesfor Its Potency Against Viral Replication.Planta Med.20097508829835
    [Google Scholar]
  61. LiangG. WangH. ChongH. ChengS. JiangX. HeY. WangC. LiuK. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors.Org. Biomol. Chem.2016143378757882
    [Google Scholar]
  62. MathieuC. PorottoM. FigueiraT.N. HorvatB. MosconaA. Fusion Inhibitory Lipopeptides Engineered for Prophylaxis of Nipah Virus in Primates.J. Infect. Dis.20182182218227
    [Google Scholar]
  63. ChongH. XueJ. XiongS. CongZ. DingX. ZhuY. LiuZ. ChenT. FengY. HeL. GuoY. WeiQ. ZhouY. QinC. HeY. KirchhoffF. A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent In vitro, Ex Vivo, and In vivo Antiviral Activity.J. Virol.20179111
    [Google Scholar]
  64. SimonsK. IkonenE. Functional rafts in cell membranes.Nature19973876633569572
    [Google Scholar]
  65. ViardM. ParoliniI. SargiacomoM. FecchiK. RamoniC. AblanS. RuscettiF.W. WangJ.M. BlumenthalR. Role of Cholesterol in Human Immunodeficiency Virus Type 1 Envelope Protein-Mediated Fusion with Host Cells.J. Virol.200276221158411595
    [Google Scholar]
  66. NguyenD.H. HildrethJ.E.K. Evidence for Budding of Human Immunodeficiency Virus Type 1 Selectively from Glycolipid-Enriched Membrane Lipid Rafts.J. Virol.200074, 732643272
    [Google Scholar]
  67. OnoA. FreedE.O. Plasma membrane rafts play a critical role in HIV-1 assembly and release.Proc. Natl. Acad. Sci.200198241392513930
    [Google Scholar]
  68. Wexler‐CohenY. ShaiY. Demonstrating the C‐terminal boundary of the HIV 1 fusion conformation in a dynamic ongoing fusion process and implication for fusion inhibition.FASEB J.2007211336773684
    [Google Scholar]
  69. IngallinellaP. BianchiE. LadwaN.A. WangY-J. HrinR. VenezianoM. BonelliF. KetasT.J. MooreJ.P. MillerM.D. PessiA. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency.Proc. Natl. Acad. Sci.20091061458015806
    [Google Scholar]
  70. PöhlmannS. HollmannA. MatosP.M. AugustoM.T. CastanhoM.A.R.B. SantosN.C. Conjugation of Cholesterol to HIV-1 Fusion Inhibitor C34 Increases Peptide-Membrane Interactions Potentiating Its Action.PLoS One201384
    [Google Scholar]
  71. AshkenaziA. ViardM. UngerL. BlumenthalR. ShaiY. Sphingopeptides: dihydrosphingosine‐based fusion inhibitors against wild‐type and enfuvirtide‐resistant HIV-1.FASEB J.2012261146284636
    [Google Scholar]
  72. Wexler‐CohenY. AshkenaziA. ViardM. BlumenthalR. ShaiY. Virus‐cell and cell‐cell fusion mediated by the HIV‐1 envelope glycoprotein is inhibited by short gp41 N‐terminal membrane‐anchored peptides lacking the critical pocket domain.FASEB J.2010241141964202
    [Google Scholar]
  73. AugustoM.T. HollmannA. CastanhoM.A.R.B. PorottoM. PessiA. SantosN.C. Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure.J. Antimicrob. Chemother.201469512861297
    [Google Scholar]
  74. ChongH. WuX. SuY. HeY. Development of potent and long-acting HIV-1 fusion inhibitors.AIDS201630811871196
    [Google Scholar]
  75. MathieuC. AugustoM.T. NiewieskS. HorvatB. PalermoL.M. SannaG. MadedduS. HueyD. CastanhoM.A.R.B. PorottoM. SantosN.C. MosconaA. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides.Sci. Rep.201771
    [Google Scholar]
  76. XiaS. ZhuY. LiuM. LanQ. XuW. WuY. YingT. LiuS. ShiZ. JiangS. LuL. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.Cell. Mol. Immunol.2020177765767
    [Google Scholar]
  77. LalezariJ.P. HenryK. O’HearnM. MontanerJ.S.G. PilieroP.J. TrottierB. WalmsleyS. CohenC. KuritzkesD.R. EronJ.J. ChungJ. DeMasiR. DonatacciL. DrobnesC. DelehantyJ. SalgoM. Enfuvirtide, an HIV-1 Fusion Inhibitor, for Drug-Resistant HIV Infection in North and South America.New. Engl. J. Med.20033482221752185
    [Google Scholar]
  78. LazzarinA. ClotetB. CooperD. ReynesJ. ArastéhK. NelsonM. KatlamaC. StellbrinkH-J. DelfraissyJ-F. LangeJ. HusonL. DeMasiR. WatC. DelehantyJ. DrobnesC. SalgoM. Efficacy of Enfuvirtide in Patients Infected with Drug-Resistant HIV-1 in Europe and Australia.New. Engl. J. Med.20033482221862195
    [Google Scholar]
  79. WeiX. DeckerJ.M. LiuH. ZhangZ. AraniR.B. KilbyJ.M. SaagM.S. WuX. ShawG.M. KappesJ.C. Emergence of Resistant Human Immunodeficiency Virus Type 1 in Patients Receiving Fusion Inhibitor (T-20) Monotherapy.Antimicrob. Agents Chemother.200246618961905
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010297943240325040448
Loading
/content/journals/cpb/10.2174/0113892010297943240325040448
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 6-HB; CHR; fusion inhibitors; HIV-1; research strategy; short peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test