Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease with no known cure that results in joint deformities and dysfunction, significantly impacting the quality of life of patients. The abnormal NF-KB signaling pathway in RA has emerged as a crucial research area for the development of RA therapies, with non-coding RNAs (ncRNAs) serving as a potentially meaningful avenue to regulate it. Thus, understanding the role of ncRNAs in RA and the identification of new therapeutic targets have become pressing issues in the field. In this review, we aim to summarize recent studies on ncRNAs that regulate the NF-KB signaling pathway in RA, including miRNAs, lncRNAs, and circRNAs, as well as the mechanisms by which drugs modulate NF-KB activity. By highlighting these recent advances, we hope to promote further research into targeted RA therapy and provide novel directions and ideas for researchers in the field.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010262829240214061103
2024-02-27
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cpb/26/3/CPB-26-3-03.html?itemId=/content/journals/cpb/10.2174/0113892010262829240214061103&mimeType=html&fmt=ahah

References

  1. HunterD.J. Bierma-ZeinstraS. Osteoarthritis.Lancet2019393101821745175910.1016/S0140‑6736(19)30417‑931034380
    [Google Scholar]
  2. van der WoudeD. van der Helm-van MilA.H.M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201832217418710.1016/j.berh.2018.10.00530527425
    [Google Scholar]
  3. RenY. HuJ. TanJ. TangX. LiQ. YangH. LiuC. HeQ. ZouK. SunX. TanB. Incidence and risk factors of symptomatic knee osteoarthritis among the Chinese population: analysis from a nationwide longitudinal study.BMC Public Health2020201149110.1186/s12889‑020‑09611‑733004017
    [Google Scholar]
  4. ZhenG. GuoQ. LiY. WuC. ZhuS. WangR. GuoX.E. KimB.C. HuangJ. HuY. DanY. WanM. HaT. AnS. CaoX. Mechanical stress determines the configuration of TGFβ activation in articular cartilage.Nat. Commun.2021121170610.1038/s41467‑021‑21948‑033731712
    [Google Scholar]
  5. ImasJ.J. Ruiz ZamarreñoC. ZubiateP. Sanchez-MartínL. CampiónJ. MatíasI.R. Optical biosensors for the detection of rheumatoid arthritis (RA) biomarkers: A comprehensive review.Sensors20202021628910.3390/s2021628933158306
    [Google Scholar]
  6. TangC.H. Research of pathogenesis and novel therapeutics in arthritis.Int. J. Mol. Sci.2019207164610.3390/ijms2007164630987068
    [Google Scholar]
  7. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑936797236
    [Google Scholar]
  8. NelsonA.E. AllenK.D. GolightlyY.M. GoodeA.P. JordanJ.M. A systematic review of recommendations and guidelines for the management of osteoarthritis: The Chronic Osteoarthritis Management Initiative of the U.S. Bone and Joint Initiative.Semin. Arthritis Rheum.201443670171210.1016/j.semarthrit.2013.11.01224387819
    [Google Scholar]
  9. SongY.J. NamS.W. SuhC.H. ChoeJ.Y. YooD.H. Biosimilars in the treatment of rheumatoid arthritis: A pharmacokinetic overview.Expert Opin. Drug Metab. Toxicol.2023191175176810.1080/17425255.2023.227040737842948
    [Google Scholar]
  10. WiemerN. WebsterP. AtturM. YinY. SharmaT. Patient perspectives on tapering biologic or targeted synthetic therapy in well-controlled rheumatoid arthritis and comparison with providers’ perspectives.Rheumatology202362Suppl. 4iv3iv710.1093/rheumatology/kead43137855678
    [Google Scholar]
  11. TageldinM WilsonN YinY SharmaTS A real-world 2-year prospective study of medication tapering in patients with well-controlled rheumatoid arthritis within the rheumatoid arthritis medication tapering (RHEUMTAP) cohort.Rheumatology202362
    [Google Scholar]
  12. NoortA.R. TakP.P. TasS.W. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde?Arthritis Res. Ther.20151711510.1186/s13075‑015‑0527‑325774937
    [Google Scholar]
  13. MaracleC.X. KucharzewskaP. HelderB. van der HorstC. Correa de SampaioP. NoortA.R. van ZoestK. GriffioenA.W. OlssonH. TasS.W. Targeting non-canonical nuclear factor-κB signalling attenuates neovascularization in a novel 3D model of rheumatoid arthritis synovial angiogenesis.Rheumatology201756229430210.1093/rheumatology/kew39327864565
    [Google Scholar]
  14. JimiE. HuangF. NakatomiC. NF-κB signaling regulates physiological and pathological chondrogenesis.Int. J. Mol. Sci.20192024627510.3390/ijms2024627531842396
    [Google Scholar]
  15. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  16. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.04766233973623
    [Google Scholar]
  17. YuC WangY. MicroRNA-19a promotes cell viability and migration of chondrocytes via up-regulating SOX9 through NF-κB pathway.Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie201898746753
    [Google Scholar]
  18. HwangH.S. ParkS.J. LeeM.H. KimH.A. MicroRNA-365 regulates IL-1β-induced catabolic factor expression by targeting HIF-2α in primary chondrocytes.Sci. Rep.2017711788910.1038/s41598‑017‑18059‑629263346
    [Google Scholar]
  19. ShaoJ DingZ PengJ Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.Inflammation research : official journal of the European Histamine Research Society2020696619630
    [Google Scholar]
  20. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  21. ZhangP. SunJ. LiangC. GuB. XuY. LuH. CaoB. XuH. lncRNA IGHC γ 1 Acts as a ceRNA to regulate macrophage inflammation via the miR-6891-3p/TLR4 Axis in Osteoarthritis.Mediators Inflamm.2020202011110.1155/2020/974303732410875
    [Google Scholar]
  22. LiC. PanS. SongY. LiY. QuJ. Silence of lncRNA MIAT protects ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132.Artif. Cells Nanomed. Biotechnol.20194712521252710.1080/21691401.2019.162641031204523
    [Google Scholar]
  23. ChenL. ShanG. CircRNA in cancer: Fundamental mechanism and clinical potential.Cancer Lett.2021505495710.1016/j.canlet.2021.02.00433609610
    [Google Scholar]
  24. YuanX. ZhangY. CaiC. LiuC. XieJ. YiC. Circular RNA circZNF652 is overexpressed in osteoarthritis and positively regulates LPS-induced apoptosis of chondrocytes by upregulating PTEN.Autoimmunity202154741542110.1080/08916934.2021.195171634263675
    [Google Scholar]
  25. YangY. ShenP. YaoT. MaJ. ChenZ. ZhuJ. GongZ. ShenS. FangX. Novel role of circRSU1 in the progression of osteoarthritis by adjusting oxidative stress.Theranostics20211141877190010.7150/thno.5330733408787
    [Google Scholar]
  26. SunL. ChenY. XiaL. WangJ. ZhuJ. LiJ. WangK. ShenK. ZhangD. ZhangG. ShiT. ChenW. TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD.Oncogene202310.1038/s41388‑023‑02873‑637864033
    [Google Scholar]
  27. ElsayedR. FayezS. RashedL.A. FarghaliM. AbdelHamidM. AlkaffasM. Relation between microRNA‐155 and inflammatory mediators in multiple sclerosis.J. Biochem. Mol. Toxicol.2023e2355510.1002/jbt.2355537843075
    [Google Scholar]
  28. SongS. XieS. LiuX. LiS. WangL. JiangX. LuD. miR-3200 accelerates the growth of liver cancer cells by enhancing Rab7A.Noncoding RNA Res.20238467568510.1016/j.ncrna.2023.10.00537860266
    [Google Scholar]
  29. ZhouJ. LyuN. WangQ. YangM. KimchiE.T. ChengK. JoshiT. TukuliA.R. Staveley-O’CarrollK.F. LiG. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance.Cancer Lett.202357821645710.1016/j.canlet.2023.21645737865162
    [Google Scholar]
  30. ZhengD. YangK. ChenT. LvS. WangL. GuiJ. XuC. Inhibition of LncRNA SNHG14 protects chondrocyte from injury in osteoarthritis via sponging miR-137.Autoimmunity2023561227018510.1080/08916934.2023.227018537849308
    [Google Scholar]
  31. JiR. WuC. YaoJ. XuJ. LinJ. GuH. FuM. ZhangX. LiY. ZhangX. IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression.Cell Death Dis.2023141069310.1038/s41419‑023‑06163‑737865637
    [Google Scholar]
  32. XueL. WangB. LiX. ZhuJ. WangW. HuangF. WangX. JinY. XiongC. TaoL. XuK. WangJ. GuoY. XuJ. YangX. WangN. GaoN. WangY. LiK. LiM. GengY. Comprehensive analysis of serum exosome-derived lncRNAs and mRNAs from patients with rheumatoid arthritis.Arthritis Res. Ther.202325120110.1186/s13075‑023‑03174‑937845777
    [Google Scholar]
  33. JiangZ. LiS. JiaY. WuQ. ChenX. ZhangM. MiaoQ. ZhongZ. ZhaiZ. NiB. XiaoJ. TangJ. CircPTPN22 modulates T-cell activation by sponging miR-4689 to regulate S1PR1 expression in patients with systemic lupus erythematosus.Arthritis Res. Ther.202325120610.1186/s13075‑023‑03150‑337858140
    [Google Scholar]
  34. StanczykJ. PedrioliD.M.L. BrentanoF. Sanchez-PernauteO. KollingC. GayR.E. DetmarM. GayS. KyburzD. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis.Arthritis Rheum.20085841001100910.1002/art.2338618383392
    [Google Scholar]
  35. SaferdingV. PuchnerA. Goncalves-AlvesE. HofmannM. BonelliM. BrunnerJ.S. SahinE. NiederreiterB. HayerS. KienerH.P. EinwallnerE. NehmarR. CarapitoR. GeorgelP. KoendersM.I. BoldinM. SchabbauerG. Kurowska-StolarskaM. SteinerG. SmolenJ.S. RedlichK. BlümlS. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis.J. Autoimmun.201782748410.1016/j.jaut.2017.05.00628545737
    [Google Scholar]
  36. NakasaT. MiyakiS. OkuboA. HashimotoM. NishidaK. OchiM. AsaharaH. Expression of microRNA‐146 in rheumatoid arthritis synovial tissue.Arthritis Rheum.20085851284129210.1002/art.2342918438844
    [Google Scholar]
  37. TanakaY. Ozoralizumab: First Nanobody® therapeutic for rheumatoid arthritis.Expert Opin. Biol. Ther.202323757958710.1080/14712598.2023.223134437431762
    [Google Scholar]
  38. KounatidisD.C. PapadimitropoulosV. AvramidisK. PlengaE. TsiaraI. AvgoustouE. VallianouN. VassilopoulosD. Pneumocystosis in a patient with rheumatoid arthritis on adalimumab therapy: A case-based review.Rheumatol. Int.202310.1007/s00296‑023‑05483‑337851077
    [Google Scholar]
  39. García-RodrigoJ.F. OrtizG. Martínez-DíazO.F. Furuzawa-CarballedaJ. Ruíz-HerreraX. MaciasF. Ledesma-ColungaM.G. Martínez de la EscaleraG. ClappC. Prolactin inhibits or stimulates the inflammatory response of joint tissues in a cytokine-dependent manner.Endocrinology202316412bqad15610.1210/endocr/bqad15637864848
    [Google Scholar]
  40. GulB. AnwarR. SaleemM. AhmadM. UllahM.I. KamranS. Attenuation of CFA-induced arthritis through regulation of inflammatory cytokines and antioxidant mechanisms by Solanum nigrum L. leaves extracts.Inflammopharmacology202310.1007/s10787‑023‑01357‑z37864683
    [Google Scholar]
  41. AnS. YanX. ChenH. ZhouX. Investigation of the mechanism of action of periploca forrestii schltr. extract on adjuvant collagen rats based on UPLC-Q-Orbitrap-HRMS Non-targeted lipidomics.Molecules20232819675110.3390/molecules2819675137836594
    [Google Scholar]
  42. AkhtarN SinghA AhmedS. MicroRNA-17 Suppresses TNF-α Signaling by Interfering with TRAF2 and cIAP2 association in rheumatoid arthritis synovial fibroblasts.Journal of immunology2016197622192228
    [Google Scholar]
  43. GrebenciucovaE. VanHaerentsS. Interleukin 6: At the interface of human health and disease.Front. Immunol.202314125553310.3389/fimmu.2023.125553337841263
    [Google Scholar]
  44. LiJ.M. YaoY.D. LuoJ.F. LiuJ.X. LuL.L. LiuZ.Q. DongY. XieY. ZhouH. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review.Phytomedicine202312115511410.1016/j.phymed.2023.15511437816287
    [Google Scholar]
  45. LiuQ ShenJ WangJ PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4+ T cell imbalance.International Immunopharmacology2023124110860
    [Google Scholar]
  46. YangQ.Y. YangK.P. LiZ.Z. MiR‐22 restrains proliferation of rheumatoid arthritis by targeting IL6R and may be concerned with the suppression of NF‐κB pathway.Kaohsiung J. Med. Sci.2020361202610.1002/kjm2.1212431483954
    [Google Scholar]
  47. ShiD. ShiG. XieJ. DuX. YangH. MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis.Mol. Cells201639861161810.14348/molcells.2016.010327498552
    [Google Scholar]
  48. YangB. GeY. ZhouY. WangJ. XieX. LiS. TangM. XuL. TianJ. miR‐124a inhibits the proliferation and inflammation in rheumatoid arthritis fibroblast‐like synoviocytes via targeting PIK3/NF‐κB pathway.Cell Biochem. Funct.201937420821510.1002/cbf.338630941802
    [Google Scholar]
  49. ShaoL. HouC. miR-138 activates NF-κB signaling and PGRN to promote rheumatoid arthritis via regulating HDAC4.Biochem. Biophys. Res. Commun.2019519116617110.1016/j.bbrc.2019.08.09231492495
    [Google Scholar]
  50. HongB.K. YouS. YooS.A. ParkD. HwangD. ChoC.S. KimW.U. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis.Exp. Mol. Med.2017498e36310.1038/emm.2017.10828775366
    [Google Scholar]
  51. AmmariM. PresumeyJ. PonsollesC. RoussignolG. RoubertC. EscriouV. ToupetK. Mausset-BonnefontA.L. CrenM. RobinM. GeorgelP. NehmarR. TaamsL. GrünJ. GrützkauA. HäuplT. PersY.M. JorgensenC. Duroux-RichardI. CourtiesG. ApparaillyF. Delivery of miR-146a to Ly6C high monocytes inhibits pathogenic bone erosion in inflammatory arthritis.Theranostics20188215972598510.7150/thno.2931330613275
    [Google Scholar]
  52. WangX. TangK. WangY. ChenY. YangM. GuC. WangJ. WangY. YuanY. Elevated microRNA‑145‑5p increases matrix metalloproteinase‑9 by activating the nuclear factor‑κB pathway in rheumatoid arthritis.Mol. Med. Rep.20192032703271110.3892/mmr.2019.1049931322192
    [Google Scholar]
  53. WangY. XuN. ZhaoS. JiaoT. FuW. YangL. ZhangN. miR-410-3p suppresses cytokine release from fibroblast-like synoviocytes by regulating NF-κB signaling in rheumatoid arthritis.Inflammation201942133134110.1007/s10753‑018‑0896‑230242542
    [Google Scholar]
  54. WangY. ZhengF. GaoG. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis.J. Cell. Biochem.2018
    [Google Scholar]
  55. HayakawaK. KawasakiM. HiraiT. YoshidaY. TsushimaH. FujishiroM. IkedaK. MorimotoS. TakamoriK. SekigawaI. MicroRNA-766-3p contributes to anti-inflammatory responses through the indirect inhibition of NF-κB signaling.Int. J. Mol. Sci.201920480910.3390/ijms2004080930769772
    [Google Scholar]
  56. YangM. SuY. ZhengH. XuK. YuanQ. CaiY. AihaitiY. XuP. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks.BMC Musculoskelet. Disord.202324179910.1186/s12891‑023‑06936‑337814309
    [Google Scholar]
  57. XieB. LinF. BaoW. ZhangY. LiuY. LiX. HouW. ZengQ. Long noncoding RNA00324 is involved in the inflammation of rheumatoid arthritis by targeting miR‐10a‐5p via the NF‐κB pathway.Immun. Inflamm. Dis.2023116e90610.1002/iid3.90637382270
    [Google Scholar]
  58. HeydariR. FayazzadehS. ShahrokhS. ShekariF. FarsadF. MeyfourA. Plasma extracellular vesicle LncRNA H19 as a potential diagnostic biomarker for inflammatory bowel diseases.Inflamm. Bowel Dis.2023izad21910.1093/ibd/izad21937855715
    [Google Scholar]
  59. TangJ. YiS. LiuY. Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p.Hum. Cell20203341081109010.1007/s13577‑020‑00419‑632918701
    [Google Scholar]
  60. XiaoJ. WangR. ZhouW. CaiX. YeZ. LncRNA NEAT1 regulates the proliferation and production of the inflammatory cytokines in rheumatoid arthritis fibroblast-like synoviocytes by targeting miR-204-5p.Hum. Cell202134237238210.1007/s13577‑020‑00461‑433394349
    [Google Scholar]
  61. ZhaoF. DongJ. GuoJ. BiL. Inhibiting role of long non-coding RNA LINC01197 in inflammation in rheumatoid arthritis through the microRNA-150/THBS2 axis.Exp. Cell Res.2020394211213610.1016/j.yexcr.2020.11213632540401
    [Google Scholar]
  62. YangJ. LiY. WangL. ZhangZ. LiZ. JiaQ. LncRNA H19 aggravates TNF ‐α‐induced inflammatory injury via TAK1 pathway in MH7A cells.Biofactors202046581382010.1002/biof.165932525617
    [Google Scholar]
  63. QingP. LiuY. Inhibitory role of long non‐coding RNA OIP5‐AS1 in rheumatoid arthritis progression through the microRNA‐448–paraoxonase 1–toll‐like receptor 3–nuclear factor κB axis.Exp. Physiol.2020105101708171910.1113/EP08860832770578
    [Google Scholar]
  64. XiaoF. HeZ. WangS. LiJ. FanX. YanT. YangM. YangD. Regulatory mechanism of circular RNAs in neurodegenerative diseases.CNS Neurosci. Ther.2023cns.1449910.1111/cns.1449937864389
    [Google Scholar]
  65. TangL. TianZ. ChengJ. ZhangY. SongY. LiuY. WangJ. ZhangP. KeY. SimmelF.C. SongJ. Circular single-stranded DNA as switchable vector for gene expression in mammalian cells.Nat. Commun.2023141666510.1038/s41467‑023‑42437‑637863879
    [Google Scholar]
  66. GuF. HuangX. HuangW. ZhaoM. ZhengH. WangY. ChenR. The role of miRNAs in Behçet’s disease.Front. Immunol.202314124982610.3389/fimmu.2023.124982637860009
    [Google Scholar]
  67. LiuJ SongS ZhaoR ZhangH-Y ZhangS-X The functions and networks of non-coding RNAs in the pathogenesis of rheumatoid arthritis.Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie.2023163114707
    [Google Scholar]
  68. YangC. NiB. LiC. SunW. WangZ. WangH. HouX. YanS. WangX. XuD. circRNA_17725 promotes macrophage polarization towards m2 by targeting fam46c to alleviate arthritis.Mediators Inflamm.2023202311510.1155/2023/681852437035757
    [Google Scholar]
  69. XuY. ZaiZ. LuZ. ZhangT. WangL. QianX. TaoJ. PengX. ZhangY. ChenF. Circular RNA CircCDKN2B−AS_006 Promotes the tumor-like growth and metastasis of rheumatoid arthritis synovial fibroblasts by targeting the miR−1258/RUNX1 axis.Int. J. Mol. Sci.2023246588010.3390/ijms2406588036982956
    [Google Scholar]
  70. AbbasA.A. AbdulkaderH.A. GiordoR. AshourH.M. ErreG.L. PintusG. ZayedH. Implications and theragnostic potentials of circular RNAs in rheumatic diseases.Int. J. Biol. Macromol.202323512378310.1016/j.ijbiomac.2023.12378336822282
    [Google Scholar]
  71. KumarD. SahooS.S. ChaussD. KazemianM. AfzaliB. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations.J. Autoimmun.202313410298210.1016/j.jaut.2022.10298236592512
    [Google Scholar]
  72. YangJ. ChengM. GuB. WangJ. YanS. XuD. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis.Cell Death Dis.2020111083310.1038/s41419‑020‑03038‑z33028811
    [Google Scholar]
  73. van SteenbergenH.W. CopeA.P. van der Helm-van MilA.H.M. Rheumatoid arthritis prevention in arthralgia: Fantasy or reality?Nat. Rev. Rheumatol.2023191276777710.1038/s41584‑023‑01035‑y37814057
    [Google Scholar]
  74. HuangY. XueQ. ChangJ. WangX. MiaoC. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis.Cytokine202317215638110.1016/j.cyto.2023.15638137806072
    [Google Scholar]
  75. ZhangF. ChengT. ZhangS.X. Mechanistic target of rapamycin (mTOR): A potential new therapeutic target for rheumatoid arthritis.Arthritis Res. Ther.202325118710.1186/s13075‑023‑03181‑w37784141
    [Google Scholar]
  76. HuangY. XueQ. ChangJ. WangY. ChengC. XuS. WangX. MiaoC. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics.Arthritis Res. Ther.202325118910.1186/s13075‑023‑03149‑w37784134
    [Google Scholar]
  77. LiangY. LiuM. ChengY. WangX. WangW. Prevention and treatment of rheumatoid arthritis through traditional Chinese medicine: Role of the gut microbiota.Front. Immunol.202314123399410.3389/fimmu.2023.123399437781405
    [Google Scholar]
  78. MengD LiJ LiH WangK. Salvianolic acid B remits LPS-induced injury by up-regulating miR-142-3p in MH7A cells.Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie2019115108876
    [Google Scholar]
  79. SpurlockC.F.III TossbergJ.T. MatlockB.K. OlsenN.J. AuneT.M. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction.Arthritis Rheumatol.201466112947295710.1002/art.3880525077978
    [Google Scholar]
  80. El-SayyadS.M. AliM.A. kandilL.S. RagabG.M. Abdelhamid IbrahimS.S. Metformin and omega-3 fish oil elicit anti-inflammatory effects via modulation of some dysregulated micro RNAs expression and signaling pathways in experimental induced arthritis.Int. Immunopharmacol.20219210736210.1016/j.intimp.2020.10736233453674
    [Google Scholar]
  81. YanX. CenY. WangQ. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression.Sci. Rep.2016612891510.1038/srep2891527354158
    [Google Scholar]
  82. Mortazavi-JahromiS.S. AslaniM. OmidianS. AhmadzadehA. RezaieyazdiZ. MirshafieyA. Immunopharmacological effect of β‐ d ‐mannuronic acid (M2000), as a new immunosuppressive drug, on gene expression of miR‐155 and its target molecules (SOCS1, SHIP1) in a clinical trial on rheumatoid arthritis patients.Drug Dev. Res.202081329530410.1002/ddr.2161931675124
    [Google Scholar]
  83. ZhuH. FuJ. ChenS. LiX. LiangH. HouY. DouH. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis.Int. Immunopharmacol.20207910610510.1016/j.intimp.2019.10610531881378
    [Google Scholar]
  84. FuJ. NogueiraS.V. DrongelenV. CoitP. LingS. RosloniecE.F. SawalhaA.H. HoloshitzJ. Shared epitope–aryl hydrocarbon receptor crosstalk underlies the mechanism of gene–environment interaction in autoimmune arthritis.Proc. Natl. Acad. Sci.2018115184755476010.1073/pnas.172212411529666259
    [Google Scholar]
  85. CrowsonC.S. RollefstadS. IkdahlE. KitasG.D. van RielP.L.C.M. GabrielS.E. MattesonE.L. KvienT.K. DouglasK. SandooA. ArtsE. Wållberg-JonssonS. InnalaL. KarpouzasG. DesseinP.H. TsangL. El-GabalawyH. HitchonC. RamosV.P. YáñezI.C. SfikakisP.P. ZampeliE. Gonzalez-GayM.A. CorralesA. LaarM. VonkemanH.E. MeekI. SembA.G. A Trans-Atlantic Cardiovascular Consortium for Rheumatoid Arthritis (ATACC-RA) Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis.Ann. Rheum. Dis.2018771485410.1136/annrheumdis‑2017‑21173528877868
    [Google Scholar]
  86. HyndmanI.J. Rheumatoid arthritis: Past, present and future approaches to treating the disease.Int. J. Rheum. Dis.201720441741910.1111/1756‑185X.1282326845360
    [Google Scholar]
  87. XueY. CohenJ.M. WrightN.A. MerolaJ.F. Skin signs of rheumatoid arthritis and its therapy-induced cutaneous side effects.Am. J. Clin. Dermatol.201617214716210.1007/s40257‑015‑0167‑z26649439
    [Google Scholar]
  88. YuA.M. ChoiY.H. TuM.J. RNA Drugs and RNA targets for small molecules: Principles, progress, and challenges.Pharmacol. Rev.202072486289810.1124/pr.120.01955432929000
    [Google Scholar]
  89. ChenZ. BozecA. RammingA. SchettG. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis.Nat. Rev. Rheumatol.201915191710.1038/s41584‑018‑0109‑230341437
    [Google Scholar]
  90. GongY. YuZ. WangY. XiongY. ZhouY. LiaoC. LiY. LuoY. BaiY. ChenB. TangY. WuP. Effect of moxibustion on HIF-1 α and VEGF levels in patients with rheumatoid arthritis.Pain Res. Manag.201920191910.1155/2019/470524731885755
    [Google Scholar]
  91. ChoiM.C. JoJ. ParkJ. KangH.K. ParkY. NF-B signaling pathways in osteoarthritic cartilage destruction.Cells20198773410.3390/cells807073431319599
    [Google Scholar]
  92. Steinecker-FrohnwieserB. LohbergerB. EckN. MannA. KratschmannC. LeithnerA. KullichW. WeiglL. Nuclear magnetic resonance therapy modulates the mirna profile in human primary OA chondrocytes and antagonizes inflammation in Tc28/2a cells.Int. J. Mol. Sci.20212211595910.3390/ijms2211595934073090
    [Google Scholar]
  93. DongY. YanX. YangX. YuC. DengY. SongX. ZhangL. RETRACTED: Notoginsenoside R1 suppresses miR-301a via NF-κB pathway in lipopolysaccharide-treated ATDC5 cells.Exp. Mol. Pathol.202011210435510.1016/j.yexmp.2019.10435531837326
    [Google Scholar]
  94. SunS.C. The non-canonical NF-κB pathway in immunity and inflammation.Nat. Rev. Immunol.201717954555810.1038/nri.2017.5228580957
    [Google Scholar]
  95. Manou-StathopoulouS. LewisM.J. Diversity of NF-κB signalling and inflammatory heterogeneity in rheumatic autoimmune disease.Semin. Immunol.20215810164910.1016/j.smim.2022.10164936064646
    [Google Scholar]
  96. LiD. LiG. ChenY. LiY. ZhangJ. GaoD. SunL. LiuB. Astragaloside IV protects ATDC5 cells from lipopolysaccharide-caused damage through regulating miR-203/MyD88.Pharm. Biol.2020581899710.1080/13880209.2019.170535531906765
    [Google Scholar]
  97. QiuB. XuX. YiP. HaoY. Curcumin reinforces MSC‐derived exosomes in attenuating osteoarthritis via modulating the miR‐124/NF‐kB and miR‐143/ROCK1/TLR9 signalling pathways.J. Cell. Mol. Med.20202418108551086510.1111/jcmm.1571432776418
    [Google Scholar]
  98. YangC.R. ShihK.S. LiouJ.P. WuY.W. HsiehI.N. LeeH.Y. LinT.C. WangJ.H. Denbinobin upregulates miR-146a expression and attenuates IL-1β-induced upregulation of ICAM-1 and VCAM-1 expressions in osteoarthritis fibroblast-like synoviocytes.J. Mol. Med.201492111147115810.1007/s00109‑014‑1192‑825052989
    [Google Scholar]
  99. WangJ.H. ShihK.S. WuY.W. WangA.W. YangC.R. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1β signaling in osteoarthritis fibroblast-like synoviocytes.Osteoarthritis Cartilage201321121987199610.1016/j.joca.2013.09.00824107356
    [Google Scholar]
  100. PengX. WangQ. LiW. GeG. PengJ. XuY. YangH. BaiJ. GengD. Comprehensive overview of microRNA function in rheumatoid arthritis.Bone Res.2023111810.1038/s41413‑023‑00244‑136690624
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010262829240214061103
Loading
/content/journals/cpb/10.2174/0113892010262829240214061103
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): disease; ncRNAs; NF-KB; pathways; review; rheumatoid arthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test