Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Quantum dots (QDs) have attracted considerable interest due to their potential applications and economic viability in various industrial sectors, such as communications, displays, and solar cells. This fascination originates from the quantum size effect-induced remarkable optical properties exhibited by QDs. In recent years, significant progress has been made in producing QDs devoid of cadmium, known to be toxic to cells and living organisms. These QDs have generated considerable interest in bioimaging due to their potential for targeting molecules and cells. There is a developing need for diagnostics and therapy at the individual molecule and single-cell level in the medical field. As a result, the application of QDs in the medical industry is gaining momentum. This study provides an overview of the most recent developments in applying QDs for diagnostic and therapeutic purposes, also known as theranostics. It emphasizes specifically the use of QDs in cancer therapy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010294163240407153842
2024-04-18
2025-11-23
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. IslamiF. MillerK.D. SiegelR.L. ZhengZ. ZhaoJ. HanX. MaJ. JemalA. YabroffK.R. National and state estimates of lost earnings from cancer deaths in the united states.JAMA Oncol.201959e19146010.1001/jamaoncol.2019.146031268465
    [Google Scholar]
  3. SahuA. VermaS. VarmaM. YadavM.K. Impact of ErbB receptors and anticancer drugs against breast cancer: A review.Curr. Pharm. Biotechnol.202223678780210.2174/138920102266621071916145334825638
    [Google Scholar]
  4. KanugoA. GautamR.K. KamalM.A. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC).Curr. Pharm. Biotechnol.202223131581159510.2174/138920102366621123011365834967294
    [Google Scholar]
  5. LiC-G. MaY-S. FuD. XinR. ShenB. HuangZ-Y. LiuJ-B. LiS. JiangG-X. ZhangJ. CaoY-H. ZouD-Z. LiW. Research progress in elucidating the mechanisms underlying Resveratrol action on lung cancer.Curr. Pharm. Biotechnol.202324342743710.2174/138920102366622081808594535984029
    [Google Scholar]
  6. RayS.K. MukherjeeS. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer-An evolving aspect in Medical Biotechnology.Curr. Pharm. Biotechnol.202223111212210.2174/138920102166620121110271033308128
    [Google Scholar]
  7. VeraS.Y.M. RincónG.D. GarcíaR.E. CázaresS.M.B. de la CruzP.C.S. CamarilloL.C. The role of hypoxia in endometrial cancer.Curr. Pharm. Biotechnol.202223222123410.2174/138920102266621022413002233655827
    [Google Scholar]
  8. WangL. SongY. WangH. ZhangX. WangM. HeJ. LiS. ZhangL. LiK. CaoL. Advances of artificial intelligence in anti-cancer drug design: A review of the past decade.Pharmaceuticals202316225310.3390/ph1602025337259400
    [Google Scholar]
  9. MoazamiyanfarR. RezaeiS. AliAshrafzadehH. Rastegar-PouyaniN. JafarzadehE. MouludiK. KhodamoradiE. ZhalehM. TaebS. NajafiM. Nobiletin in cancer therapy; mechanisms and therapy perspectives.Curr. Pharm. Des.202329221713172810.2174/138161282966623042611542437185325
    [Google Scholar]
  10. PestovN.B. KolyasnikovaN.M. PimentelS.J.P. BarlevN.A. IshmukhametovA.A. Anti-cancer virotherapy in Russia: Lessons from the past, current challenges and prospects for the future.Curr. Pharm. Biotechnol.202324226627810.2174/138920102366622051612181335578840
    [Google Scholar]
  11. AliD.S. OthmanH.O. AnwerE.T. The advances in chitosan-based drug delivery systems for colorectal cancer: A narrative review.Curr. Pharm. Biotechnol.202324121554155910.2174/138920102466623020216050436733239
    [Google Scholar]
  12. XuY. ZhangZ. ZhangP. AnZ. SunC. FLG gene mutation up-regulates the abnormal tumor immune response and promotes the progression of prostate cancer.Curr. Pharm. Biotechnol.202223141658167010.2174/138920102366622041309250735422210
    [Google Scholar]
  13. RezaeeM.A. NouriR. HasaniA. ShiraziK.M. AlivandM.R. SepehriB. SotoodehS. HemmatiF. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship.Curr. Pharm. Biotechnol.202223101257126810.2174/138920102266621091009482734514986
    [Google Scholar]
  14. YadavN. RanaJ.S. DahiyaT. ChhillarA.K. SainiH.M. Nanotechnology in cancer diagnostics and therapeutics: A review.Curr. Pharm. Biotechnol.202223131556156810.2174/138920102366621122216550834951360
    [Google Scholar]
  15. RazaF. SiyuL. ZafarH. KamalZ. ZhengB. SuJ. QiuM. Recent advances in gelatin-based nanomedicine for targeted delivery of anti-cancer drugs.Curr. Pharm. Des.202228538039410.2174/138161282766621110210011834727851
    [Google Scholar]
  16. SanatkarS.A. HeidariA. RezaeiN. Cancer immunotherapy: Diverse approaches and obstacles.Curr. Pharm. Des.202228292387240310.2174/138161282866622072816051935909273
    [Google Scholar]
  17. ZafariN. VelayatiM. DamavandiS. PouraliG. MobarhanM.G. NassiriM. HassanianS.M. KhazaeiM. FernsG.A. AvanA. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach.Curr. Pharm. Des.202228362995300910.2174/138161282866622092211134236154599
    [Google Scholar]
  18. PatelP. KumarK. JainV.K. PopliH. YadavA.K. JainK. Nanotheranostics for diagnosis and treatment of breast cancer.Curr. Pharm. Des.2023291073274710.2174/138161282966623032912291136999427
    [Google Scholar]
  19. RahmaniF. ZandigoharM. SafaviP. BehzadiM. GhorbaniZ. PayazdanM. FernsG. HassanianS.M. AvanA. The interplay between noncoding RNAs and p21 signaling in gastrointestinal cancer: From tumorigenesis to metastasis.Curr. Pharm. Des.2023291076677610.2174/138161282966623030612345536876835
    [Google Scholar]
  20. XuR. WuJ. LuoY. WangY. TianJ. TengW. ZhangB. FangZ. LiY. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis.Curr. Pharm. Des.202228976076810.2174/138161282866622021712454235176976
    [Google Scholar]
  21. SharmaP. KumarD. ShriR. KumarS. Mechanistic insights and docking studies of phytomolecules as potential candidates in the management of cancer.Curr. Pharm. Des.202228332704272410.2174/138161282866622042611211635473540
    [Google Scholar]
  22. ArdevinesS. Marqués-LópezE. HerreraR.P. Heterocycles in breast cancer treatment: The use of pyrazole derivatives.Curr. Med. Chem.202330101145117410.2174/092986732966622082909183036043746
    [Google Scholar]
  23. SahooB.M. BanikB.K. BorahP. JainA. Reactive oxygen species (ROS): Key components in cancer therapies.Anti-Canc. Agent. Med. Chem.202222215222
    [Google Scholar]
  24. KhanI.M.Z. NazliA. PanY.L. ChenJ.Z. Recent developments in medicinal chemistry and therapeutic potential of anti-cancer PROTACs-based molecules.Curr. Med. Chem.202330141576162210.2174/092986732966622080311240935927805
    [Google Scholar]
  25. ArrigoniR. BalliniA. SantacroceL. CantoreS. InchingoloA. InchingoloF. Di DomenicoM. QuagliuoloL. BoccellinoM. Another look at dietary polyphenols: Challenges in cancer prevention and treatment.Curr. Med. Chem.20222961061108210.2174/1875533XMTE3kMjUp234375181
    [Google Scholar]
  26. YounisN.K. YassineH.M. EidA.H. Nanomedicine for cancer.Curr. Med. Chem.202330232592259410.2174/092986733066622122812194736579388
    [Google Scholar]
  27. ZaibS. RanaN. KhanI. Histone modifications and their role in epigenetics of cancer.Curr. Med. Chem.202229142399241110.2174/092986732866621110810521434749606
    [Google Scholar]
  28. SánchezM.L. CoveñasR. The neurotensinergic system: A target for cancer treatment.Curr. Med. Chem.202229183231326010.2174/092986732866621102712432834711154
    [Google Scholar]
  29. GoutasD. PergarisA. GiaginisC. TheocharisS. HuR as therapeutic target in cancer: What the future holds.Curr. Med. Chem.2022291566510.2174/092986732866621062814343034182901
    [Google Scholar]
  30. KhanF.A. LammariN. SiarM.A.S. AlkhaterK.M. AsiriS. AkhtarS. AlmansourI. AlamoudiW. HarounW. LouaerW. MeniaiA.H. ElaissariA. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells.Nanomedicine2020151096998010.2217/nnm‑2019‑042932223518
    [Google Scholar]
  31. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  32. Lemjabbar-AlaouiH. HassanO.U.I. YangY.W. BuchananP. Lung cancer: Biology and treatment options.Biochim. Biophys. Acta Rev. Cancer20151856218921010.1016/j.bbcan.2015.08.00226297204
    [Google Scholar]
  33. MarhabaR. KlingbeilP. NuebelT. NazarenkoI. BuechlerM. ZoellerM. CD44 and EpCAM: Cancer-initiating cell markers.Curr. Mol. Med.20088878480410.2174/15665240878673366719075676
    [Google Scholar]
  34. YazdanM. NaghibS.M. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques.Curr. Drug Deliv.20242110.2174/011567201828379224011505330238288800
    [Google Scholar]
  35. AlaghmandfardA. SedighiO. RezaeiT.N. AbediniA.A. KhachatourianM.A. ToprakM.S. SeifalianA. Recent advances in the modification of carbon-based quantum dots for biomedical applications.Mater. Sci. Eng. C202112011175610.1016/j.msec.2020.11175633545897
    [Google Scholar]
  36. MatiniA. NaghibS.M. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies.Curr. Med. Chem.20243110.2174/010929867328314423121205560338192130
    [Google Scholar]
  37. PatraP. PatraS. 4-Aminocoumarin derivatives as multifaceted building blocks for the development of various bioactive fused coumarin heterocycles: A brief review.Curr. Org. Chem.202226171585161410.2174/1385272827666221209101112
    [Google Scholar]
  38. KaurJ. KaurR. p-Coumaric acid: A naturally occurring chemical with potential therapeutic applications.Curr. Org. Chem.202226141333134910.2174/1385272826666221012145959
    [Google Scholar]
  39. AryaS. KumarR. PrakashO. RawatA. MahawerS.K. RawatD.S. de OliveiraM. Hedychium coronarium J. Koenig: Traditional uses, phytochemistry, biological activities and future aspects.Curr. Org. Chem.202226181676169010.2174/1385272827666221212161320
    [Google Scholar]
  40. DaiY. ZhangY. ZhangL. SongZ. Synthesis and biological evaluation of paclitaxel-aminoguanidine conjugates for suppressing breast cancer.Curr Org Synth202320890896
    [Google Scholar]
  41. DingY. NieJ. DingC. XuZ. Synthesis of lactosyl conjugated 6a,6d-bifunctionalized β -cyclodextrin derivatives as potential liver cancer drug carriers.Curr. Org. Chem.202327538438810.2174/1385272827666230516105952
    [Google Scholar]
  42. SahuR. ShahK. GautamY. SahuK. Pyrazine moiety: Recent developments in cancer treatment.Curr. Org. Chem.2023271082184310.2174/1385272827666230816105317
    [Google Scholar]
  43. ZakiN.S.M. Mohamad KamalN.N.S.N. SupratmanU. HarnetiD. HassanM.Z. TaibM.M.N.A. Design, synthesis, molecular docking and cytotoxicity of stilbene-arylcinnamide hybrids on a549 lung cancer cells.Curr. Org. Chem.202327161458147010.2174/0113852728267280231010065610
    [Google Scholar]
  44. HussenN.H. HasanA.H. MuhammedG.O. YassinA.Y. SalihR.R. EsmailP.A. AlanaziM.M. JamalisJ. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies.Curr. Org. Chem.202327436337710.2174/1385272827666230423144150
    [Google Scholar]
  45. DubeyP. PathakD.P. AliF. ChauhanG. 1, 3, 5 and 1, 2, 4-triazines as potent scaffolds for molecules potentially attenuating breast cancer cell lines.Curr. Org. Chem.202326242188220210.2174/1385272827666230215141854
    [Google Scholar]
  46. SahooS.K. DilnawazF. Graphene oxide/reduced graphene oxide nanomaterials for targeted photothermal cancer therapy.Curr. Org. Chem.2023271084485110.2174/1385272827666230821102638
    [Google Scholar]
  47. RaoL. WuL. LiuZ. TianR. YuG. ZhouZ. YangK. XiongH.G. ZhangA. YuG.T. SunW. XuH. GuoJ. LiA. ChenH. SunZ.J. FuY.X. ChenX. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis.Nat. Commun.2020111490910.1038/s41467‑020‑18626‑y32999291
    [Google Scholar]
  48. WuD. FanY. YanH. LiD. ZhaoZ. ChenX. YangX. LiuX. Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy.Chem. Eng. J.202140412648110.1016/j.cej.2020.126481
    [Google Scholar]
  49. DingY. DaiY. WuM. LiL. Glutathione-mediated nanomedicines for cancer diagnosis and therapy.Chem. Eng. J.202142612888010.1016/j.cej.2021.128880
    [Google Scholar]
  50. ZhuA. QuQ. ShaoX. KongB. TianY. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions.Angew. Chem. Int. Ed.201251297185718910.1002/anie.20110908922407813
    [Google Scholar]
  51. ValastyanS. WeinbergR.A. Tumor metastasis: Molecular insights and evolving paradigms.Cell2011147227529210.1016/j.cell.2011.09.02422000009
    [Google Scholar]
  52. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  53. MousaviS.M. HashemiS.A. KalashgraniM.Y. OmidifarN. BahraniS. RaoV.N. BabapoorA. GholamiA. ChiangW.H. Bioactive graphene quantum dots based polymer composite for biomedical applications.Polymers.202214361710.3390/polym14030617
    [Google Scholar]
  54. MatiniA. NaghibS.M. The necessity of nanotechnology in Mycoplasma pneumoniae detection: A comprehensive examination.Sens. Biosensing Res.20244310063110.1016/j.sbsr.2024.100631
    [Google Scholar]
  55. ChenL. LiangJ. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents.Mater. Sci. Eng. C202011211092410.1016/j.msec.2020.11092432409074
    [Google Scholar]
  56. DasP. MaruthapandiM. SaravananA. NatanM. JacobiG. BaninE. GedankenA. Carbon dots for heavy-metal sensing, ph-sensitive cargo delivery, and antibacterial applications.ACS Appl. Nano Mater.2020312117771179010.1021/acsanm.0c02305
    [Google Scholar]
  57. TopeS. SaudagarS. KaleN. Review: Therapeutic application of quantum dots (QD).Pharma Innovat. J.2014286105
    [Google Scholar]
  58. JamiesonT. BakhshiR. PetrovaD. PocockR. ImaniM. SeifalianA.M. Biological applications of quantum dots.Biomaterials200728314717473210.1016/j.biomaterials.2007.07.01417686516
    [Google Scholar]
  59. SinghI. AroraR. DhimanH. PahwaR. Carbon quantum dots: Synthesis, characterization and biomedical applications.Turk. J. Pharmaceut. Sci.201815221923010.4274/tjps.6349732454664
    [Google Scholar]
  60. Moetasam ZorabM. MohammadjaniN. AshengrophM. AlaviM. Biosynthesis of quantum dots and their therapeutic applications in the diagnosis and treatment of cancer and SARS-CoV-2.Adv. Pharm. Bull.202313341142210.34172/apb.2023.06537646053
    [Google Scholar]
  61. DeviS. KumarM. TiwariA. TiwariV. KaushikD. VermaR. BhattS. SahooB.M. BhattacharyaT. AlshehriS. GhoneimM.M. BabalghithA.O. BatihaG.E-S. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  62. YeL. YongK.T. LiuL. RoyI. HuR. ZhuJ. CaiH. LawW.C. LiuJ. WangK. LiuJ. LiuY. HuY. ZhangX. SwihartM.T. PrasadP.N. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots.Nat. Nanotechnol.20127745345810.1038/nnano.2012.7422609691
    [Google Scholar]
  63. GidwaniB. SahuV. ShuklaS.S. PandeyR. JoshiV. JainV.K. VyasA. Quantum dots: Prospectives, toxicity, advances and applications.J. Drug Deliv. Sci. Technol.20216110230810.1016/j.jddst.2020.102308
    [Google Scholar]
  64. JuzenasP. ChenW. SunY.P. CoelhoM.A.N. GeneralovR. GeneralovaN. ChristensenI.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer.Adv. Drug Deliv. Rev.200860151600161410.1016/j.addr.2008.08.00418840487
    [Google Scholar]
  65. ÇiftçiE. RahamanM.N. ShumskyM. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles.J. Mater. Sci.200136204875488210.1023/A:1011828018247
    [Google Scholar]
  66. TongL. QiuF. ZengT. LongJ. YangJ. WangR. ZhangJ. WangC. SunT. YangY. Recent progress in the preparation and application of quantum dots/graphene composite materials.RSC Advances2017776479994801810.1039/C7RA08755A
    [Google Scholar]
  67. BeraD. QianL. TsengT.K. HollowayP.H. Quantum dots and their multimodal applications: A review.Materials2010342260234510.3390/ma3042260
    [Google Scholar]
  68. WangX. FengY. DongP. HuangJ. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application.Front Chem.2019767110.3389/fchem.2019.0067131637234
    [Google Scholar]
  69. WangR. GuoM. HuY. ZhouJ. WuR. YangX. A molecularly imprinted fluorescence sensor based on the ZnO quantum dot core–shell structure for high selectivity and photolysis function of methylene blue.ACS Omega2020532206642067310.1021/acsomega.0c0309532832820
    [Google Scholar]
  70. ShaoD. SunX. XieM. SunH. LuF. GeorgeS.M. LianJ. SawyerS. ZnO quantum dots-graphene composite for efficient ultraviolet sensing.Mater. Lett.201311216516810.1016/j.matlet.2013.09.031
    [Google Scholar]
  71. ZhaoC. SongX. LiuY. FuY. YeL. WangN. WangF. LiL. MohammadniaeiM. ZhangM. ZhangQ. LiuJ. Synthesis of graphene quantum dots and their applications in drug delivery.J. Nanobiotechnology202018114210.1186/s12951‑020‑00698‑z33008457
    [Google Scholar]
  72. ZhangZ. WangR.F. ZhangJ. LiH.S. ZhangJ. QiuF. YangJ. WangC. YangY. Direct growth of ge quantum dots on a graphene/SiO 2 /Si structure using ion beam sputtering deposition.Nanotechnology2016273030560110.1088/0957‑4484/27/30/30560127302495
    [Google Scholar]
  73. ZhaoK. ZhangL. XiaR. DongY. XuW. NiuC. HeL. YanM. QuL. MaiL. SnO 2 quantum dots@graphene oxide as a high‐rate and long‐life anode material for lithium‐ion batteries.Small201612558859410.1002/smll.20150218326680110
    [Google Scholar]
  74. YiC. PanY. FangY. Surface engineering of carbon nanodots (C-Dots) for biomedical applications.Novel Nanomaterials for Biomedical, Environmental and Energy Applications WangX. ChenX. Elsevier201913718810.1016/B978‑0‑12‑814497‑8.00005‑9
    [Google Scholar]
  75. SonD.I. YangH.Y. KimT.W. ParkW.I. Transparent and flexible ultraviolet photodetectors based on colloidal ZnO quantum dot/graphene nanocomposites formed on poly(ethylene terephthalate) substrates.Compos., Part B Eng.20156915415810.1016/j.compositesb.2014.09.026
    [Google Scholar]
  76. SonI.D. YangY.H. KimW.T. ParkI.W. Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites.Appl. Phys. Lett.2013102202110510.1063/1.4776651
    [Google Scholar]
  77. ZhangH. ZhangY. Field-effect phototransistors based on graphene-quantum dot hybrids.MATEC Web of Conferences201644103310.1051/matecconf/20164401033
    [Google Scholar]
  78. HuangR. WangL. ZhangQ. ChenZ. LiZ. PanD. ZhaoB. WuM. WuC.M.L. ShekC.H. Irradiated graphene loaded with SnO 2 quantum dots for energy storage.ACS Nano2015911113511136110.1021/acsnano.5b0514626434377
    [Google Scholar]
  79. PengC. ChenB. QinY. YangS. LiC. ZuoY. LiuS. YangJ. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.ACS Nano2012621074108110.1021/nn202888d22224549
    [Google Scholar]
  80. ChenY.L. MaY.J. ChenD.D. WangW.Q. DingK. WuQ. FanY.L. YangX.J. ZhongZ.Y. XuF. JiangZ.M. Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures.Appl. Phys. Lett.2014105202110410.1063/1.4889890
    [Google Scholar]
  81. HasanM.T. RodriguezG.R. RyanC. PotaK. GreenK. CofferJ.L. NaumovA.V. Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications.Nano Res.20191251041104710.1007/s12274‑019‑2337‑4
    [Google Scholar]
  82. TianL. YangS. YangY. LiJ. DengY. TianS. HeP. DingG. XieX. WangZ. Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis.RSC Advances2016686826488265310.1039/C6RA18695E
    [Google Scholar]
  83. TanX. LiY. LiX. ZhouS. FanL. YangS. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform.Chem. Commun.201551132544254610.1039/C4CC09332A25567527
    [Google Scholar]
  84. LiY. LiS. WangY. WangJ. LiuH. LiuX. WangL. LiuX. XueW. MaN. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging.Phys. Chem. Chem. Phys.20171918116311163810.1039/C6CP06377B28430285
    [Google Scholar]
  85. WagnerA.M. KnipeJ.M. OriveG. PeppasN.A. Quantum dots in biomedical applications.Acta Biomater.201994446310.1016/j.actbio.2019.05.02231082570
    [Google Scholar]
  86. LaiC. LinS. HuangX. JinY. Synthesis and properties of carbon quantum dots and their research progress in cancer treatment.Dyes Pigments202119610976610.1016/j.dyepig.2021.109766
    [Google Scholar]
  87. TarannumM. EscotoV.J.L. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment.Adv. Drug Deliv. Rev.202218711435710.1016/j.addr.2022.11435735605679
    [Google Scholar]
  88. ChanW.C.W. NieS. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science199828153852016201810.1126/science.281.5385.20169748158
    [Google Scholar]
  89. MiaoP. TangY. WangB. MengF. Near-infrared Ag 2 S quantum dots-based DNA logic gate platform for miRNA diagnostics.Anal. Chem.201688157567757310.1021/acs.analchem.6b0104427368143
    [Google Scholar]
  90. SempleS.C. AkincA. ChenJ. SandhuA.P. MuiB.L. ChoC.K. SahD.W.Y. StebbingD. CrosleyE.J. YaworskiE. HafezI.M. DorkinJ.R. QinJ. LamK. RajeevK.G. WongK.F. JeffsL.B. NechevL. EisenhardtM.L. JayaramanM. KazemM. MaierM.A. SrinivasuluM. WeinsteinM.J. ChenQ. AlvarezR. BarrosS.A. DeS. KlimukS.K. BorlandT. KosovrastiV. CantleyW.L. TamY.K. ManoharanM. CiufoliniM.A. TracyM.A. de FougerollesA. MacLachlanI. CullisP.R. MaddenT.D. HopeM.J. Rational design of cationic lipids for siRNA delivery.Nat. Biotechnol.201028217217610.1038/nbt.160220081866
    [Google Scholar]
  91. LeiZ. ZhangF. Molecular engineering of NIR‐II fluorophores for improved biomedical detection.Angew. Chem. Int. Ed.20216030162941630810.1002/anie.20200704032780466
    [Google Scholar]
  92. WangY. HeL. YuB. ChenY. ShenY. CongH. ZnO quantum dots modified by ph-activated charge-reversal polymer for tumor targeted drug delivery.Polymers20181011127210.3390/polym1011127230961197
    [Google Scholar]
  93. RamezaniZ. ThompsonM. MohammadiE. Quantum dots in imaging, diagnosis, and targeted drug delivery to cancer cells.Quantum Dots in Bioanalytical Chemistry and MedicineRoyal Society of Chemistry202310714110.1039/9781839169564‑00107
    [Google Scholar]
  94. TiwariP. ShuklaR.P. YadavK. SinghN. MarwahaD. GautamS. BakshiA.K. RaiN. KumarA. SharmaD. MishraP.R. Dacarbazine-primed carbon quantum dots coated with breast cancer cell-derived exosomes for improved breast cancer therapy.J. Control. Release2024365435910.1016/j.jconrel.2023.11.00537935257
    [Google Scholar]
  95. CaiX. LuoY. ZhangW. DuD. LinY. pH-Sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery.ACS Appl. Mater. Interfaces2016834224422245010.1021/acsami.6b0493327463610
    [Google Scholar]
  96. AbdelgalilR.M. KhattabS.N. EbrahimS. ElkhodairyK.A. TelebM. BekhitA.A. SallamM.A. ElzoghbyA.O. Engineered sericin-tagged layered double hydroxides for combined delivery of pemetrexed and zno quantum dots as biocompatible cancer nanotheranostics.ACS Omega2023865655567110.1021/acsomega.2c0712836816638
    [Google Scholar]
  97. ZhaoT. LiuX. LiY. ZhangM. HeJ. ZhangX. LiuH. WangX. GuH. Fluorescence and drug loading properties of ZnSe:Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles.J. Colloid Interface Sci.201749043644310.1016/j.jcis.2016.11.07927914343
    [Google Scholar]
  98. BwatanglangI.B. MohammadF. YusofN.A. AbdullahJ. AlitheenN.B. HusseinM.Z. AbuN. MohammedN.E. NordinN. ZamberiN.R. YeapS.K. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system.J. Colloid Interface Sci.201648014615810.1016/j.jcis.2016.07.01127428851
    [Google Scholar]
  99. OlerileL.D. LiuY. ZhangB. WangT. MuS. ZhangJ. SelotlegengL. ZhangN. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic.Colloids Surf. B Biointerfaces201715012113010.1016/j.colsurfb.2016.11.03227907859
    [Google Scholar]
  100. KurniawanD. MathewJ. RahardjaM.R. PhamH.P. WongP.C. RaoN.V. OstrikovK.K. ChiangW.H. Plasma‐enabled graphene quantum dot hydrogels as smart anticancer drug nanocarriers.Small20231920220681310.1002/smll.20220681336732883
    [Google Scholar]
  101. GaoX. LiuZ. LinZ. SuX. CuInS2 quantum dots/poly(l-glutamic acid)–drug conjugates for drug delivery and cell imaging.Analyst2014139483183610.1039/c3an01134h24418901
    [Google Scholar]
  102. HabibaK. RosadoE.J. PabonG.K. SantosV.J.C. MakarovV.I. AvalosJ.A. WeinerB.R. MorellG. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites.Int. J. Nanomedicine20151110711910.2147/IJN.S9544026766909
    [Google Scholar]
  103. ChiuS.H. GeddaG. GirmaW.M. ChenJ.K. LingY.C. GhuleA.V. OuK.L. ChangJ.Y. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy.Acta Biomater.20164615116410.1016/j.actbio.2016.09.02727662808
    [Google Scholar]
  104. LiuL. JiangH. DongJ. ZhangW. DangG. YangM. LiY. ChenH. JiH. DongL. PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery.Colloids Surf. B Biointerfaces202018511059010.1016/j.colsurfb.2019.11059031670002
    [Google Scholar]
  105. CaoY. WangK. ZhuP. ZouX. MaG. ZhangW. WangD. WanJ. MaY. SunX. DongJ. A near-infrared triggered upconversion/MoS2 nanoplatform for tumour-targeted chemo-photodynamic combination therapy.Colloids Surf. B Biointerfaces202221311239310.1016/j.colsurfb.2022.11239335144084
    [Google Scholar]
  106. ShenY. SunY. YanR. ChenE. WangH. YeD. XuJ.J. ChenH.Y. Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy.Biomaterials2017148314010.1016/j.biomaterials.2017.09.02628961533
    [Google Scholar]
  107. FengL. HeF. DaiY. GaiS. ZhongC. LiC. YangP. Multifunctional UCNPs@MnSiO 3 @g-C 3 N 4 nanoplatform: Improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy.Biomater. Sci.20175122456246710.1039/C7BM00798A29068014
    [Google Scholar]
  108. SongD. ChiS. LiX. WangC. LiZ. LiuZ. Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency.ACS Appl. Mater. Interfaces20191144411004110810.1021/acsami.9b1623731618568
    [Google Scholar]
  109. ShenC.L. LiuH.R. LouQ. WangF. LiuK.K. DongL. ShanC.X. Recent progress of carbon dots in targeted bioimaging and cancer therapy.Theranostics20221262860289310.7150/thno.7072135401835
    [Google Scholar]
  110. ChristensenI.L. SunY.P. JuzenasP. Carbon dots as antioxidants and prooxidants.J. Biomed. Nanotechnol.20117566767610.1166/jbn.2011.133422195484
    [Google Scholar]
  111. ChongY. GeC. FangG. TianX. MaX. WenT. WamerW.G. ChenC. ChaiZ. YinJ.J. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light.ACS Nano20161098690869910.1021/acsnano.6b0406127584033
    [Google Scholar]
  112. LinG. ChenT. ZouJ. WangY. WangX. LiJ. HuangQ. FuZ. ZhaoY. LinM.C.M. XuG. YongK.T. Quantum dots-siRNA nanoplexes for gene silencing in central nervous system tumor cells.Front. Pharmacol.2017818210.3389/fphar.2017.0018228420995
    [Google Scholar]
  113. WangY. YangC. HuR. TohH.T. LiuX. LinG. YinF. YoonH.S. YongK.T. Assembling Mn:ZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells.Biomater. Sci.20153119220210.1039/C4BM00306C26214202
    [Google Scholar]
  114. ZhuH. ZhangS. LingY. MengG. YangY. ZhangW. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery.J. Control. Release2015220Pt A52954410.1016/j.jconrel.2015.11.01726590349
    [Google Scholar]
  115. BaratiF. AvatefiM. MoghadamN.B. AsghariS. EkramiE. MahmoudifardM. A review of graphene quantum dots and their potential biomedical applications.J. Biomater. Appl.20233771137115810.1177/0885328222112531136066191
    [Google Scholar]
  116. YangH.L. BaiL.F. GengZ.R. ChenH. XuL.T. XieY.C. WangD.J. GuH.W. WangX.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications.Mater. Today Adv.20231810037610.1016/j.mtadv.2023.100376
    [Google Scholar]
  117. EinafsharE. EinafsharN. KhazaeiM. Recent advances in mxene quantum dots: A platform with unique properties for general-purpose functional materials with novel biomedical applications.Top. Curr. Chem.202338152710.1007/s41061‑023‑00439‑437670112
    [Google Scholar]
  118. LiG. LiuZ. GaoW. TangB. Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications.Coord. Chem. Rev.202347821496610.1016/j.ccr.2022.214966
    [Google Scholar]
  119. BarveK. SinghU. YadavP. BhatiaD. Carbon-based designer and programmable fluorescent quantum dots for targeted biological and biomedical applications.Mater. Chem. Front.2023791781180210.1039/D2QM01287A
    [Google Scholar]
  120. Resch-GengerU. GrabolleM. Cavaliere-JaricotS. NitschkeR. NannT. Quantum dots versus organic dyes as fluorescent labels.Nat. Methods20085976377510.1038/nmeth.124818756197
    [Google Scholar]
  121. McHughK.J. JingL. BehrensA.M. JayawardenaS. TangW. GaoM. LangerR. JaklenecA. Biocompatible semiconductor quantum dots as cancer imaging agents.Adv. Mater.20183018170635610.1002/adma.20170635629468747
    [Google Scholar]
  122. MohammadW.T. AlijaniH. FarisP. SalarkiaE. NaderifarM. AkbarizadehM.R. HashemiN. IravaniS. JalilA.T. SalehM.M. FathiA. KhatamiM. Plant-mediated synthesis of sphalerite (ZnS) quantum dots, Th1-Th2 genes expression and their biomedical applications.S. Afr. J. Bot.202315512713910.1016/j.sajb.2023.01.041
    [Google Scholar]
  123. SwierczynskiS.L. MaitraA. AbrahamS.C. DonahueI.C.A. AshfaqR. CameronJ.L. SchulickR.D. YeoC.J. RahmanA. HinkleD.A. HrubanR.H. ArganiP. Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays.Hum. Pathol.200435335736610.1016/j.humpath.2003.10.01215017593
    [Google Scholar]
  124. NidaD.L. RahmanM.S. CarlsonK.D. KortumR.R. FollenM. Fluorescent nanocrystals for use in early cervical cancer detection.Gynecol. Oncol.2005993S89S9410.1016/j.ygyno.2005.07.05016139342
    [Google Scholar]
  125. MontetX. WeisslederR. JosephsonL. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas.Bioconjug. Chem.200617490591110.1021/bc060035+16848396
    [Google Scholar]
  126. HrubanR.H. MaitraA. KernS.E. GogginsM. Precursors to pancreatic cancer.Gastroenterol Clin North Am20073683184910.1016/j.gtc.2007.08.012
    [Google Scholar]
  127. QianJ. YongK.T. RoyI. OhulchanskyyT.Y. BergeyE.J. LeeH.H. TramposchK.M. HeS. MaitraA. PrasadP.N. Imaging pancreatic cancer using surface-functionalized quantum dots.J. Phys. Chem. B2007111256969697210.1021/jp070620n17552555
    [Google Scholar]
  128. YongK.T. DingH. RoyI. LawW.C. BergeyE.J. MaitraA. PrasadP.N. Imaging pancreatic cancer using bioconjugated InP quantum dots.ACS Nano20093350251010.1021/nn800893319243145
    [Google Scholar]
  129. YangC. YinM. XuG. LinW.J. ChenJ. ZhangY. FengT. HuangP. ChenC.K. YongK.T. Biodegradable polymers as a noncoding miRNA nanocarrier for multiple targeting therapy of human hepatocellular carcinoma.Adv. Healthc. Mater.201988180131810.1002/adhm.20180131830829008
    [Google Scholar]
  130. LiM.M. CaoJ. YangJ.C. ShenY.J. CaiX.L. ChenY.W. QuC.Y. ZhangY. ShenF. ZhouM. XuL.M. Biodistribution and toxicity assessment of intratumorally injected arginine–glycine–aspartic acid peptide conjugated to CdSe/ZnS quantum dots in mice bearing pancreatic neoplasm.Chem. Biol. Interact.201829110311010.1016/j.cbi.2018.06.01429908985
    [Google Scholar]
  131. HorewegN. ScholtenE.T. de JongP.A. van der AalstC.M. WeeninkC. LammersJ.W.J. NackaertsK. VliegenthartR. ten HaafK. Yousaf-KhanU.A. HeuvelmansM.A. ThunnissenE. OudkerkM. MaliW. de KoningH.J. Detection of lung cancer through low-dose CT screening (NELSON): A prespecified analysis of screening test performance and interval cancers.Lancet Oncol.201415121342135010.1016/S1470‑2045(14)70387‑025282284
    [Google Scholar]
  132. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  133. ChenC.T. SalunkeS. WeiT.T. TangY.A. WangY.C. Fluorescent nanohybrids from ZnS/CdSe quantum dots functionalized with triantennary, N -Hydroxy- p -(4-arylbutanamido)benzamide/gallamide dendrons that act as inhibitors of histone deacetylase for lung cancer.ACS Appl. Bio Mater.2021432475248910.1021/acsabm.0c0143835014366
    [Google Scholar]
  134. DumanF.D. AkkocY. DemirciG. BaviliN. KirazA. GozuacikD. AcarH.Y. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag 2 S quantum dots.J. Mater. Chem. B Mater. Biol. Med.20197467363737610.1039/C9TB01602C31696188
    [Google Scholar]
  135. Díaz-GarcíaV.M. GuerreroS. ValdiviaD.N. GonzálezL.L. KoganM. DonosoP.J. QuestA.F.G. Biomimetic quantum dot-labeled B16F10 murine melanoma cells as a tool to monitor early steps of lung metastasis by in vivo imaging.Int. J. Nanomedicine2018136391641210.2147/IJN.S16556530410327
    [Google Scholar]
  136. KulkarniN.S. ParvathaneniV. ShuklaS.K. BarasaL. PerronJ.C. YoganathanS. MuthA. GuptaV. Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment.Eur. J. Pharm. Sci.201913314515910.1016/j.ejps.2019.03.02630946965
    [Google Scholar]
  137. SungS.Y. SuY.L. ChengW. HuP.F. ChiangC.S. ChenW.T. HuS.H. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges.Nano Lett.2019191698110.1021/acs.nanolett.8b0324930521346
    [Google Scholar]
  138. RoshiniA. JagadeesanS. ArivazhaganL. ChoY.J. LimJ.H. DohY.H. KimS.J. NaJ. ChoiK.H. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line.Mater. Sci. Eng. C20189247748810.1016/j.msec.2018.06.073
    [Google Scholar]
  139. HuangX. ChenQ. LiX. LinC. WangK. LuoC. LeW. PiX. LiuZ. ChenB. CKAP4 antibody-conjugated si quantum dot micelles for targeted imaging of lung cancer.Nanoscale Res. Lett.202116112410.1186/s11671‑021‑03575‑234331597
    [Google Scholar]
  140. PilchJ. Matysiak-BryndaE. KowalczykA. BujakP. MazerskaZ. NowickaA.M. AugustinE. New unsymmetrical bisacridine derivatives noncovalently attached to quaternary quantum dots improve cancer therapy by enhancing cytotoxicity toward cancer cells and protecting normal cells.ACS Appl. Mater. Interfaces20201215172761728910.1021/acsami.0c0262132208730
    [Google Scholar]
  141. ThavaroolS.B. MuttathG. NayanarS. DuraisamyK. BhatP. ShringarpureK. NayakP. TripathyJ.P. ThaddeusA. PhilipS. BS. Improved survival among oral cancer patients: Findings from a retrospective study at a tertiary care cancer centre in rural Kerala, India.World J. Surg. Oncol.20191711510.1186/s12957‑018‑1550‑z30635062
    [Google Scholar]
  142. RiveraC. Essentials of oral cancer.Int. J. Clin. Exp. Pathol.201589118841189426617944
    [Google Scholar]
  143. DasR.K. PandaS. BholC.S. BhutiaS.K. MohapatraS. N-doped carbon quantum dot (NCQD)-deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer.Langmuir20193547153201532910.1021/acs.langmuir.9b0300131682135
    [Google Scholar]
  144. LiQ. ZhouR. XieY. LiY. ChenY. CaiX. Sulphur‐doped carbon dots as a highly efficient nano‐photodynamic agent against oral squamous cell carcinoma.Cell Prolif.2020534e1278610.1111/cpr.1278632301195
    [Google Scholar]
  145. SakorafasG.H. ZourosE. PerosG. Applied vascular anatomy of the colon and rectum: Clinical implications for the surgical oncologist.Surg. Oncol.200615424325510.1016/j.suronc.2007.03.00217531744
    [Google Scholar]
  146. HoustonS.A. CerovicV. ThomsonC. BrewerJ. MowatA.M. MillingS. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct.Mucosal Immunol.20169246847810.1038/mi.2015.7726329428
    [Google Scholar]
  147. LoP.Y. LeeG.Y. ZhengJ.H. HuangJ.H. ChoE.C. LeeK.C. GFP plasmid and chemoreagent conjugated with graphene quantum dots as a novel gene delivery platform for colon cancer inhibition in vitro and in vivo. ACS Appl. Bio Mater.2020395948595610.1021/acsabm.0c0063135021823
    [Google Scholar]
  148. PilchJ. KowalikP. BujakP. NowickaA.M. AugustinE. Quantum dots as a good carriers of unsymmetrical bisacridines for modulating cellular uptake and the biological response in lung and colon cancer cells.Nanomaterials202111246210.3390/nano1102046233670297
    [Google Scholar]
  149. Al DineE.J. MarchalS. SchneiderR. HamieB. GhanbajaJ. Roques-CarmesT. HamiehT. ToufailyJ. GaffetE. AlemH. A facile approach for doxorubicine delivery in cancer cells by responsive and fluorescent core/shell quantum dots.Bioconjug. Chem.20182972248225610.1021/acs.bioconjchem.8b0025329906097
    [Google Scholar]
  150. SangjanA. BoonsithS. SansanaphongprichaK. ThinbanmaiT. RatchahatS. LaosiripojanaN. WuK.C.W. ShinH.S. SakdaronnarongC. Facile preparation of aqueous-soluble fluorescent polyethylene glycol functionalized carbon dots from palm waste by one-pot hydrothermal carbonization for colon cancer nanotheranostics.Sci. Rep.20221211055010.1038/s41598‑022‑14704‑x35732805
    [Google Scholar]
  151. NitheeshY. PradhanR. HejmadyS. TaliyanR. SinghviG. AlexanderA. KesharwaniP. DubeyS.K. Surface engineered nanocarriers for the management of breast cancer.Mater. Sci. Eng. C202113011244110.1016/j.msec.2021.11244134702526
    [Google Scholar]
  152. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. KalbolandiM.S. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  153. WuX. LiuH. LiuJ. HaleyK.N. TreadwayJ.A. LarsonJ.P. GeN. PealeF. BruchezM.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat. Biotechnol.2003211414610.1038/nbt76412459735
    [Google Scholar]
  154. BradenA. StankowskiR. EngelJ. OnitiloA. Breast cancer biomarkers: risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence.Curr. Pharm. Des.201420304879489810.2174/138161281966613112514551724283956
    [Google Scholar]
  155. KatsuraC. OgunmwonyiI. KankamH.K.N. SahaS. Breast cancer: Presentation, investigation and management.Br. J. Hosp. Med.20228321710.12968/hmed.2021.045935243878
    [Google Scholar]
  156. MaughanK.L. LutterbieM.A. HamP.S. Treatment of breast cancer.Am. Fam. Physician201081111339134620521754
    [Google Scholar]
  157. YezhelyevM.V. Al-HajjA. MorrisC. MarcusA.I. LiuT. LewisM. CohenC. ZrazhevskiyP. SimonsJ.W. RogatkoA. NieS. GaoX. O’ReganR.M. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots.Adv. Mater.200719203146315110.1002/adma.200701983
    [Google Scholar]
  158. NaderiS. ZareH. TaghaviniaN. IrajizadA. AghaeiM. PanjehpourM. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.Toxicol. Ind. Health201834533935210.1177/074823371876351729591890
    [Google Scholar]
  159. DeD. DasC.K. MandalD. MandalM. PawarN. ChandraA. GuptaA.N. Curcumin complexed with graphene derivative for breast cancer therapy.ACS Appl. Bio Mater.2020396284629610.1021/acsabm.0c0077135021759
    [Google Scholar]
  160. ZhangH. BaS. YangZ. WangT. LeeJ.Y. LiT. ShaoF. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker APE1 in living cells.ACS Appl. Mater. Interfaces20201212136341364310.1021/acsami.9b2138532129072
    [Google Scholar]
  161. WangL. YanJ. Superficial synthesis of photoactive copper sulfide quantum dots loaded nano-graphene oxide sheets combined with near infrared (NIR) laser for enhanced photothermal therapy on breast cancer in nursing care management.J. Photochem. Photobiol. B2019192687310.1016/j.jphotobiol.2018.12.02430685585
    [Google Scholar]
  162. GhanbariN. SalehiZ. KhodadadiA.A. ShokrgozarM.A. SabouryA.A. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer.Mater. Sci. Eng. C202112111180910.1016/j.msec.2020.11180933579453
    [Google Scholar]
  163. EsgandariK. MohammadianM. ZohdiaghdamR. RastinS.J. AlidadiS. BehrouzkiaZ. Combined treatment with silver graphene quantum dot, radiation, and 17‐AAG induces anticancer effects in breast cancer cells.J. Cell. Physiol.202123642817282810.1002/jcp.3004632901933
    [Google Scholar]
  164. ZhaoP. XuY. JiW. ZhouS. LiL. QiuL. QianZ. WangX. ZhangH. Biomimetic black phosphorus quantum dots-based photothermal therapy combined with anti-PD-L1 treatment inhibits recurrence and metastasis in triple-negative breast cancer.J. Nanobiotechnology202119118110.1186/s12951‑021‑00932‑234120612
    [Google Scholar]
  165. Seyyedi ZadehE. GhanbariN. SalehiZ. DerakhtiS. AmoabedinyG. AkbariM. TokmedashA.M. Smart pH-responsive magnetic graphene quantum dots nanocarriers for anticancer drug delivery of curcumin.Mater. Chem. Phys.202329712733610.1016/j.matchemphys.2023.127336
    [Google Scholar]
  166. LiX. VinothiniK. RameshT. RajanM. RamuA. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system.Drug Deliv.202027179180410.1080/10717544.2020.176543132420760
    [Google Scholar]
  167. McMullenM. KarakasisK. RottapelR. OzaA.M. Advances in ovarian cancer, from biology to treatment.Nat. Can.2021216810.1038/s43018‑020‑00166‑535121897
    [Google Scholar]
  168. RickardB.P. ConradC. SorrinA.J. RuhiM.K. ReaderJ.C. HuangS.A. FrancoW. ScarcelliG. PolacheckW.J. RoqueD.M. del CarmenM.G. HuangH.C. DemirciU. RizviI. Malignant ascites in ovarian cancer: Cellular, acellular, and biophysical determinants of molecular characteristics and therapy response.Cancers20211317431810.3390/cancers1317431834503128
    [Google Scholar]
  169. CroftP.K. SharmaS. GodboleN. RiceG.E. SalomonC. Ovarian-cancer-associated extracellular vesicles: Microenvironmental regulation and potential clinical applications.Cells2021109227210.3390/cells1009227234571921
    [Google Scholar]
  170. MoazampourM. ZareH.R. ShekariZ. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on l -cysteine functionalized ZnS quantum dots.Anal. Methods202113172021202910.1039/D1AY00330E33956002
    [Google Scholar]
  171. MacphersonA.M. BarryS.C. RicciardelliC. OehlerM.K. Epithelial ovarian cancer and the immune system: Biology, interactions, challenges and potential advances for immunotherapy.J. Clin. Med.202099296710.3390/jcm909296732937961
    [Google Scholar]
  172. WangH.Z. WangH.Y. LiangR.Q. RuanK.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots.Acta Biochim. Biophys. Sin.2004361068168610.1093/abbs/36.10.68115483748
    [Google Scholar]
  173. NathwaniB.B. JaffariM. JurianiA.R. MathurA.B. MeissnerK.E. Fabrication and characterization of silk-fibroin-coated quantum dots.IEEE Trans. Nanobiosci.200981727710.1109/TNB.2009.201729519304498
    [Google Scholar]
  174. ChenD. LiB. LeiT. NaD. NieM. YangY. Congjia Xie HeZ. WangJ. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton.J. Nanobiotechnology20211916810.1186/s12951‑021‑00813‑833663548
    [Google Scholar]
  175. Prostate cancer.Nat. Rev. Dis. Primers202171810.1038/s41572‑021‑00249‑233542231
    [Google Scholar]
  176. WilliamsI.S.C. McVeyA. PereraS. O’BrienJ.S. KostosL. ChenK. SivaS. AzadA.A. MurphyD.G. KasivisvanathanV. LawrentschukN. FrydenbergM. Modern paradigms for prostate cancer detection and management.Med. J. Aust.2022217842443310.5694/mja2.5172236183329
    [Google Scholar]
  177. WasimS. LeeS.Y. KimJ. Complexities of prostate cancer.Int. J. Mol. Sci.202223221425710.3390/ijms23221425736430730
    [Google Scholar]
  178. LeslieS.W. Soon-SuttonT.L. Prostate CancersStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  179. ShiC. ZhouG. ZhuY. SuY. ChengT. ZhauH.E. ChungL.W.K. Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells.Eur. J. Histochem.200952212713410.4081/120218591159
    [Google Scholar]
  180. BaruaS. RegeK. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots.Small20095337037610.1002/smll.20080097219089841
    [Google Scholar]
  181. GaoX. CuiY. LevensonR.M. ChungL.W.K. NieS. In vivo cancer targeting and imaging with semiconductor quantum dots.Nat. Biotechnol.200422896997610.1038/nbt99415258594
    [Google Scholar]
  182. NcapayiV. NinanN. LebepeT.C. ParaniS. GirijaA.R. BrightR. VasilevK. MalulekeR. TsolekileN. KodamaT. OluwafemiO.S. Diagnosis of prostate cancer and prostatitis using near infra-red fluorescent aginse/zns quantum dots.Int. J. Mol. Sci.202122221251410.3390/ijms22221251434830396
    [Google Scholar]
  183. JigyasuA.K. SiddiquiS. JafriA. ArshadM. LohaniM. KhanI.A. Biological synthesis of CdTe quantum dots and their anti-proliferative assessment against prostate cancer cell line.J. Nanosci. Nanotechnol.20202063398340310.1166/jnn.2020.1731631748032
    [Google Scholar]
  184. RajalakshmiK. DengT. MuthusamyS. XieM. XieJ. LeeK.B. XuY. Prostate cancer biomarker citrate detection using triaminoguanidinium carbon dots, its applications in live cells and human urine samples.Spectrochim. Acta A Mol. Biomol. Spectrosc.202226812062210.1016/j.saa.2021.12062234865974
    [Google Scholar]
  185. LinX. ChenT. A review of in vivo toxicity of quantum dots in animal models.Int. J. Nanomedicine2023188143816810.2147/IJN.S43484238170122
    [Google Scholar]
  186. SenguptaS. PalS. PalA. MaityS. SarkarK. DasM. A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs).Inorg. Chim. Acta202355712167710.1016/j.ica.2023.121677
    [Google Scholar]
  187. SobhananJ. RivalJ.V. AnasA. ShibuS.E. TakanoY. BijuV. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.Adv. Drug Deliv. Rev.202319711483010.1016/j.addr.2023.11483037086917
    [Google Scholar]
  188. PonsT. PicE. LequeuxN. CassetteE. BezdetnayaL. GuilleminF. MarchalF. DubertretB. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity.ACS Nano2010452531253810.1021/nn901421v20387796
    [Google Scholar]
  189. CharronG. StuchinskayaT. EdwardsD.R. RussellD.A. NannT. Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy.J. Phys. Chem. C2012116169334934210.1021/jp301103f
    [Google Scholar]
  190. ParkJ. DvoracekC. LeeK.H. GallowayJ.F. BhangH.C. PomperM.G. SearsonP.C. CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging.Small20117223148315210.1002/smll.20110155821936052
    [Google Scholar]
  191. YangL. YuanM. MaP. ChenX. ChengZ. LinJ. Assembling AgAuSe quantum dots with peptidoglycan and neutrophils to realize enhanced tumor targeting, NIR (II) imaging, and sonodynamic therapy.Small Methods202377220170610.1002/smtd.20220170637093226
    [Google Scholar]
  192. JiP. ChenJ. WangH. ShiL. TangX. DuoY. Bacteria-targeted delivery of black phosphorus quantum dots facilitates photothermal therapy against hypoxic tumors and complementary low-dose radiotherapy.Biomater. Sci.202311134727474010.1039/D3BM00206C37249003
    [Google Scholar]
  193. JalalN.R. MollarasouliF. SarvestaniJ.M.R. KhaliliS. AsadiS. DerakhshanZ. MadrakianT. AfkhamiA. AhmadiM. Quantum dots in medical detection/diagnosis.Quantum Dots in Bioanalytical Chemistry and MedicineRoyal Society of Chemistry20237510610.1039/9781839169564‑00075
    [Google Scholar]
  194. AlipourB. MortezazadehT. AbdulsahibW.K. ArzhangA. MalekzadehR. FarhoodB. A systematic review of multimodal application of quantum dots in breast cancer diagnosis: Effective parameters, status and future perspectives.J. Drug Deliv. Sci. Technol.20238610468210.1016/j.jddst.2023.104682
    [Google Scholar]
  195. SekarS. SuthaS. SaravananS. LeeS. Innovations and applications of quantum dots for cancer therapy.Carbon and Graphene Quantum Dots for Biomedical ApplicationsElsevier202323926010.1016/B978‑0‑323‑98362‑4.00003‑9
    [Google Scholar]
  196. ZhaoZ. LuoQ. ChuS. WenQ. YuZ. XuJ. XuW. YiM. Preparation and in vivo imaging of NIR-emissive carbonized polymer dots derived from biomass olive leaves with a quantum yield of 71.4%.RSC Advances20231322151821518910.1039/D3RA01378B37213343
    [Google Scholar]
  197. SchipperM.L. ChengZ. LeeS.W. BentolilaL.A. IyerG. RaoJ. ChenX. WuA.M. WeissS. GambhirS.S. microPET-based biodistribution of quantum dots in living mice.J. Nucl. Med.20074891511151810.2967/jnumed.107.04007117704240
    [Google Scholar]
  198. HanD. ChenR. KanH. XuY. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles.Eco-Environ. & Health2023239510610.1016/j.eehl.2023.06.00138074989
    [Google Scholar]
  199. NabilM. MegahedF. Quantum dot nanomaterials: Preparation, characterization, advanced bio-imaging and therapeutic applications.J. Fluoresc.2023202310.1007/s10895‑023‑03472‑037878236
    [Google Scholar]
  200. XuW. ZhangJ. YangZ. ZhaoM. LongH. WuQ. NianF. Tannin–Mn coordination polymer coated carbon quantum dots nanocomposite for fluorescence and magnetic resonance bimodal imaging.J. Mater. Sci. Mater. Med.20223321610.1007/s10856‑021‑06629‑035072786
    [Google Scholar]
  201. MehraryaM. MozafariM.R. GharehchelouB. KabarkouhiZ. AtaeiS. EsfahaniF.N. WintrasiriM.N. Functionalized nanostructured bioactive carriers: Nanoliposomes, quantum dots, tocosome, and theranostic approach.Curr. Drug Deliv.202219101001101110.2174/156720181966622032409293335331111
    [Google Scholar]
  202. DubykK. BorisovaT. PaliienkoK. KrisanovaN. IsaievM. AlekseevS. SkryshevskyV. LysenkoV. GeloenA. Bio-distribution of carbon nanoparticles studied by photoacoustic measurements.Nanoscale Res. Lett.202217112710.1186/s11671‑022‑03768‑336562892
    [Google Scholar]
  203. RoeinfardM. ZahedifarM. DarroudiM. SadriK. ZakK.A. Preparation of technetium labeled-graphene quantum dots and investigation of their bio distribution.J. Cluster Sci.202233396597310.1007/s10876‑021‑02033‑4
    [Google Scholar]
  204. AswathyR.G. YoshidaY. MaekawaT. KumarD.S. Near-infrared quantum dots for deep tissue imaging.Anal. Bioanal. Chem.201039741417143510.1007/s00216‑010‑3643‑620349348
    [Google Scholar]
  205. GargM. VishwakarmaN. SharmaA.L. SinghS. Amine-functionalized graphene quantum dots for fluorescence-based immunosensing of ferritin.ACS Appl. Nano Mater.2021477416742510.1021/acsanm.1c01398
    [Google Scholar]
  206. MehtaJ. DilbaghiN. Kumar SinghalN. MarrazzaG. KaushikA. KumarS. Electrochemiluminescent quantum dots as emerging next generation sensing platforms.Chem. Eng. J.202347714695810.1016/j.cej.2023.146958
    [Google Scholar]
  207. ZhengY. WangY. LiZ. YuanZ. GuoS. LouZ. HanW. ShenG. WangL. MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention.Matter20236250652010.1016/j.matt.2022.11.020
    [Google Scholar]
  208. YaoL. ZhaoM.M. LuoQ.W. ZhangY.C. LiuT.T. YangZ. LiaoM. TuP. ZengK.W. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity.ACS Nano20221669228923910.1021/acsnano.2c0161935622408
    [Google Scholar]
  209. GopalA.R. JoyF. DuttaV. DevasiaJ. DateerR. NizamA. Carbon dot‐based fluorescence resonance energy transfer (FRET) systems for biomedical, sensing, and imaging applications.Part. Part. Syst. Charact.2024411230007210.1002/ppsc.202300072
    [Google Scholar]
  210. DouL. LiuR. WangZ. HuangZ. WangL. LinM. HouX. ZhangJ. ChengT. HeQ. WangD. GuoD. AnR. WeiL. YaoY. ZhangY. Black phosphorus quantum dots induced ferroptosis in lung cell via increasing lipid peroxidation and iron accumulation.Food Chem. Toxicol.202317911395210.1016/j.fct.2023.11395237481226
    [Google Scholar]
  211. SunJ. GengJ. TangB.Z. HeX. DNA‐Programmed (De)hybridization of near‐infrared photosensitized UCNP‐QDs‐GNPs nanoprobes for MicroRNA imaging and image‐guided cancer therapy.Adv. Funct. Mater.2024231529910.1002/adfm.202315299
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010294163240407153842
Loading
/content/journals/cpb/10.2174/0113892010294163240407153842
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioimaging; cancer; Quantum dots; theranostics; therapeutics; therapy; tracking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test