Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is the second-leading cause of death in the 21st century, where early detection and appropriate therapeutic interventions are two components essential for effective cancer management. Despite the availability of several conventional diagnostics and therapeutic agents, cancer mortality rates are rising due to an increase in the frequency of recurrence and metastasis in cancer patients. Therefore, tremendous efforts have been expended to address this significant clinical issue and improve therapeutic efficacy. In this regard, nanotheranostic is a multipotential single platform for both cancer diagnosis and treatment through enhanced aqueous solubility and bioavailability of the encapsulated agent, stimulus responsiveness, tumor-specific targeting ability, precise tumor imaging, and real-time drug delivery. Nonetheless, the translational success of nanotheranostic platforms is still in its infancy and requires more extensive research in the context of tumor heterogeneity, safety profile, and regulatory issues, which pose one of the largest technological limitations. The present review summarizes different nanotheranostic platforms and nanotheranostic candidates in clinical trials (AGuIX® NBTXR3, Ferumoxtran, MM-398, EndoTAG-1, .), along with disadvantages and challenges to improving cancer diagnosis and treatment. Overall, the concept, platform, and technical knowledge of nanotheranostics are really helpful to academic and pharmaceutical researchers.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010285567240222072959
2024-03-04
2025-10-31
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  2. HisadaY. MackmanN. Tissue factor and cancer: Regulation, tumor growth, and metastasis.Semin. Thromb. Hemost.201945438539510.1055/s‑0039‑1687894 31096306
    [Google Scholar]
  3. ChristensonE.S. JaffeeE. AzadN.S. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: A bright future.Lancet Oncol.2020213e135e14510.1016/S1470‑2045(19)30795‑8 32135117
    [Google Scholar]
  4. SarhadiV.K. ArmengolG. Molecular biomarkers in cancer.Biomolecules2022128102110.3390/biom12081021 35892331
    [Google Scholar]
  5. TabishT.A. DeyP. MoscaS. SalimiM. PalomboF. MatousekP. StoneN. Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy.Adv. Sci.2020715190344110.1002/advs.201903441 32775148
    [Google Scholar]
  6. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  7. AlshehriS. ImamS.S. RizwanullahM. AkhterS. MahdiW. KaziM. AhmadJ. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges.Pharmaceutics20201312410.3390/pharmaceutics13010024 33374391
    [Google Scholar]
  8. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  9. ParveenS. MisraR. SahooS.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine 20128214716610.1016/j.nano.2011.05.016 21703993
    [Google Scholar]
  10. KunduP. SinghD. SinghA. SahooS.K. Cancer nanotheranostics: A nanomedicinal approach for cancer therapy and diagnosis.Anticancer. Agents Med. Chem.202020111288129910.2174/1871520619666190820145930 31429694
    [Google Scholar]
  11. AngM.J.Y. ChanS.Y. GohY.Y. LuoZ. LauJ.W. LiuX. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics.Adv. Drug Deliv. Rev.202117811390710.1016/j.addr.2021.113907 34371084
    [Google Scholar]
  12. LiS. ZouQ. XingR. GovindarajuT. FakhrullinR. YanX. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics.Theranostics20199113249326110.7150/thno.31814 31244952
    [Google Scholar]
  13. BaiJ.W. QiuS.Q. ZhangG.J. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions.Signal Transduct. Target. Ther.2023818910.1038/s41392‑023‑01366‑y 36849435
    [Google Scholar]
  14. GroverV.P.B. TognarelliJ.M. CrosseyM.M.E. CoxI.J. Taylor-RobinsonS.D. McPhailM.J.W. Magnetic resonance imaging: Principles and techniques: Lessons for clinicians.J. Clin. Exp. Hepatol.20155324625510.1016/j.jceh.2015.08.001 26628842
    [Google Scholar]
  15. LvJ. RoyS. XieM. YangX. GuoB. Contrast agents of magnetic resonance imaging and future perspective.Nanomaterials 20231313200310.3390/nano13132003 37446520
    [Google Scholar]
  16. DaviesJ. Siebenhandl-WolffP. TranquartF. JonesP. EvansP. Gadolinium: Pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration.Arch. Toxicol.202296240342910.1007/s00204‑021‑03189‑8 34997254
    [Google Scholar]
  17. NaH.B. LeeJ.H. AnK. ParkY.I. ParkM. LeeI.S. NamD.H. KimS.T. KimS.H. KimS.W. LimK.H. KimK.S. KimS.O. HyeonT. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles.Angew. Chem. Int. Ed.200746285397540110.1002/anie.200604775 17357103
    [Google Scholar]
  18. KimT. ChoE.J. ChaeY. KimM. OhA. JinJ. LeeE.S. BaikH. HaamS. SuhJ.S. HuhY.M. LeeK. Urchin-shaped manganese oxide nanoparticles as pH-responsive activatable T1 contrast agents for magnetic resonance imaging.Angew. Chem. Int. Ed.20115045105891059310.1002/anie.201103108 21928456
    [Google Scholar]
  19. YanX. LiS. YanH. YuC. LiuF. IONPs-based medical imaging in cancer care: Moving beyond traditional diagnosis and therapeutic assessment.Int. J. Nanomedicine2023181741176310.2147/IJN.S399047 37034271
    [Google Scholar]
  20. ShevtsovM.A. NikolaevB. YakovlevaL. MarchenkoY. MikhrinaA. MartynovaM. BystrovaO. DobrodumovA. IschenkoA. YakovenkoI.V. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors.Int. J. Nanomedicine2014927328710.2147/IJN.S55118 24421639
    [Google Scholar]
  21. ChenT.J. ChengT.H. ChenC.Y. HsuS.C.N. ChengT.L. LiuG.C. WangY.M. Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI.J. Biol. Inorg. Chem.200914225326010.1007/s00775‑008‑0445‑9 18975017
    [Google Scholar]
  22. NtziachristosV. RipollJ. WangL.V. WeisslederR. Looking and listening to light: The evolution of whole-body photonic imaging.Nat. Biotechnol.200523331332010.1038/nbt1074 15765087
    [Google Scholar]
  23. XiaoD. QiH. TengY. PierreD. KutokaP.T. LiuD. Advances and challenges of fluorescent nanomaterials for synthesis and biomedical applications.Nanoscale Res. Lett.202116116710.1186/s11671‑021‑03613‑z 34837561
    [Google Scholar]
  24. TangR. XueJ. XuB. ShenD. SudlowG.P. AchilefuS. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging.ACS Nano20159122023010.1021/nn5071183 25560768
    [Google Scholar]
  25. LeeS. RyuJ.H. ParkK. LeeA. LeeS.Y. YounI.C. AhnC.H. YoonS.M. MyungS.J. MoonD.H. ChenX. ChoiK. KwonI.C. KimK. Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo.Nano Lett.20099124412441610.1021/nl902709m 19842672
    [Google Scholar]
  26. WangY. ZhouK. HuangG. HensleyC. HuangX. MaX. ZhaoT. SumerB.D. DeBerardinisR.J. GaoJ. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals.Nat. Mater.201413220421210.1038/nmat3819 24317187
    [Google Scholar]
  27. ZhaoY. JiT. WangH. LiS. ZhaoY. NieG. Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging.J. Control. Release2014177111910.1016/j.jconrel.2013.12.037 24417969
    [Google Scholar]
  28. SivasubramanianM. ChuangY.C. ChenN.T. LoL.W. Seeing better and going deeper in cancer nanotheranostics.Int. J. Mol. Sci.20192014349010.3390/ijms20143490 31315232
    [Google Scholar]
  29. YehB.M. FitzGeraldP.F. EdicP.M. LambertJ.W. ColbornR.E. MarinoM.E. EvansP.M. RobertsJ.C. WangZ.J. WongM.J. BonitatibusP.J. Jr Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.Adv. Drug Deliv. Rev.201711320122210.1016/j.addr.2016.09.001 27620496
    [Google Scholar]
  30. BlackK.C.L. AkersW.J. SudlowG. XuB. LaforestR. AchilefuS. Dual-radiolabeled nanoparticle SPECT probes for bioimaging.Nanoscale20157244044410.1039/C4NR05269B 25418982
    [Google Scholar]
  31. ShiH. WangZ. HuangC. GuX. JiaT. ZhangA. WuZ. ZhuL. LuoX. ZhaoX. JiaN. MiaoF. A functional CT contrast agent for in vivo imaging of tumor hypoxia.Small201612293995400610.1002/smll.201601029 27345304
    [Google Scholar]
  32. DouY. GuoY. LiX. LiX. WangS. WangL. LvG. ZhangX. WangH. GongX. ChangJ. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced ct imaging and radiotherapy.ACS Nano20161022536254810.1021/acsnano.5b07473 26815933
    [Google Scholar]
  33. HuX. SunJ. LiF. LiR. WuJ. HeJ. WangN. LiuJ. WangS. ZhouF. SunX. KimD. HyeonT. LingD. Renal-clearable hollow bismuth subcarbonate nanotubes for tumor targeted computed tomography imaging and chemoradiotherapy.Nano Lett.20181821196120410.1021/acs.nanolett.7b04741 29297694
    [Google Scholar]
  34. SunX. HuangX. GuoJ. ZhuW. DingY. NiuG. WangA. KiesewetterD.O. WangZ.L. SunS. ChenX. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging.J. Am. Chem. Soc.201413651706170910.1021/ja410438n 24401138
    [Google Scholar]
  35. ZhaoY. SultanD. DeteringL. ChoS. SunG. PierceR. WooleyK.L. LiuY. Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy.Angew. Chem. Int. Ed.201453115615910.1002/anie.201308494 24272951
    [Google Scholar]
  36. LiC. LiuC. FanY. MaX. ZhanY. LuX. SunY. Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC chemical biology, 202123743758
    [Google Scholar]
  37. SridharanB. LimH.G. Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics.J. Nanobiotechnology202321143710.1186/s12951‑023‑02192‑8 37986071
    [Google Scholar]
  38. YinC. ZhenX. ZhaoH. TangY. JiY. LyuY. FanQ. HuangW. PuK. Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging.ACS Appl. Mater. Interfaces2017914123321233910.1021/acsami.7b02014 28299923
    [Google Scholar]
  39. WangY. HuX. WengJ. LiJ. FanQ. ZhangY. YeD. A photoacoustic probe for the imaging of tumor apoptosis by caspase‐mediated macrocyclization and self‐assembly.Angew. Chem. Int. Ed.201958154886489010.1002/anie.201813748 30688393
    [Google Scholar]
  40. SongJ. KimJ. HwangS. JeonM. JeongS. KimC. KimS. “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation.Chem. Commun. 201652538287829010.1039/C6CC03100E 27292365
    [Google Scholar]
  41. ZhangS. ZhangH. GhiaE.M. HuangJ. WuL. ZhangJ. LamS. LeiY. HeJ. CuiB. WidhopfG.F.II YuJ. SchwabR. MesserK. JiangW. ParkerB.A. CarsonD.A. KippsT.J. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody.Proc. Natl. Acad. Sci. 201911641370137710.1073/pnas.1816262116 30622177
    [Google Scholar]
  42. WuW. PuY. ShiJ. Nanomedicine-enabled chemotherapy-based synergetic cancer treatments.J. Nanobiotechnology2022201410.1186/s12951‑021‑01181‑z 34983555
    [Google Scholar]
  43. DuanC. YuM. XuJ. LiB. Y. ZhaoY. KankalaR. K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. & pharma. 2023162114643
    [Google Scholar]
  44. BarenholzY.C. Doxil®: The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  45. ZhangX. HeC. SunY. LiuX. ChenY. ChenC. YanR. FanT. YangT. LuY. LuoJ. MaX. XiangG. A smart O2-generating nanocarrier optimizes drug transportation comprehensively for chemotherapy improving.Acta Pharm. Sin. B202111113608362110.1016/j.apsb.2021.04.021 34900540
    [Google Scholar]
  46. HeT. HeJ. YounisM.R. BlumN.T. LeiS. ZhangY. HuangP. LinJ. Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor.ACS Appl. Mater. Interfaces20211319222042221210.1021/acsami.1c03211 33956444
    [Google Scholar]
  47. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  48. Babaye AbdollahiB. MalekzadehR. Pournaghi AzarF. SalehniaF. NaseriA.R. GhorbaniM. HamishehkarH. FarajollahiA.R. Main approaches to enhance radiosensitization in cancer cells by nanoparticles: A systematic review.Adv. Pharm. Bull.2021112212223 33880343
    [Google Scholar]
  49. KotbS. DetappeA. LuxF. AppaixF. BarbierE.L. TranV.L. PlissonneauM. GehanH. LefrancF. Rodriguez-LafrasseC. VerryC. BerbecoR. TillementO. SanceyL. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase i trial.Theranostics20166341842710.7150/thno.14018 26909115
    [Google Scholar]
  50. SafariA. SarikhaniA. Shahbazi-GahroueiD. AlamzadehZ. BeikJ. DezfuliA.S. MahabadiV.P. TohfehM. Shakeri-ZadehA. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy.Photodiagn. Photodyn. Ther.20203210206110.1016/j.pdpdt.2020.102061 33068822
    [Google Scholar]
  51. LiH. WangM. HuangB. ZhuS.W. ZhouJ.J. ChenD.R. CuiR. ZhangM. SunZ.J. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis.Nat. Commun.2021121714910.1038/s41467‑021‑27485‑0 34887404
    [Google Scholar]
  52. ZhaoL. ZhangX. WangX. GuanX. ZhangW. MaJ. Recent advances in selective photothermal therapy of tumor.J. Nanobiotechnology202119133510.1186/s12951‑021‑01080‑3 34689765
    [Google Scholar]
  53. SugaharaT. Van Der ZeeJ. KampingaH.H. VujaskovicZ. KondoM. OhnishiT. LiG. ParkH.J. LeeperD.B. OstapenkoV. RepaskyE.A. WatanabeM. SongC.W. Kadota fund international forum 2004. application of thermal stress for the improvement of health, 15-18 june 2004, awaji yumebutai international conference center, awaji island, hyogo, japan. final report.Int. J. Hyperthermia200824212314010.1080/02656730701883675 18283589
    [Google Scholar]
  54. HuangP. LinJ. LiW. RongP. WangZ. WangS. WangX. SunX. AronovaM. NiuG. LeapmanR.D. NieZ. ChenX. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy.Angew. Chem. Int. Ed.20135252139581396410.1002/anie.201308986 24318645
    [Google Scholar]
  55. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  56. MoonH.K. LeeS.H. ChoiH.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.ACS Nano20093113707371310.1021/nn900904h 19877694
    [Google Scholar]
  57. SongJ. YangX. JacobsonO. LinL. HuangP. NiuG. MaQ. ChenX. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy.ACS Nano2015999199920910.1021/acsnano.5b03804 26308265
    [Google Scholar]
  58. LiangL. PengS. YuanZ. WeiC. HeY. ZhengJ. GuY. ChenH. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy.RSC Advances20188116013602610.1039/C7RA12796K 35539596
    [Google Scholar]
  59. LinS.Y. HuangR.Y. LiaoW.C. ChuangC.C. ChangC.W. Multifunctional pegylated albumin/ir780/iron oxide nanocomplexes for cancer photothermal therapy and MR imaging.Nanotheranostics20182210611610.7150/ntno.19379 29577015
    [Google Scholar]
  60. JiangW. LiangM. LeiQ. LiG. WuS. The current status of photodynamic therapy in cancer treatment.Cancers 202315358510.3390/cancers15030585 36765543
    [Google Scholar]
  61. LinL. SongX. DongX. LiB. Nano-photosensitizers for enhanced photodynamic therapy.Photodiagn. Photodyn. Ther.20213610259710.1016/j.pdpdt.2021.102597 34699982
    [Google Scholar]
  62. AbrahamseH. HamblinM.R. New photosensitizers for photodynamic therapy.Biochem. J.2016473434736410.1042/BJ20150942 26862179
    [Google Scholar]
  63. KouJ. DouD. YangL. Porphyrin photosensitizers in photodynamic therapy and its applications.Oncotarget2017846815918160310.18632/oncotarget.20189 29113417
    [Google Scholar]
  64. YounisM.R. HeG. QuJ. LinJ. HuangP. XiaX.H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy.Adv. Sci.2021821210258710.1002/advs.202102587 34561971
    [Google Scholar]
  65. YuZ. LiH. ZhangL.M. ZhuZ. YangL. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles.Int. J. Pharm.20144731-250150910.1016/j.ijpharm.2014.07.046 25089506
    [Google Scholar]
  66. LuoS. YangZ. TanX. WangY. ZengY. WangY. LiC. LiR. ShiC. Multifunctional photosensitizer grafted on polyethylene glycol and polyethylenimine dual-functionalized nanographene oxide for cancer-targeted near-infrared imaging and synergistic phototherapy.ACS Appl. Mater. Interfaces2016827171761718610.1021/acsami.6b05383 27320692
    [Google Scholar]
  67. DingY. HuangR. LuoL. GuoW. ZhuC. ShenX.C. Full-spectrum responsive WO 3−x @HA nanotheranostics for NIR-II photoacoustic imaging-guided PTT/PDT/CDT synergistic therapy.Inorg. Chem. Front.20218363664610.1039/D0QI01249A
    [Google Scholar]
  68. MellmanI. CoukosG. DranoffG. Cancer immunotherapy comes of age.Nature2011480737848048910.1038/nature10673 22193102
    [Google Scholar]
  69. RobertC. SchachterJ. LongG.V. AranceA. GrobJ.J. MortierL. DaudA. CarlinoM.S. McNeilC. LotemM. LarkinJ. LoriganP. NeynsB. BlankC.U. HamidO. MateusC. Shapira-FrommerR. KoshM. ZhouH. IbrahimN. EbbinghausS. RibasA. Pembrolizumab versus ipilimumab in advanced melanoma.N. Engl. J. Med.2015372262521253210.1056/NEJMoa1503093 25891173
    [Google Scholar]
  70. RileyR.S. JuneC.H. LangerR. MitchellM.J. Delivery technologies for cancer immunotherapy.Nat. Rev. Drug Discov.201918317519610.1038/s41573‑018‑0006‑z 30622344
    [Google Scholar]
  71. KennedyL.B. SalamaA.K.S. A review of cancer immunotherapy toxicity.CA Cancer J. Clin.20207028610410.3322/caac.21596 31944278
    [Google Scholar]
  72. ChughH. SoodD. ChandraI. TomarV. DhawanG. ChandraR. Role of gold and silver nanoparticles in cancer nano-medicine.Artif. Cells Nanomed. Biotechnol.2018461210122010.1080/21691401.2018.1449118
    [Google Scholar]
  73. VasilichinV.A. TsymbalS.A. FakhardoA.F. AnastasovaE.I. MarchenkoA.S. ShtilA.A. VinogradovV.V. KoshelE.I. Effects of metal oxide nanoparticles on toll-like receptor mrnas in human monocytes.Nanomaterials 202010112710.3390/nano10010127 32284505
    [Google Scholar]
  74. ShiY. LammersT. Combining nanomedicine and immunotherapy.Acc. Chem. Res.20195261543155410.1021/acs.accounts.9b00148 31120725
    [Google Scholar]
  75. ChenQ. XuL. LiangC. WangC. PengR. LiuZ. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy.Nat. Commun.2016711319310.1038/ncomms13193 27767031
    [Google Scholar]
  76. ChenQ. ZhangL. LiL. TanM. LiuW. LiuS. XieZ. ZhangW. WangZ. CaoY. ShangT. RanH. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer.J. Nanobiotechnology202119144910.1186/s12951‑021‑01202‑x 34952587
    [Google Scholar]
  77. XinJ. DengC. ArasO. ZhouM. WuC. AnF. Chemodynamic nanomaterials for cancer theranostics.J. Nanobiotechnology202119119210.1186/s12951‑021‑00936‑y 34183023
    [Google Scholar]
  78. KeW. LiJ. MohammedF. WangY. TouK. LiuX. WenP. KinohH. AnrakuY. ChenH. KataokaK. GeZ. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy.. ACS Nano,2019132acsnano.8b0908210.1021/acsnano.8b0908230699292
    [Google Scholar]
  79. ZaffaroniN. BerettaG.L. Nanoparticles for ferroptosis therapy in cancer.Pharmaceutics20211311178510.3390/pharmaceutics13111785 34834199
    [Google Scholar]
  80. ChenG. YangY. XuQ. LingM. LinH. MaW. SunR. XuY. LiuX. LiN. YuZ. YuM. Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy.Nano Lett.202020118141815010.1021/acs.nanolett.0c03127 33172280
    [Google Scholar]
  81. ShatalinK. ShatalinaE. MironovA. NudlerE. H2S: A universal defense against antibiotics in bacteria.Science2011334605898699010.1126/science.1209855 22096201
    [Google Scholar]
  82. XieC. CenD. RenZ. WangY. WuY. LiX. HanG. CaiX. FeS@BSA nanoclusters to enable H 2 S‐Amplified ROS‐based therapy with mri guidance.Adv. Sci.202077190351210.1002/advs.201903512 32274323
    [Google Scholar]
  83. ZhangF. LiuS. ZhangN. KuangY. LiW. GaiS. HeF. GulzarA. YangP. X-ray-triggered NO-released Bi–SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy.Nanoscale20201237192931930710.1039/D0NR04634E 32935695
    [Google Scholar]
  84. YaoX. YangP. JinZ. JiangQ. GuoR. XieR. HeQ. YangW. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis.Biomaterials201919726828310.1016/j.biomaterials.2019.01.026 30677556
    [Google Scholar]
  85. ZhongG. YangC. LiuS. ZhengY. LouW. TeoJ.Y. BaoC. ChengW. TanJ.P.K. GaoS. ParkN. VenkataramanS. HuangY. TanM.H. WangX. HedrickJ.L. FanW. YangY.Y. Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis.Biomaterials2019199768710.1016/j.biomaterials.2019.01.036 30771551
    [Google Scholar]
  86. LukB.T. FangR.H. ZhangL. Lipid- and polymer-based nanostructures for cancer theranostics.Theranostics20122121117112610.7150/thno.4381 23382770
    [Google Scholar]
  87. MiP. WangF. NishiyamaN. CabralH. Molecular cancer imaging with polymeric nanoassemblies: From tumor detection to theranostics.Macromol. Biosci.2017171160030510.1002/mabi.201600305 27739631
    [Google Scholar]
  88. TambeP. KumarP. PaknikarK.M. GajbhiyeV. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications.J. Control. Release2019299648910.1016/j.jconrel.2019.02.026 30797002
    [Google Scholar]
  89. NishiyamaN. MatsumuraY. KataokaK. Development of polymeric micelles for targeting intractable cancers.Cancer Sci.2016107786787410.1111/cas.12960 27116635
    [Google Scholar]
  90. YuG. NingQ. MoZ. TangS. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy.Artif. Cells Nanomed. Biotechnol.20194711476148710.1080/21691401.2019.1601104 31070063
    [Google Scholar]
  91. YangZ. ChengR. ZhaoC. SunN. LuoH. ChenY. LiuZ. LiX. LiuJ. TianZ. Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors.Theranostics20188154097411510.7150/thno.26195 30128039
    [Google Scholar]
  92. MajorosI. WilliamsC. BakerJ.Jr Current dendrimer applications in cancer diagnosis and therapy.Curr. Top. Med. Chem.20088141165117910.2174/156802608785849049 18855703
    [Google Scholar]
  93. EtrychT. DaumováL. PokornáE. TuškováD. LidickýO. KolářováV. PankrácJ. ŠefcL. ChytilP. KlenerP. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging.J. Control. Release2018289445510.1016/j.jconrel.2018.09.018 30248447
    [Google Scholar]
  94. PercheF. TorchilinV.P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting.J. Drug Deliv.2013201313210.1155/2013/705265 23533772
    [Google Scholar]
  95. GrangeC. Geninatti-CrichS. EspositoG. AlbertiD. TeiL. BussolatiB. AimeS. CamussiG. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma.Cancer Res.20107062180219010.1158/0008‑5472.CAN‑09‑2821 20215497
    [Google Scholar]
  96. RenL. ChenS. LiH. ZhangZ. ZhongJ. LiuM. ZhouX. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction.Acta Biomater.20163526026810.1016/j.actbio.2016.02.011 26873364
    [Google Scholar]
  97. SongJ. ZhangL. YiH. HuangJ. ZhangN. ZhongY. HaoL. KeYang WangZ. WangD. YangZ. NIR-responsive nanoplatform for pre/intraoperative image-guided carcinoma surgery and photothermal ablation of residual tumor tissue.Nanomedicine 20192010202010.1016/j.nano.2019.102020 31125675
    [Google Scholar]
  98. MirahadiM. GhanbarzadehS. GhorbaniM. GholizadehA. HamishehkarH. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging.Ther. Deliv.20189855756910.4155/tde‑2018‑0020 30071803
    [Google Scholar]
  99. MuthuM.S. LeongD.T. MeiL. FengS.S. Nanotheranostics: Application and further development of nanomedicine strategies for advanced theranostics.Theranostics20144666067710.7150/thno.8698 24723986
    [Google Scholar]
  100. BaeK.H. LeeJ.Y. LeeS.H. ParkT.G. NamY.S. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging.Adv. Healthc. Mater.20132457658410.1002/adhm.201200338 23184673
    [Google Scholar]
  101. ShaoD. LiJ. GuanF. PanY. XiaoX. ZhangM. ZhangH. ChenL. Selective inhibition of liver cancer growth realized by the intrinsic toxicity of a quantum dot–lipid complex.Int. J. Nanomedicine201495753576910.2147/IJN.S73185 25525357
    [Google Scholar]
  102. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  103. KazumaS. SultanD. ZhaoY. DeteringL. YouM. LuehmannH. AbdallaD. LiuY. Recent advances of radionuclide-based molecular imaging of atherosclerosis.Curr. Pharm. Des.201521365267527610.2174/1381612821666150915104529 26369676
    [Google Scholar]
  104. YamadaM. FooteM. ProwT.W. Therapeutic gold, silver, and platinum nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157342844510.1002/wnan.1322 25521618
    [Google Scholar]
  105. De MatteisV. CascioneM. TomaC. LeporattiS. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease.Nanomaterials 20188531910.3390/nano8050319 29748469
    [Google Scholar]
  106. WuQ. YuJ. LiM. TanL. RenX. FuC. ChenZ. CaoF. RenJ. LiL. LiangP. ZhangY. MengX. Nanoengineering of nanorattles for tumor treatment by CT imaging-guided simultaneous enhanced microwave thermal therapy and managing inflammation.Biomaterials201817912213310.1016/j.biomaterials.2018.06.041 29981949
    [Google Scholar]
  107. AnL. WangY. LinJ. TianQ. XieY. HuJ. YangS. Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy.ACS Appl. Mater. Interfaces20191117152511526110.1021/acsami.9b00495 30964253
    [Google Scholar]
  108. DadfarS.M. RoemhildK. DrudeN.I. von StillfriedS. KnüchelR. KiesslingF. LammersT. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.Adv. Drug Deliv. Rev.201913830232510.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  109. SinghA. JainS. SahooS.K. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor.Mater. Sci. Eng. C202011011069510.1016/j.msec.2020.110695 32204010
    [Google Scholar]
  110. JainT.K. RicheyJ. StrandM. Leslie-PeleckyD.L. FlaskC.A. LabhasetwarV. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging.Biomaterials200829294012402110.1016/j.biomaterials.2008.07.004 18649936
    [Google Scholar]
  111. BadrigilanS. ShaabaniB. GharehaghajiN. MesbahiA. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: “Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy.Photodiagn. Photodyn. Ther.20192550451410.1016/j.pdpdt.2018.10.021 30385298
    [Google Scholar]
  112. KumawatM.K. ThakurM. BahadurR. KakuT. R SP. SuchittaA. SrivastavaR. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics.Mater. Sci. Eng. C201910310977410.1016/j.msec.2019.109774 31349528
    [Google Scholar]
  113. KumarP. TambeP. PaknikarK.M. GajbhiyeV. Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform.J. Control. Release2018287355710.1016/j.jconrel.2018.08.024 30125637
    [Google Scholar]
  114. KesseS. Boakye-YiadomK. OcheteB. Opoku-DamoahY. AkhtarF. FilliM. Asim FarooqM. AquibM. Maviah MilyB. MurtazaG. WangB. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostics and drug and gene delivery.Pharmaceutics20191127710.3390/pharmaceutics11020077 30781850
    [Google Scholar]
  115. ZhangR. WuC. TongL. TangB. XuQ.H. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents.Langmuir20092517101531015810.1021/la902235d 19637879
    [Google Scholar]
  116. MeiH. CaiS. HuangD. GaoH. CaoJ. HeB. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification.Bioact. Mater.2022822024010.1016/j.bioactmat.2021.06.035 34541398
    [Google Scholar]
  117. FuY. BianX. LiP. HuangY. LiC. Carrier-free nanomedicine for cancer immunotherapy.J. Biomed. Nanotechnol.202218493995610.1166/jbn.2022.3315 35854464
    [Google Scholar]
  118. SunM. ZhangY. HeY. XiongM. HuangH. PeiS. LiaoJ. WangY. ShaoD. Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy.Colloids Surf. B Biointerfaces201918031331810.1016/j.colsurfb.2019.04.061 31071571
    [Google Scholar]
  119. JiangS. FuY. ZhangX. YuT. LuB. DuJ. Research progress of carrier-free antitumor nanoparticles based on phytochemicals.Front. Bioeng. Biotechnol.2021979980610.3389/fbioe.2021.799806 34957085
    [Google Scholar]
  120. JainT. SonbolM.B. FirwanaB. KollaK.R. Almader-DouglasD. PalmerJ. FonsecaR. High-dose chemotherapy with early autologous stem cell transplantation compared to standard dose chemotherapy or delayed transplantation in patients with newly diagnosed multiple myeloma: a systematic review and meta-analysis.Biol. Blood Marrow Transplant.201925223924710.1016/j.bbmt.2018.09.021 30244101
    [Google Scholar]
  121. Tahmasbi RadA. ChenC.W. AreshW. XiaY. LaiP.S. NiehM.P. Combinational effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers.ACS Appl. Mater. Interfaces20191111105051051910.1021/acsami.8b21609 30793580
    [Google Scholar]
  122. HuP. FuZ. LiuG. TanH. XiaoJ. ShiH. ChengD. Gadolinium-based nanoparticles for theranostic mri-guided radiosensitization in hepatocellular carcinoma.Front. Bioeng. Biotechnol.2019736810.3389/fbioe.2019.00368 31828068
    [Google Scholar]
  123. ThakareV. TranV.L. NatuzziM. ThomasE. MoreauM. RomieuA. CollinB. CourteauA. VrigneaudJ.M. LouisC. RouxS. BoschettiF. TillementO. LuxF. DenatF. Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging.RSC Advances2019943248112481510.1039/C9RA00365G 35528689
    [Google Scholar]
  124. DufortS. AppelboomG. VerryC. BarbierE.L. LuxF. Bräuer-KrischE. SanceyL. ChangS.D. ZhangM. RouxS. TillementO. Le DucG. Ultrasmall theranostic gadolinium-based nanoparticles improve high-grade rat glioma survival.J. Clin. Neurosci.20196721521910.1016/j.jocn.2019.05.065 31281087
    [Google Scholar]
  125. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.10003 29313004
    [Google Scholar]
  126. WongX.Y. Sena-TorralbaA. Álvarez-DidukR. MuthoosamyK. MerkoçiA. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs.ACS Nano20201432585262710.1021/acsnano.9b08133 32031781
    [Google Scholar]
  127. LiuY. BhattaraiP. DaiZ. ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem. Soc. Rev.20194872053210810.1039/C8CS00618K 30259015
    [Google Scholar]
  128. BonvalotS. RutkowskiP.L. ThariatJ. CarrèreS. DucassouA. SunyachM.P. AgostonP. HongA. MervoyerA. RastrelliM. MorenoV. LiR.K. TiangcoB. HerraezA.C. GronchiA. MangelL. Sy-OrtinT. HohenbergerP. de BaèreT. Le CesneA. HelfreS. Saada-BouzidE. BorkowskaA. AnghelR. CoA. GebhartM. KantorG. MonteroA. LoongH.H. VergésR. LapeireL. DemaS. KacsoG. AustenL. Moureau-ZabottoL. ServoisV. WardelmannE. TerrierP. LazarA.J. BovéeJ.V.M.G. Le PéchouxC. PapaiZ. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial.Lancet Oncol.20192081148115910.1016/S1470‑2045(19)30326‑2 31296491
    [Google Scholar]
  129. BagleyA.F. LudmirE.B. MaitraA. MinskyB.D. Li SmithG. DasP. KoongA.C. HollidayE.B. TaniguchiC.M. KatzM.H.G. TammE.P. WolffR.A. OvermanM.J. PatelS. KimM.P. TzengC.W.D. IkomaN. BhutaniM.S. KoayE.J. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: Report of first patient experience.Clin. Transl. Radiat. Oncol.202233666910.1016/j.ctro.2021.12.012 35097226
    [Google Scholar]
  130. MillerM.A. ArlauckasS. WeisslederR. Prediction of anti-cancer nanotherapy efficacy by imaging.Nanotheranostics20171329631210.7150/ntno.20564 29071194
    [Google Scholar]
  131. ChangD. LimM. GoosJ.A.C.M. QiaoR. NgY.Y. MansfeldF.M. JacksonM. DavisT.P. KavallarisM. Biologically targeted magnetic hyperthermia: Potential and limitations.Front. Pharmacol.2018983110.3389/fphar.2018.00831 30116191
    [Google Scholar]
  132. NavyathaB. NaraS. Theranostic nanostructures for ovarian cancer.Crit. Rev. Ther. Drug Carrier Syst.201936430537110.1615/CritRevTherDrugCarrierSyst.2018025589 31679190
    [Google Scholar]
  133. ThakurV. KuttyR.V. Recent advances in nanotheranostics for triple negative breast cancer treatment.J. Exp. Clin. Cancer Res.201938143010.1186/s13046‑019‑1443‑1 31661003
    [Google Scholar]
  134. PelsterM.S. AmariaR.N. Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials.Ther. Adv. Med. Oncol.20191110.1177/1758835919830826 30815041
    [Google Scholar]
  135. Roma-RodriguesC. PomboI. RaposoL. PedrosaP. FernandesA.R. BaptistaP.V. Nanotheranostics targeting the tumor microenvironment.Front. Bioeng. Biotechnol.2019719710.3389/fbioe.2019.00197 31475143
    [Google Scholar]
  136. WolframJ. FerrariM. Clinical cancer nanomedicine.Nano Today201925859810.1016/j.nantod.2019.02.005 31360214
    [Google Scholar]
  137. ZuckermanJ.E. GritliI. TolcherA. HeidelJ.D. LimD. MorganR. ChmielowskiB. RibasA. DavisM.E. YenY. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA.Proc. Natl. Acad. Sci. 201411131114491145410.1073/pnas.1411393111 25049380
    [Google Scholar]
  138. BleijsM. van de WeteringM. CleversH. DrostJ. Xenograft and organoid model systems in cancer research.EMBO J.20193815e10165410.15252/embj.2019101654 31282586
    [Google Scholar]
  139. IancuS.D. AlbuC. ChiriacL. MoldovanR. StefancuA. MoisoiuV. ComanV. SzaboL. LeopoldN. BálintZ. Assessment of gold-coated iron oxide nanoparticles as negative t2 contrast agent in small animal mri studies.Int. J. Nanomedicine2020154811482410.2147/IJN.S253184 32753867
    [Google Scholar]
  140. ZhouB. YangJ. PengC. ZhuJ. TangY. ZhuX. ShenM. ZhangG. ShiX. PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging.Colloids Surf. B Biointerfaces201614048949610.1016/j.colsurfb.2016.01.019 26812636
    [Google Scholar]
  141. LiC. JiY. WangC. LiangS. PanF. ZhangC. ChenF. FuH. WangK. CuiD. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer.Nanoscale Res. Lett.20149124410.1186/1556‑276X‑9‑244 24940175
    [Google Scholar]
  142. LiJ. HeY. SunW. LuoY. CaiH. PanY. ShenM. XiaJ. ShiX. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging.Biomaterials201435113666367710.1016/j.biomaterials.2014.01.011 24462358
    [Google Scholar]
  143. LiuH. WangH. XuY. GuoR. WenS. HuangY. LiuW. ShenM. ZhaoJ. ZhangG. ShiX. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma.ACS Appl. Mater. Interfaces2014696944695310.1021/am500761x 24712914
    [Google Scholar]
  144. FodaM.F. HuangL. ShaoF. HanH.Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging.ACS Appl. Mater. Interfaces2014632011201710.1021/am4050772 24433116
    [Google Scholar]
  145. UnterwegerH. SubatzusD. TietzeR. JankoC. PoettlerM. StiegelschmittA. SchusterM. MaakeC. BoccacciniA. AlexiouC. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.Int. J. Nanomedicine2015106985699610.2147/IJN.S92336 26648714
    [Google Scholar]
  146. JuanA. CimasF.J. BravoI. PandiellaA. OcañaA. Alonso-MorenoC. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment.Int. J. Mol. Sci.20202117601810.3390/ijms21176018 32825618
    [Google Scholar]
  147. ChenW. BardhanR. BartelsM. Perez-TorresC. PautlerR.G. HalasN.J. JoshiA. A molecularly targeted theranostic probe for ovarian cancer.Mol. Cancer Ther.2010941028103810.1158/1535‑7163.MCT‑09‑0829 20371708
    [Google Scholar]
  148. McGrathA.J. ChienY.H. CheongS. HermanD.A.J. WattJ. HenningA.M. GloagL. YehC.S. TilleyR.D. Gold over branched palladium nanostructures for photothermal cancer therapy.ACS Nano2015912122831229110.1021/acsnano.5b05563 26549201
    [Google Scholar]
  149. ShenS. WangS. ZhengR. ZhuX. JiangX. FuD. YangW. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.Biomaterials201539677410.1016/j.biomaterials.2014.10.064 25477173
    [Google Scholar]
  150. ZhangH. WuH. WangJ. YangY. WuD. ZhangY. ZhangY. ZhouZ. YangS. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy.Biomaterials201542667710.1016/j.biomaterials.2014.11.055 25542794
    [Google Scholar]
  151. ZhangN. WangY. ZhangC. FanY. LiD. CaoX. XiaJ. ShiX. GuoR. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors.Theranostics20201062791280210.7150/thno.42906 32194835
    [Google Scholar]
  152. LiY. LiuZ. HouY. YangG. FeiX. ZhaoH. GuoY. SuC. WangZ. ZhongH. ZhuangZ. GuoZ. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy.ACS Appl. Mater. Interfaces2017930250982510610.1021/acsami.7b05824 28671452
    [Google Scholar]
  153. SakrT.M. El-HashashM.A. El-MohtyA.A. EssaB.M. 99mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting.Appl. Radiat. Isot.202016410926910.1016/j.apradiso.2020.109269 32819507
    [Google Scholar]
  154. ZhengK. LiangN. ZhangJ. LangL. ZhangW. LiS. ZhaoJ. NiuG. LiF. ZhuZ. ChenX. 68 Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer.J. Nucl. Med.201556121823182710.2967/jnumed.115.160648 26429958
    [Google Scholar]
  155. YongY. ChengX. BaoT. ZuM. YanL. YinW. GeC. WangD. GuZ. ZhaoY. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy.ACS Nano2015912124511246310.1021/acsnano.5b05825 26495962
    [Google Scholar]
  156. NairL.V. NazeerS.S. JayasreeR.S. AjayaghoshA. Fluorescence imaging assisted photodynamic therapy using photosensitizer-linked gold quantum clusters.ACS Nano2015965825583210.1021/acsnano.5b00406 25970038
    [Google Scholar]
  157. NafiujjamanM. RevuriV. NurunnabiM. Jae ChoK. LeeY. Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy.Chem. Commun. 201551265687569010.1039/C4CC10444G 25715169
    [Google Scholar]
  158. JalalianS.H. TaghdisiS.M. Shahidi HamedaniN. KalatS.A.M. LavaeeP. ZandKarimi, M.; Ghows, N.; Jaafari, M.R.; Naghibi, S.; Danesh, N.M.; Ramezani, M.; Abnous, K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo.Eur. J. Pharm. Sci.201350219119710.1016/j.ejps.2013.06.015 23835028
    [Google Scholar]
  159. HofmanM.S. EmmettL. VioletJ. Y.Zhang A.; Lawrence, N.J.; Stockler, M.; Francis, R.J.; Iravani, A.; Williams, S.; Azad, A.; Martin, A.; McJannett, M.; Davis, I.D. TheraP: A randomized phase 2 trial of 177 Lu-PSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603).BJU Int.201912451310.1111/bju.14876 31638341
    [Google Scholar]
  160. FendlerW.P. CalaisJ. EiberM. FlavellR.R. MishoeA. FengF.Y. NguyenH.G. ReiterR.E. RettigM.B. OkamotoS. EmmettL. ZachoH.D. IlhanH. WetterA. RischplerC. SchoderH. BurgerI.A. GartmannJ. SmithR. SmallE.J. SlavikR. CarrollP.R. HerrmannK. CzerninJ. HopeT.A. Assessment of 68 Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer.JAMA Oncol.20195685686310.1001/jamaoncol.2019.0096 30920593
    [Google Scholar]
  161. HamaguchiT. TsujiA. YamaguchiK. TakedaK. UetakeH. EsakiT. AmagaiK. SakaiD. BabaH. KimuraM. MatsumuraY. TsukamotoT. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients.Cancer Chemother. Pharmacol.20188261021102910.1007/s00280‑018‑3693‑6 30284603
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010285567240222072959
Loading
/content/journals/cpb/10.2174/0113892010285567240222072959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test