Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Wound healing is crucial for maintaining skin integrity and preventing complications from external threats. Various plants, such as , Aloe vera, , , , , and Plantago, have demonstrated wound healing capabilities and have been used in herbal medicine for wound care. NLCs are second-generation lipid nanoparticles, blending solid and liquid lipids to improve medication loading and limit leakage. NLCs have been used in various applications, including cosmeceuticals, chemotherapy, gene therapy, and brain targeting. Wound healing is divided into four stages: hemostasis, inflammatory response, proliferation, and remodeling. Factors such as age, gender, chronic disorders, and local agents like infections can affect recovery. These plants' anti-inflammatory, antioxidant, and antibacterial activities have demonstrated potential in wound healing. Combining herbal medicinal plants and nanostructured lipid carriers (NLCs) can revolutionise wound treatment and improve overall healthcare outcomes.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010287720240322060706
2024-04-01
2025-10-03
Loading full text...

Full text loading...

References

  1. CacioppoJ.T. HawkleyL.C. Social isolation and health, with an emphasis on underlying mechanisms.Perspect. Biol. Med.2003463Suppl.S39S5210.1353/pbm.2003.0049 14563073
    [Google Scholar]
  2. YoungA. McNaughtC.E. The physiology of wound healing.Surgery2011291047547910.1016/j.mpsur.2011.06.011
    [Google Scholar]
  3. GhomiE.R. ShakibaM. ArdahaeiA.S. KenariM.A. FarajiM. AtaeiS. KohansalP. JafariI. AbdoussM. RamakrishnaS. Innovations in drug delivery for chronic wound healing.Curr. Pharm. Des.202228534035110.2174/1381612827666210714102304 34269663
    [Google Scholar]
  4. SharifiS. HajipourM.J. GouldL. MahmoudiM. Nanomedicine in healing chronic wounds:Opportunities and challenges.Mol. Pharm.202118255057510.1021/acs.molpharmaceut.0c00346 32519875
    [Google Scholar]
  5. BudovskyA. YarmolinskyL. Ben-ShabatS. Effect of medicinal plants on wound healing.Wound Repair Regen.201523217118310.1111/wrr.12274 25703533
    [Google Scholar]
  6. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  7. SharmaA. KhannaS. KaurG. SinghI. Medicinal plants and their components for wound healing applications.Future J. Pharmaceut. Sci.2021715310.1186/s43094‑021‑00202‑w
    [Google Scholar]
  8. MenjívarC. Liminal legality: Salvadoran and Guatemalan immigrants’ lives in the United States.Am. J. Sociol.20061114999103710.1086/499509
    [Google Scholar]
  9. ClarkR.A.F. Fibrin and wound healing.Ann. N. Y. Acad. Sci.2001936135536710.1111/j.1749‑6632.2001.tb03522.x 11460492
    [Google Scholar]
  10. GaleanoM. DeodatoB. AltavillaD. CucinottaD. ArsicN. MariniH. TorreV. GiaccaM. SquadritoF. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse.Diabetologia200346454655510.1007/s00125‑003‑1064‑1 12677400
    [Google Scholar]
  11. RossG.W. PetrovitchH. Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease.Drugs Aging2001181179780610.2165/00002512‑200118110‑00001 11772120
    [Google Scholar]
  12. ProckopD.J. KivirikkoK.I. Collagens: Molecular biology, diseases, and potentials for therapy.Annu. Rev. Biochem.199564140343410.1146/annurev.bi.64.070195.002155 7574488
    [Google Scholar]
  13. PercivalN.J. Classification of wounds and their management.Surgery200220511411710.1383/surg.20.5.114.14626
    [Google Scholar]
  14. López-GarcíaR. Ganem-RonderoA. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Occlusive effect and penetration enhancement ability. J. Cos.Dermatol. Sci. Appl.20155252008
    [Google Scholar]
  15. JainP. RahiP. PandeyV. AsatiS. SoniV. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects.Egyptian J. Basic Appl. Sci.2017428910010.1016/j.ejbas.2017.02.001
    [Google Scholar]
  16. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.909822 24813223
    [Google Scholar]
  17. SchultzG.S. Molecular regulation of wound healing. Acute and chronic wounds: Nursing management.2nd edSt. Louis, MOMosby1999413429
    [Google Scholar]
  18. NagoriB.P. SolankiR. Role of medicinal plants in wound healing.Res. J. Med. Plant20115439240510.3923/rjmp.2011.392.405
    [Google Scholar]
  19. RichardsonM. Acute wounds: An overview of the physiological healing process.Nurs. Times200410045053 14974265
    [Google Scholar]
  20. VanwijckR. [Surgical biology of wound healing]Bull. Mem. Acad. R. Med. Belg.20011563-4175184 11789398
    [Google Scholar]
  21. DegreefH.J. How to heal a wound fast.Dermatol. Clin.199816236537510.1016/S0733‑8635(05)70019‑X 9589210
    [Google Scholar]
  22. ShedoevaA. LeavesleyD. UptonZ. FanC. Wound healing and the use of medicinal plants.Evid. Based Complement. Alternat. Med.2019201913010.1155/2019/2684108 31662773
    [Google Scholar]
  23. Hart, J. Inflammation 1: Its role in the healing of acute wounds.J. Wound Care200211620520910.12968/jowc.2002.11.6.26411 12096576
    [Google Scholar]
  24. SkoverG.R. Cellular and biochemical dynamics of wound repair, wound environment in collagen regeneration.Clin. Podiatr. Med. Surg.19918472375610.1016/S0891‑8422(23)00478‑0
    [Google Scholar]
  25. HuntT.K. HopfH. HussainZ. Physiology of wound healing.Adv. Skin Wound Care2000132Suppl.611 11074996
    [Google Scholar]
  26. OlczykP. MencnerŁ. Komosinska-VassevK. The role of the extracellular matrix components in cutaneous wound healing.BioMed Res. Int.2014201474758410.1155/2014/747584
    [Google Scholar]
  27. WynnT.A. VannellaK.M. Macrophages in tissue repair, regeneration, and fibrosis.Immunity201644345046210.1016/j.immuni.2016.02.015 26982353
    [Google Scholar]
  28. SinnoH. PrakashS. Complements and the wound healing cascade: An updated review.Plast. Surg. Int.2013201314676410.1155/2013/146764
    [Google Scholar]
  29. NovakM.L. KohT.J. Phenotypic transitions of macrophages orchestrate tissue repair.Am. J. Pathol.201318351352136310.1016/j.ajpath.2013.06.034 24091222
    [Google Scholar]
  30. MaquartF.X. MonboisseJ.C. Extracellular matrix and wound healing.Pathol. Biol. (Paris)2014622919510.1016/j.patbio.2014.02.007 24650524
    [Google Scholar]
  31. SiscoM. MustoeT.A. Animal models of ischemic wound healing. Toward an approximation of human chronic cutaneous ulcers in rabbit and rat.Methods Mol. Med.2003785565
    [Google Scholar]
  32. MustoeT.A. O’ShaughnessyK. KloetersO. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis.Plast. Reconstr. Surg.20061177Suppl.35S41S10.1097/01.prs.0000225431.63010.1b 16799373
    [Google Scholar]
  33. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/0022034509359125 20139336
    [Google Scholar]
  34. TandaraA.A. MustoeT.A. Oxygen in wound healing--more than a nutrient.World J. Surg.200428329430010.1007/s00268‑003‑7400‑2 14961188
    [Google Scholar]
  35. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑0 21174180
    [Google Scholar]
  36. FangJ.Y. FangC.L. LiuC.H. SuY.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC).Eur. J. Pharm. Biopharm.200870263364010.1016/j.ejpb.2008.05.008 18577447
    [Google Scholar]
  37. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  38. ÜnerM. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems.Pharmazie2006615375386
    [Google Scholar]
  39. Grumezescu, A., Ed.;Nanobiomaterials in Galenic formulations and cosmetics: Applications of nanobiomaterials; Elsevier: Amsterdam,2016
    [Google Scholar]
  40. Hernández-Sánchez, H.; Gutiérrez-López, G.F., Eds.;Food nanoscience and nanotechnology; Springer: Berlin201510.1007/978‑3‑319‑13596‑0
    [Google Scholar]
  41. Amiji, M.M., Ed.;Nanotechnology for cancer therapy.CRC press: Boca Raton200610.1201/9781420006636
    [Google Scholar]
  42. GascoM.R. Method for producing solid lipid microspheres having a narrow size distribution. Patent US 5,250,2361993
    [Google Scholar]
  43. QidwaiA. KhanS. MdS. FazilM. BabootaS. NarangJ.K. AliJ. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma.Drug Deliv.20162341476148510.3109/10717544.2016.1165310 26978275
    [Google Scholar]
  44. JoshiM.D. PrabhuR.H. Patravale, VB Fabrication of Nanostructured Lipid Carriers (NLC)-based gels from microemulsion template for delivery through skin.Methods Mol. Biol.20192000279292
    [Google Scholar]
  45. ShiL. LiZ. YuL. JiaH. ZhengL. Effects of surfactants and lipids on the preparation of solid lipid nanoparticles using double emulsion method.J. Dispers. Sci. Technol.201132225425910.1080/01932691003659130
    [Google Scholar]
  46. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  47. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  48. ShahgaldianP. Da SilvaE. ColemanA.W. RatherB. ZaworotkoM.J. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters.Int. J. Pharm.20032531-2233810.1016/S0378‑5173(02)00639‑7 12593934
    [Google Scholar]
  49. SchubertM. Müller-GoymannC.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters.Eur. J. Pharm. Biopharm.200355112513110.1016/S0939‑6411(02)00130‑3 12551713
    [Google Scholar]
  50. AnuradhaK. KumarM.S. Development of Lacidipine loaded nanostructured lipid carriers (NLCs) for bioavailability enhancement.Int J Pharm Med Res.2014225057
    [Google Scholar]
  51. ChenC.C. TsaiT.H. HuangZ.R. FangJ.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics.Eur. J. Pharm. Biopharm.201074347448210.1016/j.ejpb.2009.12.008 20060469
    [Google Scholar]
  52. PugliaC. BlasiP. RizzaL. SchoubbenA. BoninaF. RossiC. RicciM. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation.Int. J. Pharm.20083571-229530410.1016/j.ijpharm.2008.01.045 18343059
    [Google Scholar]
  53. JunyaprasertV.B. TeeranachaideekulV. SoutoE.B. BoonmeP. MüllerR.H. Q10-loaded NLC versus nanoemulsions: Stability, rheology and in vitro skin permeation.Int. J. Pharm.20093771-220721410.1016/j.ijpharm.2009.05.020 19465098
    [Google Scholar]
  54. JoshiM. PathakS. SharmaS. PatravaleV. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether.Nanoject. Int. J. Pharm.2008364111912610.1016/j.ijpharm.2008.07.032 18765274
    [Google Scholar]
  55. ZhangZ. ShaX. ShenA. WangY. SunZ. GuZ. FangX. Polycation nanostructured lipid carrier, a novel nonviral vector constructed with triolein for efficient gene delivery.Biochem. Biophys. Res. Commun.2008370347848210.1016/j.bbrc.2008.03.127 18395002
    [Google Scholar]
  56. YueY. ZhouH. LiuG. LiY. YanZ. DuanM. The advantages of a novel CoQ10 delivery system in skin photo-protection.Int. J. Pharm.20103921-2576310.1016/j.ijpharm.2010.03.032 20302925
    [Google Scholar]
  57. CavalcantiA.M. BaggioC.H. FreitasC.S. RieckL. de SousaR.S. Da Silva-SantosJ.E. Mesia-VelaS. MarquesM.C.A. Safety and antiulcer efficacy studies of Achillea millefolium L. after chronic treatment in Wistar rats.J. Ethnopharmacol.2006107227728410.1016/j.jep.2006.03.011 16647233
    [Google Scholar]
  58. BenedekB. KoppB. Achillea millefolium L. s.l. revisited: Recent findings confirm the traditional use.Wien. Med. Wochenschr.200715713-14312314
    [Google Scholar]
  59. Chávez-SilvaF. Cerón-RomeroL. Arias-DuránL. Navarrete-VázquezG. Almanza-PérezJ. Román-RamosR. Ramírez-ÁvilaG. Perea-ArangoI. Villalobos-MolinaR. Estrada-SotoS. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities.J. Ethnopharmacol.20182121710.1016/j.jep.2017.10.005 29031783
    [Google Scholar]
  60. AliS.I. GopalakrishnanB. VenkatesaluV. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review.Phytother. Res.20173181140116110.1002/ptr.5840 28618131
    [Google Scholar]
  61. BaşerK.H. DemirciB. DemirciF. KoçakS. AkıncıÇ. MalyerH. GüleryüzG. Composition and antimicrobial activity of the essential oil of Achillea multifida.Planta Med.2002681094194310.1055/s‑2002‑34923 12391564
    [Google Scholar]
  62. BenedekB. Rothwangl-WiltschniggK. RozemaE. GjoncajN. ReznicekG. JurenitschJ. KoppB. GlaslS. Yarrow (Achillea millefolium L. s.l.): Pharmaceutical quality of commercial samples.Pharmazie20086312326 18271298
    [Google Scholar]
  63. FalkA.J. SmolenskiS.J. BauerL. BellC.L. Isolation and identification of three new flavones from Achillea millefolium L.J. Pharm. Sci.197564111838184210.1002/jps.2600641119 1195115
    [Google Scholar]
  64. NemethE. Essential oil composition of species in the genus Achillea.J. Essent. Oil Res.200517550151210.1080/10412905.2005.9698978
    [Google Scholar]
  65. NemethE. BernathJ. Biological activities of yarrow species (Achillea spp.).Curr. Pharm. Des.200814293151316710.2174/138161208786404281 19075697
    [Google Scholar]
  66. BakkaliF. AverbeckS. AverbeckD. IdaomarM. Biological effects of essential oils – A review.Food Chem. Toxicol.200846244647510.1016/j.fct.2007.09.106 17996351
    [Google Scholar]
  67. AyoobiF. ShamsizadehA. FatemiI. VakilianA. AllahtavakoliM. HassanshahiG. Moghadam-AhmadiA. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders- a review.Iran. J. Basic Med. Sci.2017206604612 28868116
    [Google Scholar]
  68. Strzępek-GomółkaM. Gaweł-BębenK. Kukula-KochW. Achillea species as sources of active phytochemicals for dermatological and cosmetic applications.Oxid. Med. Cell. Longev.2021202111410.1155/2021/6643827 33833853
    [Google Scholar]
  69. PainS. AltobelliC. BoherA. CittadiniL. Favre-MercuretM. GaillardC. SohmB. VogelgesangB. André-FreiV. Surface rejuvenating effect of Achillea millefolium extract.Int. J. Cosmet. Sci.201133653554210.1111/j.1468‑2494.2011.00667.x 21711463
    [Google Scholar]
  70. de SouzaP. GasparottoA.Jr CrestaniS. StefanelloM.É.A. MarquesM.C.A. Silva-SantosJ.E. KassuyaC.A.L. Hypotensive mechanism of the extracts and artemetin isolated from Achillea millefolium L. (Asteraceae) in rats.Phytomedicine2011181081982510.1016/j.phymed.2011.02.005 21420289
    [Google Scholar]
  71. Csupor-LöfflerB. HajdúZ. ZupkóI. RéthyB. FalkayG. ForgoP. HohmannJ. Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumour cell lines.Phytother. Res.200923567267610.1002/ptr.2697 19107850
    [Google Scholar]
  72. Lemmens-GruberR. MarchartE. RawnduziP. EngelN. BenedekB. KoppB. Investigation of the spasmolytic activity of the flavonoid fraction of Achillea millefolium s.l. on isolated guinea-pig ilea.Arzneimittelforschung2006568582588 17009839
    [Google Scholar]
  73. KhanA. GilaniA.H. Blood pressure lowering, cardiovascular inhibitory and bronchodilatory actions of Achillea millefolium.Phytother. Res.201125457758310.1002/ptr.3303 20857434
    [Google Scholar]
  74. Arias-DuránL. Estrada-SotoS. Hernández-MoralesM. Chávez-SilvaF. Navarrete-VázquezG. León-RiveraI. Perea-ArangoI. Villalobos-MolinaR. Ibarra-BarajasM. Tracheal relaxation through calcium channel blockade of Achillea millefolium hexanic extract and its main bioactive compounds.J. Ethnopharmacol.202025311264310.1016/j.jep.2020.112643 32035218
    [Google Scholar]
  75. TadićV. ArsićI. ZvezdanovićJ. ZugićA. CvetkovićD. PavkovS. The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application.J. Ethnopharmacol.201719913814810.1016/j.jep.2017.02.002 28163113
    [Google Scholar]
  76. Garcia-OrueI. GainzaG. GutierrezF.B. AguirreJ.J. EvoraC. PedrazJ.L. HernandezR.M. DelgadoA. IgartuaM. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications.Int. J. Pharm.2017523255656610.1016/j.ijpharm.2016.11.006 27825864
    [Google Scholar]
  77. SalehiB. AlbayrakS. AntolakH. KręgielD. PawlikowskaE. Sharifi-RadM. UpretyY. Tsouh FokouP. YousefZ. Amiruddin ZakariaZ. VaroniE. SharopovF. MartinsN. IritiM. Sharifi-RadJ. Aloe genus plants: From farm to food applications and phytopharmacotherapy.Int. J. Mol. Sci.2018199284310.3390/ijms19092843 30235891
    [Google Scholar]
  78. LawrenceR. TripathiP. JeyakumarE. Isolation, purification and evaluation of antibacterial agents from Aloe vera.Braz. J. Microbiol.200940490691510.1590/S1517‑83822009000400023 24031440
    [Google Scholar]
  79. Martínez-RomeroD. AlburquerqueN. ValverdeJ.M. GuillénF. CastilloS. ValeroD. SerranoM. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating.Postharvest Biol. Technol.20063919310010.1016/j.postharvbio.2005.09.006
    [Google Scholar]
  80. RahmanS. CarterP. BhattaraiN. Aloe vera for tissue engineering applications.J. Funct. Biomater.201781610.3390/jfb8010006 28216559
    [Google Scholar]
  81. AloèsG.P. Aloès Aloe vera.Phytotherapie201917635210.3166/phyto‑2019‑0213
    [Google Scholar]
  82. BurusapatC. SupawanM. PruksapongC. PitisereeA. SuwantemeeC. Topical Aloe vera gel for accelerated wound healing of split-thickness skin graft donor sites: A double-blind, randomized, controlled trial and systematic review.Plast. Reconstr. Surg.2018142121722610.1097/PRS.0000000000004515 29649056
    [Google Scholar]
  83. HekmatpouD. MehrabiF. RahzaniK. AminiyanA. The effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review.Iran. J. Med. Sci.201944119 30666070
    [Google Scholar]
  84. Meza-ValleK.Z. Saucedo-AcuñaR.A. Tovar-CarrilloK.L. Cuevas-GonzálezJ.C. Zaragoza-ContrerasE.A. Melgoza-LozanoJ. Characterization and topical study of Aloe vera hydrogel on wound-healing process.Polymers (Basel)20211322395810.3390/polym13223958 34833257
    [Google Scholar]
  85. WahediH.M. JeongM. ChaeJ.K. DoS.G. YoonH. KimS.Y. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.Phytomedicine201728192610.1016/j.phymed.2017.02.005 28478809
    [Google Scholar]
  86. YamaoM. NaokiH. KunidaK. AokiK. MatsudaM. IshiiS. Distinct predictive performance of Rac1 and Cdc42 in cell migration.Sci. Rep.2015511752710.1038/srep17527 26634649
    [Google Scholar]
  87. RodriguesL.O. de OliveiraA.C.L. TabrezS. ShakilS. KhanM.I. AsgharM.N. MatiasB.D. BatistaJ.M.A.S. RosalM.M. de LimaM.M.D.F. GomesS.R.F. de CarvalhoR.M. de MoraesG.P. de AlencarM.V.O.B. IslamM.T. Melo-CavalcanteA.A.C. Mutagenic, antioxidant and wound healing properties of Aloe vera.J. Ethnopharmacol.201822719119710.1016/j.jep.2018.08.034 30172901
    [Google Scholar]
  88. OliveiraR.N. ManciniM.C. OliveiraF.C.S. PassosT.M. QuiltyB. ThiréR.M.S.M. McGuinnessG.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing.Materia (Rio J.)201621376777910.1590/S1517‑707620160003.0072
    [Google Scholar]
  89. TeplickiE. MaQ. CastilloD.E. ZareiM. HustadA.P. ChenJ. LiJ. The effects of aloe vera on wound healing in cell proliferation, migration, and viability.Wounds2018309263268 30256753
    [Google Scholar]
  90. LauraV. MattiaF. RobertaG. FedericoI. EmiD. ChiaraT. LucaB. ElenaC. Potential of curcumin in skin disorders.Nutrients2019119216910.3390/nu11092169 31509968
    [Google Scholar]
  91. KothaR.R. LuthriaD.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules24162930 31412624
    [Google Scholar]
  92. BhagavathulaN. WarnerR.L. DaSilvaM. McClintockS.D. BarronA. AslamM.N. JohnsonK.J. VaraniJ. A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid‐impaired hairless rat skin.Wound Repair Regen.200917336036610.1111/j.1524‑475X.2009.00483.x 19660044
    [Google Scholar]
  93. AgrawalD.K. MishraP.K. Curcumin and its analogues: Potential anticancer agents.Med. Res. Rev.201030581886010.1002/med.20188 20027668
    [Google Scholar]
  94. LimaC.F. Pereira-WilsonC. RattanS.I.S. Curcumin induces heme oxygenase‐1 in normal human skin fibroblasts through redox signaling: Relevance for anti‐aging intervention.Mol. Nutr. Food Res.201155343044210.1002/mnfr.201000221 20938987
    [Google Scholar]
  95. ŠudomováM. HassanS.T.S. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: Mechanisms and pathways.Microorganisms20219229210.3390/microorganisms9020292 33572685
    [Google Scholar]
  96. MunS.H. JoungD.K. KimY.S. KangO.H. KimS.B. SeoY.S. KimY.C. LeeD.S. ShinD.W. KweonK.T. KwonD.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus.Phytomedicine2013208-971471810.1016/j.phymed.2013.02.006 23537748
    [Google Scholar]
  97. AkbikD. GhadiriM. ChrzanowskiW. RohanizadehR. Curcumin as a wound healing agent.Life Sci.201411611710.1016/j.lfs.2014.08.016 25200875
    [Google Scholar]
  98. LiangG. YangS. ZhouH. ShaoL. HuangK. XiaoJ. HuangZ. LiX. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues.Eur. J. Med. Chem.200944291591910.1016/j.ejmech.2008.01.031 18336957
    [Google Scholar]
  99. AkT. Gülçinİ. Antioxidant and radical scavenging properties of curcumin.Chem. Biol. Interact.20081741273710.1016/j.cbi.2008.05.003 18547552
    [Google Scholar]
  100. ThaloorD. MillerK.J. GephartJ. MitchellP.O. PavlathG.K. Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regeneration after traumatic injury.Am. J. Physiol. Cell Physiol.19992772C320C32910.1152/ajpcell.1999.277.2.C320 10444409
    [Google Scholar]
  101. ThangapazhamR.L. SharadS. MaheshwariR.K. Skin regenerative potentials of curcumin.Biofactors201339114114910.1002/biof.1078 23315856
    [Google Scholar]
  102. ApelK. HirtH. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction.Annu. Rev. Plant Biol.200455137339910.1146/annurev.arplant.55.031903.141701 15377225
    [Google Scholar]
  103. FujisawaS. AtsumiT. IshiharaM. KadomaY. Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds.Anticancer Res.2004242B563569 15160995
    [Google Scholar]
  104. PhanT.T. SeeP. LeeS.T. ChanS.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing.J. Trauma200151592793110.1097/00005373‑200111000‑00017 11706342
    [Google Scholar]
  105. BarzegarA. Moosavi-MovahediA.A. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.PLoS One2011610e2601210.1371/journal.pone.0026012 22016801
    [Google Scholar]
  106. TejadaS. ManayiA. DagliaM. NabaviS.F. SuredaA. HajheydariZ. GortziO. Pazoki-ToroudiH. NabaviS.M. Wound healing effects of curcumin: A short review.Curr. Pharm. Biotechnol.201617111002100710.2174/1389201017666160721123109 27640646
    [Google Scholar]
  107. WangX. ShenK. WangJ. LiuK. WuG. LiY. LuoL. ZhengZ. HuD. Hypoxic preconditioning combined with curcumin promotes cell survival and mitochondrial quality of bone marrow mesenchymal stem cells, and accelerates cutaneous wound healing via PGC-1α/SIRT3/HIF-1α signaling.Free Radic. Biol. Med.202015916417610.1016/j.freeradbiomed.2020.07.023 32745765
    [Google Scholar]
  108. NicolausC. JunghannsS. HartmannA. MurilloR. GanzeraM. MerfortI. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts.J. Ethnopharmacol.20171969410310.1016/j.jep.2016.12.006 27956358
    [Google Scholar]
  109. LeachM.J. Calendula officinalis and wound healing: A systematic review.Wounds2008208236243 25941793
    [Google Scholar]
  110. ChandranP.K. KuttanR. Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns.J. Clin. Biochem. Nutr.2008432586410.3164/jcbn.2008043 18818737
    [Google Scholar]
  111. GivolO. KornhaberR. VisentinD. ClearyM. HaikJ. HaratsM. A systematic review of Calendula officinalis extract for wound healing.Wound Repair Regen.201927554856110.1111/wrr.12737 31145533
    [Google Scholar]
  112. ShafeieN. Tabatabai NainiA. JahromiH. Comparison of different concentrations of calendula officinalis gel on cutaneous wound healing.Biomed. Pharmacol. J.20158297999210.13005/bpj/850
    [Google Scholar]
  113. FronzaM. HeinzmannB. HamburgerM. LauferS. MerfortI. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts.J. Ethnopharmacol.2009126346346710.1016/j.jep.2009.09.014 19781615
    [Google Scholar]
  114. FonsecaY.M. CatiniC.D. VicentiniF.T.M.C. NomizoA. GerlachR.F. FonsecaM.J.V. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion.J. Ethnopharmacol.2010127359660110.1016/j.jep.2009.12.019 20026397
    [Google Scholar]
  115. DindaM. DasguptaU. SinghN. BhattacharyyaD. KarmakarP. PI3K-mediated proliferation of fibroblasts by Calendula officinalis tincture: Implication in wound healing.Phytother. Res.201529460761610.1002/ptr.5293 25641010
    [Google Scholar]
  116. DindaM. MazumdarS. DasS. GangulyD. DasguptaU.B. DuttaA. JanaK. KarmakarP. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing.Phytother. Res.201630101696170710.1002/ptr.5678 27426257
    [Google Scholar]
  117. ParenteLM. Lino JúniorRD. TresvenzolLM. VinaudMC. de PaulaJR. Paulo, NM Wound healing and anti-inflammatory effect in animal models of Calendula officinalis L. growing in Brazil.Evid. Based Complement. Alternat. Med.20122012375671
    [Google Scholar]
  118. EghdampourF. JahdieF. KheyrkhahM. TaghizadehM. NaghizadehS. HaganiH. The impact of Aloe vera and calendula on perineal healing after episiotomy in primiparous women: A randomized clinical trial.J. Caring Sci.201324279286 25276736
    [Google Scholar]
  119. YangC.S. ChenG. WuQ. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases.J. Tradit. Complement. Med.201441172310.4103/2225‑4110.124326 24872929
    [Google Scholar]
  120. EspinosaC. López-JiménezJ.A. Pérez-LlamasF. GuardiolaF.A. EstebanM.A. ArnaoM.B. ZamoraS. Long‐term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats.J. Sci. Food Agric.20169693079308710.1002/jsfa.7483 26441376
    [Google Scholar]
  121. ChenB.T. LiWX. HeRR. LiYF. TsoiB. ZhaiY.J. KuriharaH. Anti-inflammatory effects of a polyphenols-rich extract from tea (Camellia sinensis) flowers in acute and chronic mice models.Oxid. Med. Cell. Longev.20122012537923
    [Google Scholar]
  122. IbrahimA. Noman AlbadaniR. Evaluation of the potential nephroprotective and antimicrobial effect of Camellia sinensis leaves versus Hibiscus sabdariffa (in vivo and in vitro studies). Adv. Pharmacol. Pharm. Sci.,20142014
    [Google Scholar]
  123. ErS. DikmenM. Camellia sinensis increased apoptosis on U2OS osteosarcoma cells and wound healing potential on NIH3T3 fibroblast cells.Cytotechnology201769690191410.1007/s10616‑017‑0105‑4 28509991
    [Google Scholar]
  124. JadoonS. KarimS. AsadM.H. AkramM.R. Kalsoom KhanA. MalikA. ChenC. MurtazaG. Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity.Oxid. Med. Cell. Longev.2015201570962810.1155/2015/709628
    [Google Scholar]
  125. HeR. ChenL. LinB. MatsuiY. YaoX. KuriharaH. Beneficial effects of oolong tea consumption on diet-induced overweight and obese subjects.Chin. J. Integr. Med.2009151344110.1007/s11655‑009‑0034‑8 19271168
    [Google Scholar]
  126. Hasani-RanjbarS. JouyandehZ. AbdollahiM. A systematic review of anti-obesity medicinal plants - an update.J. Diabetes Metab. Disord.20131212810.1186/2251‑6581‑12‑28
    [Google Scholar]
  127. KhanG. HaqueS.E. AnwerT. AhsanM.N. SafhiM.M. AlamM.F. Cardioprotective effect of green tea extract on doxorubicin-induced cardiotoxicity in rats.Acta Pol. Pharm.2014715861868 25362815
    [Google Scholar]
  128. LevitesY. WeinrebO. MaorG. YoudimM.B.H. MandelS. Green tea polyphenol (–)‐epigallocatechin‐3‐gallate prevents N ‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced dopaminergic neurodegeneration.J. Neurochem.20017851073108210.1046/j.1471‑4159.2001.00490.x 11553681
    [Google Scholar]
  129. HajiaghaalipourF. KanthimathiM.S. AbdullaM.A. SanusiJ. The effect of Camellia sinensis on wound healing potential in an animal model.Evid. Based Complement. Alternat. Med.201320131710.1155/2013/386734 23864889
    [Google Scholar]
  130. HayatK. IqbalH. MalikU. BilalU. MushtaqS. Tea and its consumption: Benefits and risks.Crit. Rev. Food Sci. Nutr.201555793995410.1080/10408398.2012.678949 24915350
    [Google Scholar]
  131. XuF.W. LvY.L. ZhongY.F. XueY.N. WangY. ZhangL.Y. HuX. TanW.Q. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review.Molecules20212620612310.3390/molecules26206123 34684703
    [Google Scholar]
  132. ChandranS.V. AmrithaT.S. RajalekshmiG. PandimadeviM. A preliminary in vitro study on the bovine collagen film incorporated with Azadirachta indica plant extract as a potential wound dressing material.Int. J. Pharm. Tech. Res.201586248257
    [Google Scholar]
  133. JankovićT. ZdunićG. BearaI. BalogK. PljevljakušićD. SteševićD. ŠavikinK. Comparative study of some polyphenols in Plantago species.Biochem. Syst. Ecol.201242697410.1016/j.bse.2012.02.013
    [Google Scholar]
  134. BearaI.N. LesjakM.M. JovinE.Đ. BalogK.J. AnačkovG.T. OrčićD.Z. Mimica-DukićN.M. Plantain (Plantago L.) species as novel sources of flavonoid antioxidants.J. Agric. Food Chem.200957199268927310.1021/jf902205m 19754195
    [Google Scholar]
  135. AmakuraY. YoshimuraA. YoshimuraM. YoshidaT. Isolation and characterization of phenolic antioxidants from Plantago herb.Molecules20121755459546610.3390/molecules17055459 22572930
    [Google Scholar]
  136. ZubairM. WidénC. RenvertS. RumpunenK. Water and ethanol extracts of Plantago major leaves show anti-inflammatory activity on oral epithelial cells.J. Tradit. Complement. Med.20199316917110.1016/j.jtcme.2017.09.002 31193927
    [Google Scholar]
  137. KeshavarziA. MontaseriH. AkramiR. Moradi SarvestaniH. KhosraviF. FooladS. ZardoshtM. ZareieS. SaharkhizM.J. ShahriariradR. Therapeutic efficacy of Great Plantain (Plantago major L.) in the treatment of second-degree burn wounds: A case-control study.Int. J. Clin. Pract.202220221710.1155/2022/4923277 35966146
    [Google Scholar]
  138. ThoméR.G. SantosH.L.B.D. SantosF.V.D. OliveiraR.J.D.S. De CamargosL.F. PereiraM.N. LongattiT.R. SoutoC.M. FrancoC.S. De OliveiraA.S.R. RibeiroR.I.M.A. Evaluation of healing wound and genotoxicity potentials from extracts hydroalcoholic of Plantago major and Siparuna guianensis.Exp. Biol. Med. (Maywood)2012237121379138610.1258/ebm.2012.012139 23354396
    [Google Scholar]
  139. ZubairM. NybomH. LindholmC. BrandnerJ.M. RumpunenK. Promotion of wound healing by Plantago major L. leaf extracts – ex-vivo experiments confirm experiences from traditional medicine.Nat. Prod. Res.201630562262410.1080/14786419.2015.1034714 25898918
    [Google Scholar]
  140. ZaunerW. FarrowN.A. HainesA.M.R. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density.J. Control. Release2001711395110.1016/S0168‑3659(00)00358‑8 11245907
    [Google Scholar]
  141. JainU.K. GuptaN. Prominent wound healing properties of indigenous medicines.J. Nat. Pharmaceut.201011210.4103/2229‑5119.73579
    [Google Scholar]
  142. MaverT. MaverU. Stana KleinschekK. SmrkeD.M. KreftS. A review of herbal medicines in wound healing.Int. J. Dermatol.201554774075110.1111/ijd.12766 25808157
    [Google Scholar]
  143. DorjsembeB. LeeH.J. KimM. DulamjavB. JigjidT. NhoC.W. Achillea asiatica extract and its active compounds induce cutaneous wound healing.J. Ethnopharmacol.201720630631410.1016/j.jep.2017.06.006 28602757
    [Google Scholar]
  144. OryanA. MohammadalipourA. MoshiriA. TabandehM.R. Topical application of Aloe vera accelerated wound healing, modeling, and remodeling: An experimental study.Ann. Plast. Surg.2016771374610.1097/SAP.0000000000000239 25003428
    [Google Scholar]
  145. HormoziM. AssaeiR. BoroujeniM.B. The effect of aloe vera on the expression of wound healing factors (TGFβ1 and bFGF) in mouse embryonic fibroblast cell: In vitro study.Biomed. Pharmacother.20178861061610.1016/j.biopha.2017.01.095 28142117
    [Google Scholar]
  146. LinL.X. WangP. WangY.T. HuangY. JiangL. WangX.M. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.Mol. Med. Rep.20161321070107610.3892/mmr.2015.4681 26677006
    [Google Scholar]
  147. HeX. WangX. FangJ. ZhaoZ. HuangL. GuoH. ZhengX. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities.J. Ethnopharmacol.2017195203810.1016/j.jep.2016.11.026 27865796
    [Google Scholar]
  148. YueL. WangW. WangY. DuT. ShenW. TangH. WangY. YinH. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways.Int. J. Biol. Macromol.20168937638810.1016/j.ijbiomac.2016.05.002 27151672
    [Google Scholar]
  149. DingL. ShanX. ZhaoX. ZhaH. ChenX. WangJ. CaiC. WangX. LiG. HaoJ. YuG. Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–Bletilla striata polysaccharide for wound healing applications.Carbohydr. Polym.20171571538154710.1016/j.carbpol.2016.11.040 27987866
    [Google Scholar]
  150. SongY. ZengR. HuL. MaffucciK.G. RenX. QuY. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts.Biomed. Pharmacother.20179345146110.1016/j.biopha.2017.06.079 28667914
    [Google Scholar]
  151. KharatZ. Amiri GoushkiM. SarvianN. AsadS. DehghanM.M. KabiriM. Chitosan/PEO nanofibers containing Calendula officinalis extract: Preparation, characterization, in vitro and in vivo evaluation for wound healing applications.Int. J. Pharm.202160912113210.1016/j.ijpharm.2021.121132 34563618
    [Google Scholar]
  152. AlbanoM.N. da SilveiraM.R. DanielskiL.G. FlorentinoD. PetronilhoF. PiovezanA.P. Anti-inflammatory and antioxidant properties of hydroalcoholic crude extract from Casearia sylvestris Sw. (Salicaceae).J. Ethnopharmacol.2013147361261710.1016/j.jep.2013.03.049 23542040
    [Google Scholar]
  153. HeymannsA.C. AlbanoM.N. da SilveiraM.R. MullerS.D. PetronilhoF.C. GainskiL.D. Cargnin-FerreiraE. PiovezanA.P. Macroscopic, biochemical and hystological evaluation of topical anti-inflammatory activity of Casearia sylvestris (Flacourtiaceae) in mice.J. Ethnopharmacol.202126411313910.1016/j.jep.2020.113139 32726679
    [Google Scholar]
  154. de CamposE.P. TrombiniL.N. RodriguesR. PortellaD.L. WernerA.C. FerrazM.C. de OliveiraR.V.M. CogoJ.C. Oshima-FrancoY. AranhaN. GerenuttiM. Healing activity of Casearia sylvestris Sw. in second-degree scald burns in rodents.BMC Res. Notes20158126910.1186/s13104‑015‑1251‑4 26111930
    [Google Scholar]
  155. PandeyV.K. AjmalG. UpadhyayS.N. MishraP.K. Nano-fibrous scaffold with curcumin for anti-scar wound healing.Int. J. Pharm.202058911985810.1016/j.ijpharm.2020.119858 32911047
    [Google Scholar]
  156. RathinavelS. KorrapatiP.S. KalaiselviP. DharmalingamS. Mesoporous silica incorporated PCL/Curcumin nanofiber for wound healing application.Eur. J. Pharm. Sci.202116710602110.1016/j.ejps.2021.106021 34571179
    [Google Scholar]
  157. RathinavelS. IndrakumarJ. KorrapatiP.S. DharmalingamS. Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application.Colloids Surf. A Physicochem. Eng. Asp.202263712818510.1016/j.colsurfa.2021.128185
    [Google Scholar]
  158. PillaiM.M. DandiaH. CheckerR. RokadeS. SharmaD. TayaliaP. Novel combination of bioactive agents in bilayered dermal patches provides superior wound healing.Nanomedicine 20224010249510.1016/j.nano.2021.102495 34838992
    [Google Scholar]
  159. BadieeP. NasirzadehA.R. MotaffafM. Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species.J. Pharm. Technol. Drug Res.201211710.7243/2050‑120X‑1‑7
    [Google Scholar]
  160. ScrimaM. MelitoC. MerolaF. IorioA. VitoN. GioriA.M. FerravanteA. Evaluation of wound healing activity of Salvia haenkei hydroalcoholic aerial part extract on in vitro and in vivo experimental models.Clin. Cosmet. Investig. Dermatol.20201362763710.2147/CCID.S224418 32922060
    [Google Scholar]
  161. FarahpourM.R. PirkhezrE. AshrafianA. SonboliA. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model.Biomed. Pharmacother.202012811012010.1016/j.biopha.2020.110120 32460189
    [Google Scholar]
  162. KarimzadehS. Farahpour, MR Topical application of Salvia officinalis hydroethanolic leaf extract improves wound healing process.Indian J. Exp. Biol.201755298106
    [Google Scholar]
  163. GüzelS. ÖzayY. KumaşM. UzunC. ÖzkorkmazE.G. YıldırımZ. ÜlgerM. GülerG. ÇelikA. ÇamlıcaY. KahramanA. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats.Biomed. Pharmacother.20191111260127610.1016/j.biopha.2019.01.038 30841440
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010287720240322060706
Loading
/content/journals/cpb/10.2174/0113892010287720240322060706
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test